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For a given Lagrangian L a differential form 01 is introduced which generalizes the classical no-
tion of the Cartan form OL, . This extended Cartan form 0L still gives rise to the same field equa-
tions (Euler-Lagrange equations), but has the added feature that dOL ——0 if and only if the Euler-
Lagrange equations for L vanish identically. This has the important consequence that the sym-
metries of a given Lagrangian L are precisely those diffeomorphisms which transform d01. into it-
self, a property not shared by the classical form d 01..

I. INTRODUCTION

A rather surprising result, discussed in a recent paper of
Hojman, ' is that the characterization of those Lagrangians
L (x,u, u '

) for which the Euler-Lagrange equations vanish
identically depends on the number p of variables
x = (x i ~2, . . . , x~) and the number q of fields
u=(u', u, . . . , u't). More precisely the result depends on

t

the number i=min(p, q). Hojman's result is surprising not
only because it was overlooked for so long (perhaps be-
cause p=1 or q=1 are the most commonly occurring
cases) but also because it implies that the theory of sym
metrics of Lagrangians needs to be re-examined. Indeed
in this theory the classical Cartan form 8L determines the
symmetries of 1. according to the following line of reason-
ing:

g is a symmetry of I.= -- the Euler-Lagrange equations for I. g(I. ) vanish—identically

g "(d81 )=-d-8L .

The first equivalence is essentially the definition of a sym-
metry. The third equivalence holds because the definition
of g(L) is rigged so that it does. Existing proofs of the
implication - in the second equivalence are invalid, and
in fact the assertion is false, unless p= 1 or q= 1 (the re-
verse implication - — is true, however, regardless of the
values of p and q). It is the purpose of this paper to show
that this defect can be eliminated by introducing a new
Cartan form 8L in place of the classical one 8L, .

Specifically a sequence 8L, (k = 1,2, . . . , I) of differential
forms is introduced and the following is shown:

(a) The Euler-Lagrange equations for an extremal y of
L are

J'(y)'(X'zd8L )=0 VX'e V(J'(E))

(notation will be explained later).

(b) d8L ——0 =-d8L ' ——0.
(c) d81 ——0 =- the Euler-Lagrange equations for I.

vanish identically.
(d) The Euler-Lagrange equations for L vanish

identically —-- d 01 ——0.

Equation (1) is the jet-bundle formulation of the Euler-
Lagrange equations and in some ways is preferable to the
classical partial differential equations for extremals. For
example, it makes assertion (c) obvious, and also proves to
be indispensable in discussion of symmetries. Saying that
the Euler-Lagrange equations for I. vanish identically just
means that Eq. (1) holds for every y, or equivalently, and
more simply, that equations (El) and (E2) in Theorem D
below hold.

Assertion (d) is the difficult one to prove. To prove it I
first derive, in Sec. III, the formulas for the strict com-
ponents of 81. and d8L, which are important in their own
right.

Corollary 4 in Sec. IV shows that when l & 1 the classi-
cal Cartan form 0' does not determine all the symmetries
of a given Lagrangian. The impact of this on the theory
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is outlined in Sec. V, with a full discussion of the details
deferred to another paper.

II. THE CARTAN FORM
AND THE EULER-LAGRANGE EQUATIONS

Mp ——L.m,

(n!)

1 n

gnL a& an(p e ~ ~ (g) n ~ ~

1 n 1 n
BQ. ' BQ

This section introduces the Cartan form for a given La-
grangian and shows that it gives rise to the correct ex-
tremal equations. A sophisticated approach to these to-
pics in the calculus of variations uses the notion of a fiber
bundle of contact elements, a detailed account of which
may be found in several of Hermann's books. A large
part of the work in this paper is done in local coordinates
and so only a minimal amount of Hermann's fiber-bundle
notation is included here.

One starts with a manifold E of dimension p +q which
is a fiber bundle over some base space N of dimension p.
The cross sections y: N~E have 1-jets j'(y): N~C'(E, p)
which are cross sections of C'(E,p), the bundle of first-
order contact elements of p-dimensional submanifolds of
E. The union of the images of all such 1-jets forms the jet
bundle J'(E) and a Lagrangian L is then any (smooth)
map L:J '(E)~R. Locally one can introduce the natural
jet-bundle coordinates (x,u, u') where x=(xi,x2, . . . , xz),
u = (u ', u, . . . , u «), and u ' = I u; I;:i' ' ' ' 'g. In a natural
way one can think of x as a coordinate system on X and
(x, u) as a coordinate system on E. The coordinates u' give
the first-order partial derivatives of 1-jets:
u; (j'(y))=By /Bx'.

The Cartan form for L is a certain differential p-form
on J (E), which is defined locally using the following dif-
ferential forms on J '(E):

7T=dX 1dX2 dXp

j'(y)*(@ )=0. (2)

Next let i=min(p, q) and suppose 1&n &l. For indices
i i, . . . , i„EI 1, . . . ,p ) introduce the (p —n)-form

m; . . . ; =e;Ue; Q. e;dm,
I n n n —1 1

where e; =8/Bx; and the symbol denotes contraction.
P

This form is antisymmetric under permutation of the i' s
and if ii « . i„ then

s . . . s
——+dX1 . . dXr . . d&s . d&p,

1 n 1 'n

where the overbar denotes deletion of the particular factor
from the product and the + sign depends on whether

ii + . +i„n(n —1)/2 —is even or odd. For indices

ai, . . . , a„&Il, . . . , q) the n form 4-
formed from the exterior product of the respective 1-

forms @ is antisymmetric in the indices a and zero when

pulled back by any j'(y).
Finally, by introducing the p-forms

p=du —Q u J~dx~.
j=1

Here and in the sequel the exterior product co h g of forms
co and g is written as cog. One should also note that for
any y the pullback of N by j'(y) to a form on N is zero:

one can define the kth Cartan form for L by

OL ——MP+M1+ . . +Mk,k

where 1 & k & l. It should be noted that the association of
L with 8L defines a linear mapping 8 from the 0-forms
on J '(E) (the Lagrangians) into the p-forms on J'(E) and
so 8 is naturally called the kth Cartan form. The 1st
Cartan form 6' is the classical one and the Ith Cartan
form 8' will be referred to as the Cartan form. In the
sequel the properties of 8" for any 1&k &i will be
described.

The first property of concern deals with extremals. Re-
call that the action integral with density L is the function-
al on the cross sections y: X~E defined by

L(y)= J j'(y)*(Lir) .

Because of (2) one sees that

j'(y)*(8 ) =j'(y) *(Lir)

and so the action integral is determined by OL. The pur-
pose of the first theorem is to show that the Euler-
Lagrange equations for the extremals of L, may be ex-
pressed in terms of Ol. A well-known result, especially
useful in the theory of symmetries, is that the classical
Euler-Lagrange equations for an extremal y of L may be
expressed by

j (y) (X'Ud8 )=0 VX'H V(J (E)),
where V(J'(E)) denotes a certain set of vector fields on
Jl(E) 4

Theorem A. Suppose k )2, then

j '(y ) *(X' d 8L ) =j'(y ) ~(X'dd 81 )

for any Lagrangian 1., any cross section y, and any vector
field X'.

Proof. The idea of the proof is simple: For any n )2,
M„as given by Eq. (3) involves at least two @ 's in

a& a„@ '. . . N " and consequently

j'(y) *(X'UdM„) =0 .

To show that this holds it suffices, because of the linear
properties of the operators involved, to consider a typical
summand of M„. Such a summand has the form

The Lie derivative W, may be used to write

Now j'(y)*W», applied to 6 gives zero for the following

reasons: W, is a derivation and so applying it to 6 gives

the sum of terms each of which contains at least one @ .
But then applying j (y)~ and using property (2) of 4& as
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well as the property

J ('Y) (~~K)=j (y) ro~j (y) 4

gives the desired conclusion. Next, since X U is an an-
tiderivation similar reasoning (and commutability of d
with pullbacks) gives

j'(y) ~d(X'U)G =dj'(y) *(X'D)G=0 .

where

P . .
Pk

l lk

m —1( 1)r

r=o

P1 . P P Pk P, P,(C I I I . I„)ul I ' (7)
1 r

l1 -. lr

III. EXPRESSIONS FOR 8L AND d8L

In this section the strict components of 8L and d8L are
computed. While the expressions derived are rather com-
plicated notationally, the pattern they reflect is quite sim-
ple and is a necessary prerequisite for proving Theorem D
in Sec. IV. The expressions involve the quantities

gnL
1 n nf

n
P1 P„

,
~ ~

where S„ is the group of permutations on the set

I 1,2, . . . , n j and (—1) is +1 according to whether o is
an even or odd permutation.

Theorem B. The following formula holds:

This proves the theorem.
Corollary 1. The Euler-Lagrange equations for an ex-

tremal y of L are

j'(y) ~(X'dd8L )=0 VX'H V(J'(E)) .

CZj
' ' 0!&

&n

1

au' 8 'n

Also for 0& r & n let T„„bethe subset of S„consisting of
those permutations ~ such that

rl « . rr and r(r+1) « rn .

In these expressions the following notational conventions
hold:

(i) When m=k+1, HI . . . I =II, du du =1,P . P„ p pk

. . . I ——m., and there is no sum over p « pk and
m k

l (.. . . (.. lk.
(ii) In CI, . . . I'I . . I„. one deletes pi . . p„and~ ~ P1 PP . .

Pk

li l, when r=0 and deletes p pk and l . lk
when m =k+1.

(iii) C=L.
(iv) uI . uI'=1 when r=O.P1 P,

Proof. The proof consists of expanding the expression
(3) for M„, simplifying, and then collecting coefficients of
like differentials in the sum (4). For notational conveni-
ence let

k+1
8~= X X

m=1 p ( . . . (pkl~(. ~ - (lk

' Pk
l ~ lk l lk ~ By convention take T„o and T« to consist of only the

identity permutation. Further, let S„,= I P ~ P 'H T„,j.
As a first step in the proof one can obtain the following

formula by induction on n:

n

4 "= $ ( —1)"" $ ( —1) u. " u '"(du '+" . du )dx ' dx" .J1 JI.r=0 J1'''Jr
Tn

Then substituting this in expression (4) for M„and reindexing the sum on the a s by pi ——a, i, . . . , p„=a~ one arrives
at

M„= g ( —1)"" g g ( —1)~
r=0 P ~ ~ e P j e ~ ej1 n 1 r

l1 ' l QGS

u u "du "+' du "(dx ' dx ')m. . . . .
J1 Jp 1 n

(10)

Next the sum over i, i„,ji j, in (10) can be simplified since dx ' dx "~; . . . ; =0 unless ii i„are dis-

tinct and Iji, . . . , j„j is a subset of Iii, . . . , i„j. In this situation the j s have the form ji i,~i, . .——. ,j„=i,„ for some

Tn, r and some o &Sr Then

(dx ' dx ")m.;, . . . ; =(—1) (dx " dx )~; . . . ; =[(—1) +'+""+']~.

Substituting this into (10) the sum on the j 's is replaced by sums on r and cr. Then reindexing the sum on the i's by
l) ——i~), . . . , l„=i~„one arrives at

M„= g ( —1)'
r=0 P1 P„

l1 - ln

' f?

( —1)~+~+ ~ ~" (u ' . u ')(du "+' du ")m.
lp& lp„"'~1 "'ar " " 'r+1 '

ln

P, gas„,
o'6S

(12)
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Now the sums on 1~ . . l„and a CS, can be switched and then for a given a' the sum over l~ . l„can be reindexed
I 1~11,. . . , I,~I,. Then /~1. . . I~„becomes l-

&&1
l-

&@
. Here an expression like ~ denotes the natural exten-

sion of a r ES, to a r ES„,namely, take r=r on I 1, . . . , r ] and ~=identity map elsewhere. Having reindexed and not-
ing that a sum over o.&S„ is the same as a sum over o 'ES, one can see that the latter part of (12) may be replaced by

Pgl 13fn
(

I 1 ~P
)(d PP+f d P/g

) (13)

Now because of the antisymmetry of n.I . . .
&

the sum of (13) over all 1„+& . . I„ is equivalent to the sum of

Pp1
' '

Pffft

J
~& $1 rain

(u u ")(du '+'. du ")m.P, P, p+, p„
l( l, r+(. ~ ~ l

over all I„+&« l„and all r&S„'=the set of permutations of I r +1, . . . , n I. However, one can show that each
b, ES„has a unique factorization of the form A=r &p where r&S„",o ES„, and 1t ES„„.Consequently (14) together
with these observations gives

M„= g ( —1)"
r=0 «Sn r

l). . . l„, l„+)« . . ~ l„h&S„

( 1)y+6 I P& ~P&
(

i. . . r )(d fr+1. . . d ~n)

However, the inner sum in (15) is the same as

PeS„,
6&S„

Pi P. Pl Pn

P!(g —P)! ~~s Ig) ' ' lg„

r!(n p )! 1 n
(16)

Finally, substituting (16) into (15) and replacing the sum over P„+& . P„by sums over P„+~ & . &P„and p&S„"one
arrives at

r O p 0 ~ ~ py9

l) l,
&Pn

l, +) . . . «l„

P). . .P„P) P, p+, p„
C( . . . g "(u(, ui")(du "+' du ")m( (17)

The formula for OL now results from summing (17) as n ranges from 0 to k and collecting together all terms for which
n —r has the same value.

Having derived the strict components for OL it is now relatively straightforward to compute the strict components of
dOL and so the proof of Theorem C is omitted for the sake of brevity. The components need to be expressed in a suit-
able form for use in Theorem D, so let the following quantities be introduced:

p ~ ~ 0 p p ~ ~ 0 Q 4 ~ t p
p . p ~cl . . l„~cj I . I„

Ou au p'

Theorem C. The following formula holds:

k+1
dOk

~Pm« ' Pk
'lm«'' k

~' l ~ ~ ~ lk d+ d~ d+ ~l
~Pm "'Pk a Pm Pk

~&p « . pk
l « - ~ lI,

~P . Pk p pk8 l . . . l dQ dQ dQ 7Tl . . . l (18)

where

''
&k

r=0
( —1)"

p( . . p,

asap'. P Pml). . . l l . lk pk
i ll ~ - ~ l l - ~ ~ lI, (19)
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and

r=0

( —1)"
rt

p ~ ~ ~ p

P)' . P P Pk
a l&

. lr lm . . lk

Pj PP . Pg
~ ~ o l l e ~ ~

P,i

Pj ''P P Pk
il) . . -l l - lk

Oup

Pj P,
Xul ul

The notational conventions from Theorem B are assumed
to hold here, as well as the convention that the terms
marked with an asterisk in (19) and (20) are to be omitted
when r =m —1.

antisymmetric under an interchange i and j one has ac-
cording to (5) that for every n

(22)

(j2L ()2L+ =6,
eu, au,P au, Ou,p

BI BI BL p (E2)

and L has nullity k, i.e.,
gk+ 1L =0.

Bug Bui ' ' Oui

(E3)

Proof. (I) ~(II): This is the obvious part, at least if
one works with the jet-bundle formulation, namely, y is
an extremal if

j '(y)*( XU d8)L=0 VX'H V(J'(E)) (21)

and so clearly every y is an extremal since dOL ——0. Thus,
(El) and (E2) hold. Since (El) says that d L/Bu; BuJP is

IV. THE EQUATIGN dgL, ——0

A great amount of effort has been spent in deriving the
component expression for d8L in Sec. III, but now the
main theorem, from which the desired results follow, can
be easily proved.

Theorem D. The following two assertions are
equivalent: (I) d8L =0 and (II) the Euler-Lagrange equa-
tions for L, vanish identically, i.e.,

In Eq. (19) from Theorem C the m= 1 coefficient is

0 g 1 k gC 1 k/g a (23)

Hence, (E3) holds. A direct and very concrete proof of
this part of the theorem can be obtained without using the
abstraction of the jet bundle, Eq. (21), by merely writing
out a few of the coefficients A, 8 of d8L, for m =1,2,3. . . .
By looking at the A's and working down to m =k one
finds that (El) holds. Then (22) above holds and so by
(23) one can see that (E3) holds. By looking at the 8's and
working down to m =k+ 1 one finds that (E2) holds.

(II) =-(I): This is the unobvious part of the theorem.
It says that if every y satisfies Eq. (21) and if (E3) holds
then d8L ——0. The author knows of no way to prove this
which circumvents first computing the strict components
of d8L as was done in Theorem C. However, having these
components one sees that they are zero as follows. Be-
cause (El) holds one can see that (22) above holds and
hence the expression in the square brackets in Eq. (19)
from Theorem C is zero. In the exceptional case when
r =m —1 the expression in the square brackets consists of
only the first term, but this is zero because of the nullity
assumption (E3). Hence, all the A components of d8L are
zero. To see that all the 8 components are zero, let F
stand for the expression on the left-hand side of Eq. (E2).
By taking derivatives and using Eq. (22) one finds that

0= gnga

p, P„
Bul ' Bul

=D.C, '. . . ,
" —yaC, ,, . . . ,"/ax, —g(ac, ,, . . . , "/au )u, .aP) P„p p (24)

Thus, the expression in the square brackets in Eq. (20)
from Theorem C is zero. In the exceptional case when
r =m —1 the expression in the square brackets consists of
only the first term, but this is zero [to see this take n =k
in Eq. (24) and note that because of (E3), C; i, . . .

&k
=0

and so the latter two terms on the right-hand side are
zei 0].

Corollary 2. If d8L ——0 then d8i+' ——0 (assuming of
course that k+1&i).

Corollary 3. d8L ——0 if and only if the Euler-Lagrange
equations for L vanish identically.

Proof. Applying Theorem D with k=l =min(p, q) one
sees that the nullity condition (E3) is redundant since it is
implied by the antisymmetry condition (E1), namely,

a 1 . 18'+'L/Bu; Bu; Bu; is antisymmetric under an inter-

change of either two a 's or two i's and so it must be zero
since either a,a1, . . . , o.l or i, i1, . . . , il has at least one
element listed twice.

From an intuitive standpoint one can see (by inspecting
the proof of Theorem D) how the Euler-Lagrange equa-
tions for L, can vanish identically, yet doL is not neces-
sarily zero for any k & l. Namely, (El) and (E2) yield Eqs.
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(22) and (24) as direct consequences. Because of this the
components of dOL given by Eqs. (19) and (20) reduce to
just the r =m —1 terms and these depend only on
8" +'L/(8 u; Oui,

' . Bur„) and on ui,
' ~ ur, '. Thus,

d81 is not necessarily zero since its components do not in-
volve the partial derivatives of L to a high enough order.

It also seems appropriate to point out here why the
proof in Ref. 2 (showing that dOL ——0 whenever the
Euler-Lagrange equations vanish identically) is invalid.
The mistake is that instead of (El) the stronger form of it,

"d L
au, au,~

is incorrectly derived as a consequence of the identical
vanishing of the Euler-Lagrange equations.

Coro//ary 4. Suppose /~ 1 and 1(k &/. Then there ex-
ist Lagrangians L for which the Euler-Lagrange equations
vanish identically and yet dOL &0.

Proof. By inspecting Hoj man's characterization of
those Lagrangians L for which the Euler-Lagrange equa-
tions vanish identically one can easily pick such an L

which does not have nullity k and hence by Theorem D
one has that dOL &0. (Actually Hojman's work requires
that L not depend on x, but his results can be extended to
cover this case. )

Corollaries 3 and 4 show that 8 is the correct choice for
the Cartan form. Another way to phrase these corollaries
is to say that the set of Lagrangians characterized by Hoj-
man is the kernel of the linear map L ~dOI but is not the
kernel of L ~dOr" for any k & l. Of course this latter ker-
nel is easy to identify using Theorem D and Hojman's re-
sults.

Examp/e 1. As an example for the case p=2=q con-
sider the Lagrangian

1 2 1 2L =u1Q2 —Q2Q1

One can easily check that the Euler-Lagrange equations
for L vanish identically. For such a simple example let
OL, OL be computed directly from the definition in Eq. (4)
and then dOL, dOL follow easily from the differential cal-
culus. (For more complicated examples the computations
become so tedious that one might as well do them in gen-
eral as in Theorems B and C.) First

dL, dL, BL dL 2, dL, BL BL, , dL
OL ——L )u) ——

( u2 —
2 u) —

~ u2 dx dx +,du dx + 2 du dx —,du'dx' —
~ du dx'

Bu I Bu2 Bu f Bu 2 BQ1 BQ

= —(u )u2 —
uzu ))dx dx +urdu dx —u2du dx +u )du dx —u )du dx1 2 1 2 1 2 2 1 2 1 2 2 2 1 1 1 2 1

Consequently

d OL ——( —u )du 2
—u 2du I +u 2du f +u )du 2 )dx 'dx +du 2dx 'dx du 2d—u dx +du )du 'dx ' —du Idu dx '

0.

Next, to compute 81. first compute

M2 ———,

a&a2
l)l2

a& a2
Bu BQ

du ' —g u, 'dx' du ' —g u„'dx k
m;, ,

J k

After multiplying this out and using ~&2——1, mz&
———1,

and otherwise ~;,;,=0 one gets M2 ——du 'du —OI . Thus,

OL,
——du 'du and consequently dOL, ——0.

V. CONCLUSION

Arguments have been put forth to indicate that 8 is the
correct generalization of the classical Cartan form 8'.
Indeed the whole sequence 8 (k=1,2, . . . , I) proves to be
useful in the theory. The main results consisted of (a)
deriving formulas for the strict components of OL, , dOL
and (b) showing that the kernel of the linear map L ~d OL

is precisely the set Zk of I.agrangians satisfying condi-
tions (El), (E2), and (E3) in Theorem D. Hojman's result
explicitly determines the form of the I.agrangians in ZI
and this can be extended to Zk. These results are interest-

I

ing per se, but their real importance is in regard to sym-
metries and conservation laws. An extension of the classi-
cal theory (1=1) on symmetries will be detailed in a sequ-
el to this paper, but an outline of the prominent features
of this extension can be predicted here.

The symmetry group G for a given Lagrangian L con-
sists of those transformations (bundle maps) g: E~E such
that the Euler-Lagrange equations for L g(L) vanish—
identically. The Cartan forms OI determine a natural
decomposition of G as follows. Let 81 ——L~ and for
k=0, 1,2, . . . , / let Gk be the group of transformations g
for which g "(dOL)=dOL, . Then one gets a chain of sub-
groups

G, CG, C -. - ZG, =G
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on E is a kth-order infinitesimal symmetry of L if its flow
Ig, l, ~~ has each g, belonging to Gk. In terms of Lie
derivatives this means that

Wx((d Or, ) =0 .

However, one can see, after first proving the identity

(26)

~ X&~L ~W &(L)+div(g')L

that condition (26) is the same as
k

&(L)+div(g')L

and this, according to the results of this paper, is
equivalent to the condition

in which Gi consists of the symmetries determined by the
classical Cartan form and Go consists of symmetries
which leave L form invariant. To verify these assertations
using the results of this paper one must first prove that

g (OL) 8 tL) (25)

for any k and any g. For k =0 this is just the definition of
g(L) and for k =1 it is the classical result proved by Her-
mann. Using (25) one sees that saying g'*dOr, =dOr, is
equivalent to saying

kd6L g(L) —0 e

The infinitesimal symmetries and conserved currents
are determined much like those for the classical case: A
vector field of the form

X= g p(x), + g il (x, u)a 8

= gg(V —T);J(u uJ —uj u' ), (29)
i&j a

where (V —T);J denotes the ijth entry of the matrix V —T.
This [together with Eq. (27) and an extension of Hojman's
work to cover Zk] shows that an infinitesimal symmetry
X of this type is either zeroth order (when T = V) or
second order (when T&V). Of course the symmetry
group generated by X corresponds to a transformation of
the variables x and fields u by Lorentz transformations T
and V. The zeroth-order group (T= V) leaves L form in-
variant and leads to familiar conservation laws of the
orm

div[ W(y)] =0, (30)

L = , [-(A, +P.)'+(A,'+P, )'+(A,'+P. )'

—(A,' —A,')' —(A,' —A„')'—(A„'—A,')'
—(A„+Ay+A, +P, ) ],

which (with a slight abuse of notation) could be rewritten
using x=(xo,xi,x2,x3) =(t,x,y,z), u=(A, A',A,A )
=(P,A', A, A ), and u; =A„. To look for infinitesimal
(kth-order) symmetries X of L one should take the route
indicated above to reduce the problem to condition (27).
Suppose the components of X are assumed to have the
form g(x)=Ex and il(x, u)=Su where R and S are 4X4
matrices. It can be shown that in this case X is an infini-
tesimal symmetry if and only if R =AI + T and
S= A,I+ V —where A, is a real number, I the 4X 4 identity
matrix, and T, V are inatrices in the Lie algebra of the
Lorentz group. Furthermore

L ~=W,L +div(g)L

~(L)+div(g)L E'Zk . (27)
where W(y) is the vector field on N such that

W(y)Um =j'(y)*(X' 81 )=j'(y)*(X'281 ) .
Conserved currents for such infinitesimal symmetries X

are determined in the customary fashion, namely, because
of Eq. (26) there exists (via Poincare's lemma) a (p —1)-
form co' such that

The second-order symmetries (TpV) allow for the vari-
ables and fields to be transformed independently of one
another and lead to conservation laws of the form

div[ W(y)] =div[Q(y)], (31)
dco =Fx'i(Or, ) =d(X' JOr, )+X'&dOr (28)

Then co:—co' —X'UOr is a conserved current for L since if
y is an extremal of L then

dj'(y)*co =j'(y) ~dco= j'(y) ~(X'Ud81 ) =0

(the last equation being the Euler-Lagrange equation).
One can thus see that for l & 1 there is a broader class of

symmetries, infinitesimal symmetries, and conservation
laws than that predicted by the classical Cartan form.
This can be illustrated by examples (such as example 1

above) which are very simple computationally but regrett-
ably are not very meaningful physically. On the other
hand, the following example for l=4 is quite important
but the computations and details are somewhat lengthy
(and so will only be summarized here).

Exam@/e 2. Consider the electromagnetic Lagrangian

div[W(y)]=L~(y) . (32)

Here L ~(y ) =j '(y ) ~(L ~ ) is just expression (29) evaluated
at the particular extremal y. Previous treatments have
derived conservation laws of the form (31), but have in-
correctly deduced (as Hojman pointed out) that Q(y) de-
pended on x and u but not the u; 's (as would be the case
if the classical Cartan form determined all the sym-
metries). Under these circumstances L ~(y) =div[Q(y)]
would be linear in the u; 's. However, the example at
hand exglicitly exhibits second-order symmetries for
which L (y) is quadratic in the u; 's.

where Q(y) is the vector field on N such that

Q(y)Urt=j '(y)~(co')

and co' is an antidifferential of the extended Cartan form,
i.e., dco'=8&~ with L given by Eq. (29). An alternative
expression for the conservation law (31) is
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