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The back-reaction problem for conformally invariant free quantum fields in homogeneous and
isotropic spacetimes containing classical radiation is solved for spacetimes with nonzero spatial cur-
vatures and/or nonzero cosmological constants. The solutions depend upon two regularization pa-
rameters which we call a and P. Only solutions which at late times approach the appropriate solu-
tion to the field equations of general relativity are considered. The results are much the same as
those found previously for spatially flat spacetimes with zero cosmological constants. Thus, if
P & 3a & 0, there is always one solution which undergoes a "time-symmetric bounce" and which con-
tains no singularities, if a,P & 0 there is a family of solutions with particle horizons and no singular-
ities, and if a & 0 there is always at least one solution with an initial singularity but no particle hor-
izons. The differences caused by the spatial curvature and cosmological constant include the initial
behavior of the time-symmetric bounce solution and, if the spatial curvature is nonzero, the initial
behavior of many solutions for the cases P= 3a & 0 and P=3a & 0.

I. INTRODUCTION

Quantum fields may have profoundly influenced the
dynamical behavior of the early universe. Their possible
effects include the inflationary universe scenario, ' the
damping of anisotropy, and the removal of particle
horizons and singularities.

Much of the evidence for the removal of particle hor-
izons and singularities comes from studies of conformally
invariant free quantum fields in homogeneous and iso-
tropic spacetimes containing classical radiation.
Ruzmaikina and Ruzmaikin, ' Gurovich and Starobin-
sky, " and Frenkel and Brecher' undertook such investi-
gations in the context of higher-derivative theories of
gravity. They found that the initial singularity predicted
by classical general relativity can be removed, but it is re-
placed by a different initial singularity at an earlier epoch.
Fischetti, Hartle, and Hu, using the semiclassical approx-
imation to quantum gravity, found additional evidence
that the singularity predicted by classical general relativity
can be removed. They also found one solution to the
semiclassical back-reaction equation with an initial singu-
larity, but no particle horizons. Frenkel and Brecher
pointed out that this solution also occurs for higher-
derivative theories of gravity. In Ref. 9, hereafter referred
to as paper I, the author extended the investigation of
Fischetti et al. to include all possible values of the regu-
larization parameters a and P. In the process, several ad-
ditional solutions to the semiclassical back-reaction equa-
tion with initial singularities but no particle horizons were
found. Also, a family of solutions with particle horizons
but no singularities and one time-symmetric bounce solu-
tion with neither particle horizons nor singularities was
found.

In this paper, the investigation of paper I is extended to
include homogeneous and isotropic spacetimes with posi-

tive and negative spatial curvatures and nonzero cosmo-
logical constants. The assumptions and approximations
which are used in this investigation are outlined in the
next few paragraphs. A more detailed discussion of thetn
appears in paper I.

We assume that the universe is homogeneous and iso-
tropic and that it contains classical radiation. The classi-
cal radiation is included to support the expansion at late
times compared with the Planck time, when quantum ef-
fects are small. The line element for homogeneous and
isotropic spacetimes is called the Robertson-Walker (RW)
line element and it has the form'

ds =a (t)) —dr) + +r (dO +sin edge)
1 —kr

where a(ti) is the scale factor, k =0, +1, and the spatial
curvature (intrinsic curvature of a surface of constant t))
equals k/a .

We also assume that the only quantum fields in the
universe are conformally invariant free fields. These in-
clude photons, massless neutrinos, and massless confor-
mally coupled scalar fields. Since homogeneous and iso-
tropic spacetimes are conformally flat, ' it is possible to
solve the wave equations for these fields by conformally
transforming them to flat spacetime, solving the wave
equations there and transforming the solutions back to
curved spacetime.

Our final assumption is that an appropriate way to
modify classical general relativity so that quantum effects
may be taken into account is to modify Einstein s equa-
tions to read
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Here G,b is the Einstein tensor, A is the cosmological con-
stant, g~ is the metric tensor, /=(16m. G)'~ is the Planck
length, T~b is the stress-energy tensor for any classical
fields present, and (Tg ) is the expectation value of the
stress-energy tensor operator for the quantum fields.
Equation (1.2) is called the semiclassical back-reaction
equation and results from the semiclassical approximation
to quantum gravity.

For conformally invariant free fields in homogeneous
and isotropic spacetimes

(Tg")=T.'b"+(0I T.'P
~
o&, (1.3)

where T,b has the same form as the stress-energy tensor
for classical radiation' and (0

~
T,P ~

0) is the regular-
ized vacuum expectation value of T, b . Various authors
find that

«
I
T'3

I
o& = (g.b—R cR;'ab+RRab 4 gabR

+P( 3RR,b R~ Rb,—+ 2g~bR~dR

(1.4)

where R,b is the Ricci tensor, R =g' R,b is the scalar
curvature, and a and P are constants which depend upon
the number and types of fields present and, in the case of
the photon, on the regularization scheme used. For exam-
ple, dimensional regularization gives a=12(288(hr )
P=62(2880rr ) ' for the photon, while g-function regu-
larization gives a = —18(288(hr ) ', P=62(2880ir )

If Eqs. (1.1), (1.3), and (1.4) are substituted into (1.2),
the result is an ordinary differential equation for a(g).
We wish to solve this equation and examine the physical
properties of its solutions.

Since we do not yet know what fields were present in
the early universe or which regularization scheme, if any,
is the correct one, we do not know what the values of a
and P were for the early universe. Therefore, we take a
phenomenological approach and consider all reasonable
values of a and P.

We are interested in models of the early universe which
evolve into universes which look like ours at late times

compared with the Planck time. Thus we impose the
boundary condition that solutions of (1.2) must approach
the appropriate solution to the field equations of classical
general relativity at late times. We call such solutions
asymptotically classical solutions (ACS).

To summarize: We wish to find the asymptotically
classical solutions of (1.2) for homogeneous and isotropic
spacetimes containing classical radiation, when the only
quantum fields present are conformally invariant free
fields. All reasonable values of the regularization parame-
ters a and P will be considered.

Once the initial behaviors of the ACS are known, it can
be determined if particle horizons and singularities are
present. This allows us to address the issues of whether
our universe began with an initial singularity and whether
it has particle horizons.

Our results are very similar to those of paper I. We
find that for a &0 there is one ACS for each value of a
and P, while for a & 0, there are many ACS.

If P& 3a &0, we find one ACS always exists which de-
scribes a universe which bounces and expands in the same
way after the bounce that it contracted before the bounce.
If this universe is closed, then its scale factor oscillates be-
tween a imnimum and maximum value. If it is open, then
its scale factor, which is initially infinit, decreases to
some miniinum value and then increases forever. In both
cases, we call this solution a "time-symmetric bounce
solution. " It has no singularities and, if A=O or the
universe is closed, it has no particle horizons.

If a &0, P&0, we also find a one-parameter family of
ACS which begin with an infinite scale factor. The scale
factor initially decreases exponentially as a function of
proper time, dt=a dg. Later, it bounces once and then
approaches the classical solution. These solutions have
particle horizons, but no singularities. There are no other
ACS without singularities.

If a & 0, there is always at least one ACS without parti-
cle horizons for each a and P. If a&0, the results are
mixed. The above results are summarized in Table I.

Only if P=3a does the spatial curvature significantly
influence the initial behavior of the ACS, with the excep-
tion of the time-symmetric bounce solutions discussed
above. The cosmological constant never significantly af-

TABLE I. Summary of the asymptotically classical solutions found in Sec. III and their physical properties.

Number of para-
eters solutions

needed to specify
a solution

Number of solu- Number of solu-
tions without a tions without a

singularity horizon

Equation de-
scribing initial

behavior

a&0

a&0

P&3a
0&P&3a
P&0
P&0
P&0
P&3a
P&3a[1—B (1+E) ']
3a &P(3a[1—B2(1+E) ']
P&3a

0, +1
0, +1
0, +1
0, +1
0, +1
0, —1

1

1

0, +1

1

1

1

None
None
None
None
None
None

Family
Family
None
None
None
None
None
None
None

Family
1

1

None
1

None
None

Unknown
1

(3.10),(3.17),(3.18)
(3.10),(3.17),(3.20)
(3.11),(3.12),(3.17),(3.20)
(2.11),(3.22),(3.24)
(3.25)
(3.29)
(3.29)
(3.29),(3.31),(3.32)
(3.28)'
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fects the behavior of solutions when the scale factor is
small.

In Sec. II, we derive and discuss the dynamical equation
of motion for the scale factor. If the spatial curvature and
cosmological constant do not vanish, then we find that
quantum effects persist, to a small extent, even at late
times. In Sec. III, we find both the early- and late-time
behaviors of the ACS for all reasonable values of a and P
and we determine which ACS have singularities and parti-
cle horizons.

II. DERIVATION AND DISCUSSION
OF THE DYNAMICAL EQUATION OF MOTION

The dynamical behavior of homogeneous and isotropic
spacetimes consists of uniform expansions and contrac-
tions which can be completely described by the scale fac-
tor a(g). Our goal is to derive an equation for a(g) using
Eqs. (1.1), (1.2), (1.3), and (1.4) and then to solve this equa-
tion for various values of k, A, a, and P.

To derive an equation for a(g), we must have expres-
sions for the stress-energy tensors on the right-hand side
of (1.2}. The expression for (0

~

TQ~
~
0) is given by (1.4).

l

The stress-energy tensor for classical radiation is

CR
ab (pr +pr }Ua Ub +pgab (2.1)

p»
p»

Q
(2.2)

where p, is a constant.
To conform with the notation of paper I, we write our

equation in terms of the variables

1
—1——1/4

pr

6—1/2—1/4
p»

(2.3)

For given values of k, p„, and A, the only variable in
RW spacetimes is the scale factor a(g). Thus all of the
nontrivial components of (1.2) must be linearly dependent.
For convenience we choose the "00" component which,
combined with Eqs. (1.1), (1.3), (1.4), (2.1), (2.2), and (2.3),
gives the following equation for scale factor:

where U, is the four-velocity of the radiation, p„ is its en-
ergy density, and p, its pressure. The equation of state is

p» = —,
'
p, and p, varies with a as

b, 2+ 6kb 212Ab4=—1+ a b"'b'

p»
—1/2 3 2b2

b "b' 1 b"
4 b

'2 2
3k b 9k

$ /2
pr p»

4
1 b' k b' 3k+P
12 b

+ i/2 b
+

p» pr
(2.4)

f=
I

b'
I

In terms off and y, Eq. (2.4}becomes

d f —P f a 1 B
x'"f'"

(2 5)

1 2/3

f2/3 5/3

where b'=db/dX. This is a third-order ordinary dif-
ferential equation which does not explicitly depend on the
independent variable X. This implies that its solutions
will be invariant under translations in P. It is also easy to
check that Eq. (2.4) is invariant under the transformation
X~—7, although its solutions in general are not.

Because Eq. (2.4} is explicitly independent of X, it can
be reduced to a second-order differential equation. One
way to do this' ' ' is to define the new variables

Some discussion of these equations is in order. If k =0,
then /I =B=E=0 and Eqs. (2.4) and (2.6) are both in-
dependent of p„. This comes from the fact that b is in-
variant under changes of scale, while p„ is not. Once b is
known, the scale can be set by p, and a(g) can be deter-
mined.

The spacetimes of interest are those which approach
our universe at times much larger than the Planck time.
Since quantum effects should be negligible at such times,
these spacetimes should contain the same amount of radi-
ation and have the same value of the cosmological con-
stant as general relativity and current observations predict
our universe had at those times.

From observations of the dynamics of clusters of galax-
ies, it can be deduced that today

~A~ (10 cm

which implies

+ Ay'/3) , (2.6}
fA/ ( /a/ XI0 "'. (2.7)

where we have introduced the constants

3k (a+P) ~ —6~a
~

'/ k

p» p»B=,A=21 /aiA.

It is possible to put limits on the current value of p„, if
k&0, from observations of the temperature of the mi-
crowave background radiation Tb, the present value of
Hubble's constant Ho, the present value of the decelera-
tion parameter qo, and the present density of matter (not
radiation) p~o. For k&0 one finds 3
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Tb
p, =9.3X 1O'"

2.7 K

Xk h [0.8h (p~o/(10 g/cm3) }—qo —1]

(2.8)

where h =&0(100(km/sec)/Mpc)
According to current observations, the expressions in

parentheses in (2.8) are both equal to unity to within one
or two orders of magnitude, as are h and qo. For spa-
tially flat spacetimes, the expression in square brackets
vanishes, so

(2.9)

is a reasonable limit to put on the present value of p„ if
the universe has nonzero spatial curvature. This gives the
following limits on A, 8, and E:

predicted by classical general relativity and since y ~b,
the qualitative behavior of the early universe should be in-
dependent of A and A unless the universe did not begin
with a small scale factor. In Sec. III, it is found that this
is indeed thc case.

The term containing B comes from (0
I
Tg I

0) and it
makes a significant contribution to d f/dy only when y
is near zero. Even then, it turns out that the qualitative
behavior of solutions is only affected by this term if
p=3a. This means that most of the types of behaviors
found in paper I for universes with k=A=0 occur also
for universes with k&0 and/or A&0.

As discussed in the Introduction, the solutions of in-

terest are the asymptotically classical solutions, that is,
solutions which at late times, compared with the Planck
time, approach the appropriate solutions of Einstein's
equations, which in this case are the radiation-dominated
Friedmann universes. In the variables f and y, these solu-
tions are

f ( 1 +F2/3+Ay4/3)3/4 (2.11)

(2.10)

The reason p„ is so large and therefore 3, 8, and E are
so small, is that through the scaling (2.3) the spatial cur-
vatures, energy densities, etc., have been expressed in
Planck units. Compared to the natural Planck scales, our
universe is remarkably flat. This is yet another example
of the flatness problem. '

A glance at Eq. (2.6) shows that terms containing A and
A only make significant contributions to d f/dy when y
is very large. Since b is zero at the initial singularity

There are two basic criteria which are applied to solu-
tions of (2.6) to determine if they are ACS. The first is
that the classical solution, (2.11), should be approached
long before the terms containing A and A make significant
contributions to (2.11). This is because, even today, these
terms are so insignificant that observations have not deter-
mined if they are positive or negative. The second cri-
terion is that an ACS should continue to approach the
classical solution, once it has begun to do so, for all large
values of y.

In Sec. III, the late-time behavior of one of the ACS is
displayed. It has the general form

f =(I+Qy~/ +Ay / ) /
t 1+O(y )+&(&y )+0(A)+(1+~y +Ay ) l. o(~ }+0(A y (2.12)

This means that, unless k =A=0, quantum effects per-

sist, even at late times. The reason is that the highest-

order derivatives in Eqs. (2A) and (2.6} come from

(0 I Tg I
0). If the classical solution is to be approached

exactly at late times, then when the classical solution is
substituted into Eqs. (2.4) and (2.6), the terms due to
(0 I Tot I

0) should cancel, at least to the same order in

the scale factor as the classical solution. This does not

happen exactly if k&0 and/or A&0, which is why there

are extra terms in Eq. (2.12).
The most significant of these occurs if A&0, and the

universe is open. Then the universe expands at very late
times as though it had a slightly different cosmological
constant than it has. This implies that if, for some period,
the universe expands like a de Sitter universe (which is
what it does when a positive cosmoloJ, ical constant dom-

inates the expansion), then (OI T Io) contributes a
teiui which acts like an effective cosmological constant.
Starobinsky has shown that if the universe contains no
matter or radiation, then there is an exact solution to Eq.
(2.6) with k =A=0, a &0, and p&0, which is a de Sitter

universe with an effective cosmological constant equal to
6I —2p —i

One might be worried that some quantum effects per-
sist even when the scale factor is large. However, all of
these effects are either related to the spatial curvature or
the spacetime curvature (since the curvature of de Sitter
space depends on the cosmological constant) and they do
not beconie large unless the curvature becomes large. If
the curvature is large, then the effects of quantum field

theory in curved spacetime should be important, so there
is no inconsistency.

III. ASVMPTGTICALLY CLASSICAL SGLUTIGNS
AND THEIR PHYSICAL PRGPERTIES

In this section the asymptotically classical solutions of
Eqs. (2.4) and (2.6) are found for spacetimes with k+0
and/or A&0 and some of their physical properties are dis-

cussed. The early-time behaviors of these ACS are dif-
ferent for different values of a and P. Therefore the dis-

cussion of the ACS is broken up into the cases a & 0, a =0
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and a&0, as well as several subcases depending on the
values of (p/a) and k. It is assumed throughout that the
dimensionless constants E, A, 8, and A, which together
determine the values of k, A, a, and p, are very small
compared to unity, in keeping with their values for our
universe [see Eqs. (2.7)—(2.10)]. The results for the vari-
ous cases are summarized in Table I.

It is not hard to see that the terms containing A and A
make negligible contributions to Eq. (2.6) unless
y) IA I

~,
~

A
~

~. For such large values of y, the
classical solution (2.11) is dominated by either the term
with A or the term with A, which means that the expan-
sion is dominated either by the spatial curvature or the
cosmological constant. This is not yet true for our
universe, which is why the ACS are required to approach
the classical solution (2.11) at values of y which may be
large compared to unity, but which are smaller than
[A [

' zor
I A[

The term containing 8 in (2.6) is important only for
y &

I
B

I

~ . Even then, as shall be shown, this term only
significantly affects the behavior of solutions if p=3a.
Thus for most values of a and P, the early-time behaviors
of the ACS are qualitatively the same as those for
universes with k =A=0. That is, features such as the
number of ACS beginning with b =0 or b = ac, beginning
at X=—oo or at a finite value of X, having a power-law
expansion at early times, undergoing a single bounce or
multiple bounces, etc., remain unchanged. For example, if
there is a family of ACS for k =A=0 which begin with
b = 00, bounce once and have no singularities, there is also
such a family for k&0 and/or A&0.

As in paper I, only for a=O were general analytic solu-
tions to Eq. (2.6) found. For each value of P, there is one
ACS. The solutions are displayed and their physical prop-
erties are discussed in Sec. IIIB.

For a &0, there is a one-parameter family of ACS for

each value of a and p. In Sec. III A the behaviors of these
ACS are examined in detail and their physical properties
are discussed. Figures 1—3 show the results of numerical
integrations of (2.4) for various values of k, A, a, and p.

For a &0, there is one ACS for each value of a and p.
In Sec. III C, the behaviors of these ACS are examined in
detail and their physical properties are discussed.

A more thorough discussion of the ACS and their
early-time behaviors follows, beginning with the case
o.)0.

A. a&0.

In Sec. IIA of paper I, this case was investigated for
universes with k =A=0. It was possible in that investiga-
tion to display the late-time behavior of the ACS and to
prove theorems showing that ACS with certain initial
behaviors exist. For universes with k+0 and/or A&0 the
extra terms in (2.4) and (2.6) make it much more difficult
to accomplish these tasks. Therefore a less rigorous ap-
proach is taken here and we replace the proofs with two
assertions about the ACS. These assertions, along with
some analytical and numerical work, allow nearly as much
to be determined about the ACS for k&0 and/or A&0 as
was determined about them for k =A=0. The structure
of the rest of this section is as follows. First the assertions
are stated, then evidence for them is given and finally the
early-time behaviors of the ACS are analyzed using them.

The two assertions are as follows:
(1) A one-parameter family of ACS exist for all values

of a and P if a & 0.
(2) The behavior of solutions to (2.6) in the range

(B I

~ &&y && (A ~, (
A

)

~ is qualitatively the
same as that for universes with k =A =0.

There are two pieces of evidence supporting assertion
(1). The first is that an explicit expression for the late-
time behavior of one of the ACS can be obtained by as-

0.20 0.20-

0.15 0.15

0.10 0.10

0.05 0.05

0.00-0.2
I

-0. I 0.0
x

I

0. 1 0.2 0.00-0.2
I

-0. 1 0.0
x

I

0. 1 0.2

FICy. 1. This figure shows selected ACS for P=6a=6(2880m ) ', p„=l, A=O. The plot on the left is for k=1 and that on the
right is for k = —1. The dashed lines are the classical solutions. The solid lines were obtained by numerically integrating (2.4) back-
wards in time, using (3.7), with c2 ——0, to obtain starting values for b' and b". From top to bottom the curves in the left-hand plot
correspond to solutions with cl ——5, 10, 18.9880, 20, and 35, while those for the right-hand plot correspond to solutions with cl ——5,
10, 14.3097, 20, and 35. Because of the large value of p, , the spatial curvature has a visible effect on solutions. Even so, the quali-
tative behavior of solutions is the same. That is, for both values of k, the upper solutions begin with b = Oo at a finite value of g and
behave initially like collapsing de Sitter universes with effective cosmological constants given by (3.13). They bounce once and ap-
proach the classical solution. In both plots the lower solutions are multiple-bounce solutions and begin with b =0 at g= —ao. A.iso
in both cases a tame-symmetric bounce solution exists, although it occurs for c = 18.9880 if k = 1 and c = 14.3097 if k = —1.



620 PAUL R. ANDERSON

suming a solution to (2.6) of the form

f=fo+rzf1 +&'f2+ '

where fo is the classical solution (2.11). Here a is con-
sidered to be a small number and in what follows P is as-
sumed to be of the same order of magnitude as a. The
motivation for this expansion is that in the liinit a, P~O

I

quantum effects vanish and Eqs. (1.2) and hence (2.4)
reduce to Einstein's equations.

If (3.1) is substituted into (2.6) and the dependence of y
on a is taken into account [see Eq. (2.5)], then keeping
terms of order a results in an algebraic equation for fi.
Substituting the solution for f, back in (2.6) and keeping
terms of order a results in an algebraic equation for f2,
etc. The result to order u is

f ( 1 +Ay 2/3+ Ay 4/3)3/4+ P~ iy 4/3( 1 +Ay 2/3+ Ay4/3)7/4

+—[(38——A )y +A](1+Ay +Ay )

( A 2 3E +A Ay /3+ A 2y 4/3)( 1 +Ay 2/3+ Ay 4/3) 1/4+ O (~2) (3.2)

f =A / (1+ 16 a 'pA)y, A&0, (3.3a)

f=A "4y'", A=o. (3.3b)

For closed universes (ones which expand to a maximum
size and then contract), (3.2) is valid in the region
1«y « ~A ~, ~

A
~

so the first criterion for an
ACS is satisfied. However, as y approaches the value at
which the classical maximum occurs, the quantity

For the solution in (3.2) to be an ACS, it must satisfy
the two criteria given in Sec. II; that is, it must approach
the classical solution for values of y such that
y« ~A

~

/,
~

A
~

/ and it must continue to approach
the classical solution for all larger values of y.

For open universes (ones which expand forever), (3.2) is
valid for all y »1. The classical solution, (2.11), is ap-
proached to within 0 (y ) for 1 «y « LA

~

)A (

/ and to within 0( (A (y
/ + (

A
)

) for
Thus (3.2) is an ACS. In the

limit y ~ 00, this solution approaches

(1+Ay +Ay ) approaches zero [because an extremum
in the (X,b) plane corresponds to f=0 in the (y,f) plane]
and the fourth term on the right in (3.2) diverges. This
means that the expansion (3.1) breaks down in this limit
and other techniques must be used to determine the
behavior of the solution in (3.2). In the Appendix it is
shown that a solution to (2.6) exists for which f=0 at a
value of yo which is within 0 (k a'/ p„'/ +

~

A
~

'/") of
the value of y at the classical maximum. Near y =yo, this
solution matches up with the one in (3.2) to
O(a(yo —y) / ). Thus, the solution in (3.2) also satisfies
the second criterion for an ACS and is, therefore, an ACS.

The second piece of evidence for assertion (1) has to do
with solutions to the equation which results from lineariz-
ing (2.6) about the classical solution (2.11). These solu-
tions also provide evidence for assertion (2).

To linearize (2.6) about the classical solution (2.11), one
first writes f=f0+f1, where fo is again the classical
solution and fi is assumed to be small compared to fo.
Then to first order in fi,

d 2f

dy 12' y 2+ y 2/3(4+g 2/3)( 1 +A 2/3+ Ay 4/3) 1+ E 2/3( 1 +Ay 2/3+ A 4/3) 2
3

IPy 2( 1 +Aye/3 +Ay 4/3)3/4+ [( A Z)y
—4/3 Ay

—2/3]( 1 +Aye/3 +Ay 4/3
)
—1/4

+[(—„A —E)y + —,AA+ —,A y ](1+Ay +Ay ) (3.4)

A particular solution may be obtained by writing
fI =af~ i+a f12+ . and substituting this expression
into (3A). If powers of a are counted and the a depen-
dence of y is taken into account, then keeping terms of or-
der a results in an algebraic equation for fbi. Substituting
this back into (3.4) and keeping terms of order a gives an
algebraic equation for f12, etc. The resulting particular
solution matches (3.2) to order a, as one would expect.

The homogeneous equation can be reduced to a first-
order differential equation with the change of variable
f~ =exp[ fK(y)dy] The resulting e.quation for K is

dIC

—2/3(4+g —2/3)(1+A 2/3+A 4/3) —1

+ 5 E —2/3
( 1 +Ay 2/3 +Ay 4/3

)
—2 (3.5)

Since (3.4) is a linear equation, only two solutions of
(3.5) are needed, so long as they correspond to linearly
independent solutions of (3.4). For 1«y « ~A

~

~

A
~

", two such solutions may be obtained by the fol-
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lowing method. Write E =E~+E2+E3+ . . and sub-
stitute into (3.5). Assu~~ that

I
K

I && I Kt+t I
and that

I dK;/dy I « I
K;

I
for all i T. hen, keeping only lowest-

order terms, solve for Kt. Substitute the expression for
Kt back into (3.5) and keeping only lowest-order terms
solve for K2, etc. The result is that for
1 «y « I

A I, I
A I, the above conditions on the

K; are satisfied and

K~ ——+[——,'2 a 'Py

&

y
—2/3(4+g —2/3)(1+Ay2/3+Ay4/3) —I

+Ey2/3(1+Ay2/3+Ay4/3)2]1/2

Then the general solution to (3.4) in the region
1«y« IA I

/, IAI / is

fj ——1+p(16a} 'y + —,'Ay / + —,Ay +O(A y / )+O(A y / )+O(E)+O(a )

+c~y'/ exp[ —3'/y / [1+O(E)+O(y / )+O(Ay / )+O(Ay / )]]
+c2y'/ exp[3'/y / [1+O(E}+O(y / )+ O(Ay2/ )+O(Ay / )]I, (3.7)

0.0

log b

—10.0

-20.0

-30.0
—l.5 -l.o -0.5

X
0.0 0.5

FIG. 2. This figure shows selected ACS for
P=3a={288(hr ) ', k =1,p, =l, A=O. The dashed line is the
classical solution. There are two types of ACS shown. The
upper curves are a family of solutions which begin with b = Oo

at a finite value of g. Initially, they behave like contracting de
Sitter universes with effective cosmological constants given by
(3.13). They bounce once and approach the classical solution.
The lower curves are multiple-bounce solutions. They begin
with b =0 at g= —00 and bounce an infinite number of times
before approaching the classical solution. A time-symmetric
bounce solution is hinted at and almost certainly exists. For
P& —1, it has approximately the same behavior as the central
curve.

where c ~ and cq are arbitrary constants.
The solutions with c2 ——0 form a one-parameter fatnily

which approach the classical solution. For open
universes, it is not hard to show, using (3.3) and (3.4), that
the classical solution is approached by these solutions for
all y »1. Thus it is very likely that the exact solutions of
(2.6) which they correspond to are ACS. For closed
universes, the perturbation expansion leading to (3.4)
breaks down for y —IA I

/,
I
A

I

3/. However, it
seems likely that the solutions of (2.6) to which the solu-
tions in (3.7) with c2 ——0 correspond, continue to approach
the classical solution and have maximum values of y close
to that of the classical solution, just as the solution in (3.2)
does. This implies that they are ACS and therefore that
assertion (1) is correct, for both open and closed universes.

Coven then that the solutions with c2 ——0 in (3.7} corre-
spond to ACS, one sees that assertion (2) is satisfied by

these ACS in the region 1«y « IA I, I
A

If-1. There are three other pieces of evidence which sup-
port assertion (2). They consist of an analysis of the
behavior of solutions in the limit f~0 which covers the
region

I
8

I

/ «y « IA I, I
A

I
/, the results of

some numerical integrations which cover the region
10 ' &y & 10, 0 &f& 10, and an analysis of solutions
which approach f= ao, y= co with f &y, which covers
the region f &y»1. Thus, for the most part, these
pieces of evidence do not cover overlapping regions, but
taken together, they do cover much of the region for
which assertion (2) is expected to hold.

Because f=
I
O'I /, solutions for which f~0 at a

nonzero value of y have an extremum in the (X,b) plane.
Iff=0 at y =yo, then near y =yo, Eq. (2.6) can be solved
and the result is

f=( ')'"y '"(I+E—+Ay '"+Ay '"}'"
I y —yo I

'"
+sgn(X —Xo)D

I y —yo I

' + .

y '
Iy —y I

«1, (3.8)

where the extrernum occurs at 7=X& and D is an arbitrary
constant. For yo« IA I

/,
I
A

I
/, the solutions

clearly are only small perturbations of the solutions for
k =A=0.

If D =0, then, in the (X,b) plane, the solution is time
symmetric about the extremum. Some of the numerical
integrations mentioned above were performed for time-
symmetric bounce solutions. Equation (2.6) was linearized
about its solutions for k =A =0 and this linearized equa-
tion was numerically integrated for the cases k&0, A=0,
and k =0, A&0. The solutions of this linearized equation
give the deviations of solutions with k&0 and/or A&0
from solutions with k =A=0. In all cases, negligible de-
viations were found for values of A and A in accord with
(2.7) and (2.10). Most of the region 10 ' &y & 10,
10 &f &10 was covered by these numerical integra-
tions.

The rest of the numerical integrations were done for Eq.
(2.4). The values used for p, were 1, 0.1, and 0.01, those
for k were +1, 0 and those for

I
I A

I
were 1, 10, and 100.

In each case, starting values for b" and b' were obtained
from the solutions in (3.7) (to the linearized equation) with
c2 ——0.



622 PAUL R. ANDERSON 29

0.20 0.20

O. I 5— 0.15—

G. lo— O. IO—

0.05— 0.05—

0.00-0.2 -O. I 0.0 O. I 0.2
0.00-0.2 -O. I 0.0

X
0. I 0.2

FIG. 3. This figure shows selected ACS for P=a=(28802) ', k =0. The plot on the left is for A=1001, while that on the right
is for A = —100/ . The dashed lines are the classical solutions. The solid lines were obtained by numerically integrating (2.4) back-
wards in time, using (3.7), with c~ ——0, to obtain starting values for b' and b". From top to bottom the curves in each plot correspond
to solutions with c~ ———2, 0, 0.1, 1, and 20. Because of the large values of A, the cosmological constant has a visible effect on solu-
tions. Even so, the qualitative behavior of solutions is the same. That is, for both positive and negative A, the upper solutions begin
with b = ao at a finite value of P and behave initially like collapsing de Sitter universes with effective cosmological constants given by
(3.13). They bounce once and approach the classical solution. The lower solutions begin with b =0 at a finite value of P and do not
bounce. A third solution is hinted at in each plot and almost certainly exists. It begins with b =0 at P = —Oc and does not bounce.

The values of p, ' and
~

1 A
~

were large enough so
that differences between universes with different values of
k and A could be observed. However, even for such
unrealistically large values of p„' and 1 A, the qualitative
behavior of solutions in the region

~BI ~ &y& ~A ~, ~AI was the same as that
found in paper I for k =A =0. Some examples are shown
in Figs. 1—3.

The large-f, large-y behavior of solutions to (2.6) can be
obtained by noting that for f &y »1, the terms with B,
(1+E), and A can be ignored. Then, with the change of
variables f =yr, y =e, s =dr/dw, one finds

=s '[—(12a) 'Pr+r '~ Ar s~3] —1 . —(3.9)

A phase-plane analysis shows that, if P&0, solutions
spiral into the point

If P & 0, a phase-plane analysis shows that solutions
approach s =( ——,

' +o )r at large r, where
o—:—,(1—P/3a)'~ . This corresponds to the behavior

b =constX(X —Xo) ', X~X0,

(3.12a)

(3.12b)

where ci is a positive constant. Thus, for f &y »1, solu-
tions for k&0 and/or A&0 are only small perturbations
of the corresponding solutions for k =A =0.

Having provided evidence for assertions (1) and (2), and,
in the process, discussed the late-time behavior of the
ACS, we now turn to their early-time behaviors. These
fall into two categories: those which begin with b =0 and
those which do not. Because much of the groundwork has
been laid for the latter category, it is convenient to begin
there.

s =0, r =(6aP ') [1+(1——' 'PA)' ]
E. Asymptotically classical solutions

which do not begin with b =0Since A ~& 1, this corresponds to the behavior

f=(12a/P) ~ [1—(16a) 'PA+ ]y, y —moo,

b =(P/12) ' [ I +(24~) 'PA+ ](X—Xo)

X~XO (3.10b)

where Xo is an arbitrary constant.
If P=0, a phase-plane analysis shows that solutions ap-

proach the curve s =r ' at large r. This corresponds to
the behavior

(3.11a)

In paper I, for each value of a and P, a one-parameter
family of ACS which begin with b = oo at a finite value of3.10a
X were found. These bounce once and approach the clas-
sical solution. Assertion (2) and the numerical work men-
tioned above and shown in Figs. 1—3 indicate that, for
k&0 and/or A&0, there is again a one-parameter family
of ACS. Their early-time behavior is given by Eqs.
(3.10)—(3.12) for P & 0, P=0, and P & 0, respectively.

These solutions have particle horizons, but if P & 0, they
do not have singularities. Instead they initially appear like
collapsing de Sitter universes with effective cosmological
constants:

b(lnb)' = —,'a' (X—X ) ', X Xo. (3.11b) A ff t,„,——61 p '[ 1 ++a 'pA +0 (A )] (3.13)
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If P & 0, the solutions begin with initial singularities. This
can be seen by substituting (3.11) and (3.12) into the for-
mula for the scalar curvature,

R =l 6"b +6kl ' 6

=2I ~a~ 'y ' 'f' '

+6Ik —2——1/2
~

a
~

i/2 —2/3 (3.14)

In paper I, a time-symmetric bounce ACS was found
for each value of a and P, if P & 3a. The numerical work
used as evidence for assertion (2) implies that a time-
symmetric bounce ACS also occurs for k&0 and/or A&0
if P& 3a &0. This solution has no singularities. For operi
universes it begins with b= oo. If A&0, then it also be-
gins at a finite value of X, since when the scale factor is
large, the cosmological constant dominates the classical
equation (1.5), and the approximate solution is
b =const X(X—Xo) '. In this case there are particle hor-
izons. If A =0, then the solution begins at X= —ao and
there are no particle horizons. For closed universes, the
scale factor oscillates between minimum and maximum
values so there are no particle horizons.

There is one other case for which a time-symmetric
bounce ACS exists. That is the case k =1, P=3a. The
evidence for this is given in Sec. III A 2 b.

This ends the discussion of the ACS which do not begin
with b =0.

=+ ,' v '[o v 38v +cu—+3(1+E)]—'/ (3.16)

where c is an arbitrary constant. Both these equations
differ from their counterparts in Sec. IIA of paper I by
the terms with E and B. The contribution of the term
with E is clearly always negligible. The contribution of
the term with 8 is a bit more difficult to ascertain, but it
is certainly important if o =0. Recalling that
o = —,(1—P/3a)'/, this occurs for P 3a.

A closer examination of (3.16) shows that in the limit
w~ —ca (y~O), dv/dw is imaginary at large

~

v
~

if
o &0 or if cr =0 and 8 &0, while for other values of o.
and 8, dv/diu is real at large

~

u
~

. Thus, it is useful to
break the discussion of the early-time behaviors of the
ACS into the subcases P & 3a, P=3a, and P & 3a corre-
sponding to o. & 0, o. =0, and o & 0, respectively.

2. Asymptotically classical solutions
which begin with b =0

The remaining ACS begin with b =0 and therefore with

y =0. For P & 0 it is not hard to show that all solutions to
(2.6) which begin with y =0 also begin with f=0. In this
limit, (2.6) reduces to

d2f —Rf P f
( 1 +E) —2/3f —5/3 8 —4/3f —1/3

dy2 12a y2

(3.15)

With the change of variables f=y'
~

u
~

/, y =e, the
resulting equation can be integrated once to give

(a) P &3a. For this subcase, dv/dw becomes imaginary
at large values of v and it has two real roots: one at a pos-
itive value of u and one at a negative value of u. This
phase-plane structure is the same as that which occurs for
P& 3a &0 if k =A=0. Thus, as discussed in Sec. II A 1

of paper I, solutions spiral about the "w" axis. This im-
plies the existence of a two-parameter family of multiple-
bounce solutions, since every time the w axis is crossed an
extremum occurs in the (X,b) plane. Assertion (2) and nu-
merical integrations of (2.4) such as those shown in Fig. 1

indicate that a one-parameter family of these are ACS.
As shown in paper I, the multiple-bounce ACS begin with
an initial singularity at a finite proper time in the past and
they have no particle horizons.

If k = —1, then for

f=
I

uo I
'"y'"(I+ciy'+

b =const&( exp(a '/
~

uo ~X), X~—ao,

(3.17a)

(3.17b)

where the double root occurs at v =vo, c& is an arbitrary
constant, and p =( —', )'

~
uo

~

'[ 48 +(1+E)o ]'/ .
For both the two-parameter family mentioned above and
the one-parameter fainily in (3.17a), it is possible to show,
using an argument similar to the proof in Sec. IIA2 of
paper I, that all solutions to (2.6) with this initial behavior
approach f= co, y = ao with f &y and therefore that no
ACS have this initial behavior for P & 3a &0.

(b) P=3a. In this subcase, o=0 and the behavior of
solutions in the small-y limit depends on the sign of B. If
8 &0, then k =1 and du/dw in (3.16) is imaginary at
large values of

~

u ~. This is the same situation as for
P&3a, so a two-parameter fainily of multiple-bounce
solutions exists. Assertion (2) and the numerical integra-
tions shown in Fig. 2 indicate that a one-parameter family
of these are ACS. Integration of (3.16) near v =0 shows
that solutions with c =0 are time-symmetric bounce solu-
tions. For P& 3a, a time-symmetric bounce always pro-
vides a continuous transition between the multiple-bounce
ACS and the ACS which initially appear like contracting
de Sitter universes. Therefore, it is likely that in this sub-
case a time-symmetric bounce ACS exists and that it pro-
vides the above transition. Such an ACS is hinted at, al-
though not explicitly shown, in Fig. 2.

If 8 =0, then k =0 and (3.16) reduces to Eq. (2.10) of
paper I. Using assertion (2), we therefore expect that a
one-parameter family of ACS have initial behaviors given
by Eq. (2.19) of paper I, and that one ACS has its initial
behavior given by Eq. (2.20) of paper I. All of these solu-
tions begin with initial singularities and none of them
have particle horizons.

If 8 &0, then k = —1 and (3.16) can be integrated with

3a&P&3a[1+8 (1+E) ']
there is a range of values of c for which du/dw has four
real roots—three of which have the same sign. This im-
plies the existence of a two-parameter family of solutions
to (3.16) which oscillate between two positive or two nega-
tive values of u. For two values of c, du/dw has a double
root which implies a one-parameter family of solutions
with the behavior
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the result that for
I
c

I
&6[ B—(1+E)]'

f=(——'B) y' ( —lny), y~O,
b =const)& exp{ —exp[ —12' a '/ IB I

'

(3.18a)

cp=—6BUp —4Up cT
3 2

—2+ [ 1 B2 —4+(1+E) —2]1/2I 1/2
(3.19)

a double root of dv/dw occurs at v =vp. This implies that
a one-parameter family of solutions, whose initial

X(X—Xi)]], X~—a), (3.18b)

where X] is an arbitrary constant. For
I
c

I
=6[ B(—1+E)]'/, dv/dw has a double root at

vp=[ —(1+E)/B]'/ so the initial behavior of these solu-
tions is given by (3.17). Substitution of (3.18) and (3.17)
into (3.14) shows that these solutions begin with an initial
singularity. They do not have particle horizons.

Although the parameters are riot displayed in the
asymptotic expression (3.18a), there is a two-parameter
family of solutions with this initial behavior. There is
also a one-parameter family of solutions whose initial
behavior is given by (3.17a). The ACS condition gives one
condition between the two parameters in (3.18a) and the
one parameter in (3.17a). Thus we expect a family of
ACS to have their initial behaviors given by (3.18a) and
one ACS to have its initial behavior given by (3.17a).

(c) P&3a. For P&3a, o &0 and dv/dw is real for
both large and small values of

I
v

I
. Inspection of (3.16)

shows that, at most, dv/dw may have two real roots and
they either both occur at positive values of v or at negative
values of v. Thus solutions do not spiral around the v axis
and multiple-bounce solutions do not occur. However, for
c =cp, where

+C'y + . . ], y~O,
b =const&((X —Xp)', X~Xp,

(3.20a)

(3.20b)

where C, C', and Xp are arbitrary constants with the re-
striction C &0. Substitution of (3.20) into (3.14) shows
that these solutions begin with an initial singularity; they
have particle horizons. Assertion (2) and the numerical
work shown in Fig. 3 imply that a one-parameter family
of them are ACS. This ends the discussion of the case
a&0.

B. cz=O

For the case a=O, it is useful to define the variables f
and x so that

I
O'I =f / as before and b =x'/. Then

(2.6) becomes

0 1 p
—2f + —2/3f —1/3( 1 Bx —2/3)

—x f (1+E+Ax +Xx ), (3.21}

where E=3k Pp, ', A= —6kp„'/, B=——,'AP, and
A=2l A. For p=O, (3.21) reduces to the classical solu-
tion (2.11). For p&0, the ACS is

behavior is given by (3.17), exists. In paper I, it was
shown that for k =A=0 one of these is an ACS. Thus,
using assertion (2), we expect one of them to be an ACS
for k&0 and/or 4+0 as well. Such an ACS is hinted at,
although not explicitly shown, in Fig. 3.

A two-parameter family of solutions to (2.6) which be-
gin with y =0 also exists for this subcase. They have the
initial behavior

f 1/2 cr[—C+ 9 C —1/3 —2B 4T/3
8

f=(6p '}' 'xII Bx ' ' [1 —2Bx ' '—+B—'x ' ' px ' '(I+—E—+/Ix' '+Ax' ')]' 'I' '
Substitution of (3.22) into (3.14}shows that this solution begins with an initial singularity at

x =xp ——((pA+6B)(6 2pA ) '+—I(pA+6B) (6 2pA ) +[—p(1+E ) —3B ](3—pA ) 'I' )

Near the singularity one finds

b~p' '[1—(6P ')' xp' '(X—Xp)] ', X~Xp,
where Xp is an arbitrary constant. Since it begins at 7=Xp, this solution has particle horizons.

For p & 0, the ACS is

(3.22)

(3.23)

(3.24)

f=(6I pI ') xI[1—2Bx +B x + —,
I pIx (1+E+Ax +Xx )]' —1+Bx (3.25a)

Substitution of (3.25a) into (3.14) shows that these solutions begin with an initial singularity at x =0. Near x =0, one
finds

b =construe~, J—+ —Do,

where
1/2 ' 1/2 1/2

B2+ I pl (1+E )
3

(3.25b)

Since it begins at X= —oo, this solution has no particle horizons. This ends the discussion of the case a =0.
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a&0

In this case, for each value of a and P, there is one ACS whose late-time behavior may be obtained by substituting the
expansion (3.1), for f, into (2.6). Keeping terms of order a, one solves for f1, then substituting this back into (2.6) and
keeping terms of order a, one solves for f2, etc. The result is

(1+gy2/3+Ay4/3)3/4 1 —
1Py

—4/3(1+gy2/3+Ay4/3)7/4+[( 1g + 3 8)y —2/3 1 A)(1+g 2/3+Ay4/3)3/4

+( 1 g2+ 3 E+ 1gA 2/3+ 1 A 2 4/3)(1+gy2/3+Ay4/3) —I/4+O(~2) (3.26)

For open universes this solution approaches the classical
solution for all y » 1 and is therefore an ACS. For closed
universes, it is shown in the Appendix that a solution to
(2.6) exists for which f=0 at a value of yo which is
within O(k

~

a
~

'/ p, '/ +
~

A
~

'/ ) of the value of y at
the classical momentum. Near y =yo, this solution
matches the solution in (3.26) to O(a(yo —y) / ). Thus,
the classical solution is approached for all y »1 and the
solution (3.26) is an ACS for closed universes as well.

If Eq. (2.6) is linearized about the classical solution
(2.11), then it is found, using arguments similar to those
near the beginning of Sec. IIIA, that it is very likely there
are no other ACS.

Examination of (2.4) with b'=0 shows that there are no
extrema for open universes. For closed universes, there
are extrema only for values of b which are on the order of
or larger than the value of b at the classical maximum.
Thus the ACS do not bounce if a &0, which implies that
all ACS begin with b =-y =0.

It is not hard to show, that if P & 0, then all solutions to
(2.6) which begin with y =0, also begin with f=0. The
change of variables f =y'/

~

u
~

/, y =e allows (2.6) to
be integrated once in the limit f~0. The result is

=+—,u '[o u +38u +cu —3(1+E)]'/, (3.27)

where c is an arbitrary constant. This equation differs
from its counterpart in Sec. IIC of paper I by the terms
with 8 and E. The term with E is never important, but
that with 8 is important if cr =0, i.e., if P=3a.

A closer examination of (3.27) shows that du/dw is al-
ways imaginary near u =0. For o &0 or v =0, B &0,
du/dw is imaginary at large

~
u ~, while for other values

of o2 and 8, du/dw is real at large
~

u L. Further, if
o & 0, 8 & 0, and 3a & P & 3a[1—8 (1+E) '], then there
are values of c for which du/dw has four positive real
roots. If o &0, then for other values of 8, a, and P,
du/dw has only two real roots: one positive and one nega-
tive. Since all these factors influence the behavior of solu-
tions, the discussion is broken up into several subcases
whose dependence on a, P, and 8 can be inferred from the
above analysis.

1.P&sa
In this subcase, o & 0 and du/dw is imaginary for large

and smaG values of
I

u I. A phase-plane analysis shows
that solutions oscillate between either the two positive or
the two negative roots of du/dw. This is exactly the same
behavior as found for solutions in Sec. IIC of paper I.
Thus these solutions begin with an initial singularity at

7= —(x) and they do not have particle horizons. Because
there is no other small-y behavior for solutions of (2.6) in
this subcase, one of these solutions is an ACS.

2. P=3a
In this subcase, o. =0 and the term containing B in

(3.27) is important. If 8 &0, then k =1 and duldw is
again imaginary at large and small values of

~

u
~

. In this
case, duldw has either two positive or two negative roots
and solutions have the same initial behavior as solutions in
the previous subcase.

If 8 =0, then k =0 and (3.27) reduces to Eq. (2.29) of
paper I. Thus the initial behavior of solutions to (2.6) is
given by Eq. (2.31) of paper I. These solutions begin with
an initial singularity at 7= —ao and do not have particle
horizons. There are no other small-y behaviors, so one of
these solutions is an ACS.

If 8 &0, then k = —1 and a phase-plane analysis of
(3.27) shows that

~

u
~

~ao in the limit w~ —oo. In this
limit, (3.27) can be integrated with the result that

(
4 8)3/4y1/2(

lny
)3/2 y 0 (3.28a)

where X1 is an arbitrary constant. Substitution of (3.28)
into (3.14) shows that these solutions begin with an initial
singularity; they do not have particle horizons. There are
no other small-y behaviors so one of these solutions is an
ACS.

3. 3a & P &3a[1—8 (1+E) ], k =1
This is the only subcase for a & 0 in which there is more

than one type of small-y behavior which solutions may
have. It is therefore the only subcase for which the early-
time behavior of the ACS is uncertain. However, it is
possible to determine what types of initial behaviors solu-
tions may have and this is done next.

A phase-plane analysis of (3.27) shows that for all
values of c, in this subcase, there are solutions which ap-
proach

~

u
~

= ao in the limit w~ —oo. In this limit,
(3.27) can be integrated with the result that

f y1/2 —cr(( 9 ( —1/3o —28y4u/3+( iy2cr+. . . )

b =const)&(X —Xo)'/, X~XO .
y ~0 (3.29a)

(3.29b)

Substitution of (3.29) into (3.14) shows that these solutions

b =const&& exp{ —exp[ —12'
~
a

~

' 8' (X—X1)]I,
(3.28b)
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and du/dw in (3.27) has two real roots: one positive and
one negative. A. phase-plane analysis shows that all solu-
tions have initial behaviors given by (3.29).

For c =c+, du/dw has a double root at U =u+. For
c =c+, Eq. (3.27) can be integrated near U =u+ with the
result that

f I
U

I

3/2yl/2(1+c~P+. . . ) y 0

b =const&& exp(
I
a

I

'/"
I U+ I

X), X —ao,
where c2 is an arbitrary constant and

(
8 )1/2

I
U

l

—1[ 182 (1+E) 2]1/4

(3.31a)

(3.3 lb)

There is a one-parameter family of these solutions and
substitution of (3.31) into (3.14) shows that they begin
with an initial singularity. They do not have particle hor-
izons. For c =c, du/dw is imaginary near U =u, so no
solutions approach v =—v

For
I
c

I
&

l
c

I &
I c+ I, du/dw has four real roots,

three of which have the same sign. A phase-plane
analysis shows that along with the solutions in (3.29) and
(3.31), there is a two-parameter family of solutions which
oscillate between two positive or two negative values of v.
As in Sec. III C 1, they begin with an initial singularity at
X= —ao and do not Rl.ave particle horj. zons.

For the special case P=3a[1 8(1+E) —'], k =1,
du/dw has a triple root at Uo ——+( —8/2cr )'/ for
c = —48Uo. Integrating (3.27) near U =Uo, one finds

f=(—8/2o. ) /y'/ [1+—", o (lny+c2) ], y~O

(3.32a)

b =const X exp[
I
a

I

'/"( 8/2cr —)'/ X], X~—Qo,

(3.32b)

where c2 is an arbitrary constant. Substitution of (3.32)
into (3.14) shows that these solutions begin with an initial
singularity. They do not have particle horizons. There
are no other initial behaviors which solutions to (2.6) may
have for this subcase.

begin with an initial singularity. They have particle hor-
izons F« lc I & lc I

and lc
I

& lc+ I
where

c+ ———tv+ —4o. v+2 3

(3.30)

4. P&3a, k =0, —1
or P&3a[l —8 (l +E) ], k =l

In this subcase, du/dw in (3.27) has two real roots, one
positive and one negative for all values of c. A phase-
plane analysis shows that all solutions including the ACS
have initial behaviors given by Eq. (3.29). Thus the ACS
in this subcase has both particle horizons and an initial
singularity. This ends the discussion of the case a &0.

We have seen for general homogeneous and isotropic
spacetimes containing classical radiation that quantum ef-
fects due to conformally invariant free fields can radically
alter the behavior of the early universe. If a & 0 and P & 0,
the initial singularity predicted by classical general rela-
tivity can be removed, and if a&0, a=O and P&0, or
P&3a &0 particle horizons can be removed. Further, if
P) 3a&0, both the initial singularity and particle hor-
izons can be simultaneously removed. It is not yet clear
whether they are removed for our universe because it is
not known which ACS (if any) is the correct one for our
universe. Nevertheless, it is clear that the universe may
have had a very different beginning from that predicted
by classical general relativity.
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APPENDIX

In this appendix, the solutions (3.2) and (3.26) for closed
universes are matched to an extremum solution and it is
shown that this solution obeys the second criterion for an
ACS.

In terms of the variables x, A, 8, and A defined in Sec.
III B, Eqs. (3.2) and (3.28) are given by the single equation

f=(1+A ' '+Ax "/')' '+ ,', 13 '/'(1+A ' '+A ' ')'/'—
+a[—A+( —a '8 ——A )x ](1+Ax +Ax )

a( —'A 'a 'E+ —'A Ax + —'A —x / )(1+Ax /+Ax ) '/+O(a )

The classical solution f=(1+Ax /3+Ax /3)3/ has a maximuin in the (X,b) plane, for closed universes, at f=0. This
maximum occurs for a certain value of x, say x =xM. Expanding (A1) about x =xM one finds

f=(——', Axl '/ ——', Ax~'/ )
/ (xM —x) / +O(a(x~ —x) )

( ——,'Ax '/3 ——', Ax '/3) '/~( —,', A —', a 'E+ —,'A Ax / —+ —,'A x / )(x —x) '/ +O(a ) .
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Note that the expansion in powers of a breaks down for (xM —x) &
~

a
~

.
The goal is to find the extremum solution of (2.6) which corresponds to the solution (Al). From (3.8) it is seen that

for a maximum an extremum solution has the form

f=(—", ) xo 'r [ ~a ~
'(I+E+Axc ~ +Axo ~ )] r (xo x—) r +sgn(X X—o)D(xc —x) ~ +O((xo —x) ~ ), (A3)

where xo is the maximum value of x for this solution.
Both (A2) and (A3) are asymptotic series. Therefore, the
best one can hope to do is to find some xo such that the
first few terms of (A2) and (A3) agree in some region
where they are both valid approximations.

To find such an xo, one can write
xo ——xM+axi+a x2+. . . , substitute this into (A3}, and
expand in powers of a. There are then two small quanti-
ties in (A2) and (A3): a and (xM —x). Equating (A2) and
(A3) to O[a(xM —x) r ], one finds

x, = —Ea-'(-,'ix -'"+-,'X

+ x ( —Ax ' +—Ax ' ). (A4)

In a similar way, the quantities x2, x3. . . may be chosen
so that even better agreement between (A2) and (A3) is ob-
tained.

One expects (Al) and (A2} to be valid for
~

a
~

&& 1 and

(xM —x)»
~
a ~. One also expects (A3) to be valid for

xo '(xo —x) «1, so if xo ——xM+axi+. . . , then both
(A2) and (A3) should be valid in the region

~

a
~

&&(xM —x) &&xM. This is the region in which they
match up to O(a(xM —x)3r ), so it is likely that they
correspond to the same solution. Since
xi -(k p„' +

~
A

~

'r ) &&1, the maximum value of x
for this solution is very close to that for the classical solu-
tion, so the second criterion for an ACS is satisfied.
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