PHYSICAL REVIEW D

VOLUME 29, NUMBER 3

Implications from the *b*-decay measurements

Ling-Lie Chau and Wai-Yee Keung Physics Department, Brookhaven National Laboratory, Upton, New York 11973 (Received 8 September 1983)

The recent measurements of the bottom-quark *b* lifetime and the ratio $\Gamma_{b \to u}/\Gamma_{b \to c}$ are used to analyze the quark-mixing phenomena. We report the implications of these measurements on the Kobayashi-Maskawa angles and phase, K_{e3} and hyperon decays, *CP*-violation parameter ϵ , F-quark mass, $K^0 \to \overline{K}^0$ transition dynamics, $B^0 - \overline{B}^0$ mixing and *CP* violation, and nonleptonic decays and leptonic production of heavy quarks.

The b lifetime now has been measured¹ by the MAC and Mark II Collaborations to be, respectively,

$$r_b = 1.8 \pm 0.6 \pm 0.4 \text{ psec}$$

$$= 1.20 \pm 0.36 \pm 0.30 \text{ psec} \quad . \tag{1}$$

This somewhat unexpectedly long lifetime of the b, together with the limit²

$$\Gamma_{b \to u} / \Gamma_{b \to c} \leq 0.05 \quad , \tag{2}$$

obtained by the CLEO and CUSB collaborations, puts very stringent bounds on the quark-mixing matrix. In this paper we systematically analyze the implications from these bdecay measurements in the framework of the Kobayashi-Maskawa (KM) model.³⁻⁵ Much of the discussions given here are based upon formulations given previously.^{6,7} First we give the allowed region of the KM angles. Secondly, based upon this allowed region of s_1 , s_2 , s_3 , and s_{δ} , we use the *CP*-violation parameter ϵ from $K_L \rightarrow \pi \pi$ to give further constraints. In the box-graph calculation, in order to fit ϵ , as emphasized by Ginsparg, Glashow, and Wise,⁸ the tquark mass m_t must exceed a certain minimum value for a long-lived b quark. For a given allowed value of $m_t > m_{t,\min}$, the values for s_2 and s_3 can be calculated in terms of s_{δ} . We also find that δ can only be in the first and the second quadrants.⁹ Thirdly, we study the consequences of trying to fit $\Delta m = m_{K_L} - m_{K_S}$. We find that Δm cannot be fitted based upon the simple box graph,⁶ given the b lifetime, Eq. (1). Here it may be argued that the box-graph calculation is not as reliable as for ϵ , since in calculating Δm the light-quark $u\bar{u}$ intermediate state contributes in addition to the heavy intermediate states, while in calculating ϵ only the heavy intermediate states contribute. This disagreement with Δm indicates that the box-diagram calculation does not give an adequate account for the low-energy intermediatestate contributions. We find that such low-energy contributions can be substantial. These estimates of the contribution from low-energy intermediate states provide useful information for future theoretical dynamical calculations. Finally, we discuss the implications of these new results of quark mixing on other weak-interaction processes, e.g., B^0 - B° mixing, CP violation, nonleptonic decay rates, neutrino production of heavy quarks, and even the K_{e3} and hyperon decays.

With the use of the simple *W*-emission diagram (i.e., like the diagram for $\mu \rightarrow \nu_{\mu} e \overline{\nu}_{e}$), the lifetime of the *b* quark is given by [see Eqs. (4.13) and (4.14) of Ref. 6]

$$\Gamma_b = (G_F m_b^5 / 192 \pi^3) (2.95 |V_{cb}|^2 + 6.33 |V_{ub}|^2) , \qquad (3)$$

where the numerical coefficients¹⁰ are the phase-space factors based on the constituent quark masses: $m_u = m_d = 0.3$, $m_s = 0.5$, $m_c = 1.5$, and $m_b = 4.9$ in GeV units. Using the experimental information in Eq. (2) and the phase-space factor of Eq. (3), we obtain

$$|V_{ub}/V_{cb}| \le 0.14$$
 . (4)

Since the $b \rightarrow u$ contribution is so small, we can neglect it in Eq. (3) and thus calculate $|V_{cb}|$ from the *b*-lifetime measurements, Eq. (1),

$$|V_{cb}|^{2} = (0.003 \, 46 \text{ psec})/\tau_{b}$$

= 2.47 × 10⁻³, 3.46 × 10⁻³, 5.77 × 10⁻³ , (5)

for $\tau_b = 1.4$, 1.0, 0.6 psec, respectively. Given $|V_{cb}|^2$, we obtain the bound on $|V_{ub}|$, i.e.,

$$|V_{ub}| \le 6.96 \times 10^{-3}, \ 8.24 \times 10^{-3}, \ 1.06 \times 10^{-2}$$
, (6)

for $\tau_b = 1.4, 1.0, 0.6$ psec, respectively. From

$$|V_{ch}|^2 = |c_1c_2s_3 + s_2c_3e^{i\delta}|^2$$

and

 $|V_{ub}|^2 = s_1^2 s_3^2$,

we can find the allowed region in s_2 and s_3 as given in Fig. 1. We can see that s_2 and s_3 now are restricted to a very small triangle region bounded by

$$s_2 \leq |V_{cb}| \pm s_3, \ s_3 < |V_{ub}|_{\max}/s_1$$
, (7a)

with $s_1 = 0.23$, depending on the value of δ (note that $\delta = 0^{\circ}$ provides the lower bound for s_2 and $\delta = 180^{\circ}$ the upper bound). With the use of the values of Eqs. (5) and (6), these bounds become

$$s_2 \leq (0.0497, 0.0588, 0.0760) \pm s_3$$
, (7b)

$$s_3 < 0.030, \ 0.036, \ 0.046$$
 , (7c)

for $\tau_b = 1.4$, 1.0, 0.6 psec, respectively. As now both s_2 and s_3 are small, V_{cd} and V_{cs} are close to the values given by $-V_{us}$ and V_{ud} , respectively,

$$V_{cs} \approx -0.227, \quad V_{cd} \approx 0.97$$
 . (7d)

Note that these bounds are much more stringent than those previously obtained. Especially interesting are the bounds (6) and (7). Since they are much better determined than from hyperon and K_{e3} decays,⁴ they now can be used as an input for the K_{e3} and hyperon decay fits in order to study

<u>29</u>

592

FIG. 1. The allowed regions of s_2 and s_3 are given. The region bounded by the long-dashed lines and the $\delta = 0^{\circ}$ and 180° lines are from $|V_{ub}/V_{cb}|$ and $|V_{cb}|$ restrictions only. The solid lines are from fitting ϵ based upon the box-graph calculation for $B_K = 0.33$ and various *t*-quark masses.

other dynamical properties in the decay, e.g., SU(3)-symmetry breaking.

The *CP*-violation parameter ϵ is given by the box-graph calculation,^{6,7}

$$\operatorname{Re}\epsilon = -\frac{1}{2}\operatorname{Im}M_{12}/\Delta m \quad , \tag{8}$$

$$\mathrm{Im}M_{12} = -\frac{G_F^2 m_W^2 B_K f_K^2 m_K}{12\pi^2} \sum_{i,j}^{c,i} \eta_{ij} \mathrm{Im}(\lambda_i \lambda_j) A_{ij} \quad , \qquad (9)$$

where $\lambda_i = V_{id}^* V_{is}$, and A_{ij} is equal to $-\overline{E}(x_i, x_j)$ in Eqs. (2.12) and (2.13) of Ref. 11. Notice that the *u* quark does not contribute, since $\text{Im}(\lambda_u \lambda_u) = 0$. η_{ij} are the QCD leading-logarithmic correction factors, $\eta_{cc} = 0.7$, $\eta_{u} = 0.6$, and $\eta_{ct} = 0.4$, as taken from Ref. 12. The factor $-B_K f_K^2$ is the infamous uncertainty in the calculation of the matrix element

$$\langle K^0 | [\bar{d}\gamma_{\mu}(1-\gamma_5)s]^2 | \bar{K}^0 \rangle = -\frac{4}{3} B_K f_K^2 m_K \quad ,$$

where $B_K = 1$, if the vacuum-insertion calculation is used. Here we treat both m_t and B_K as free parameters. Note that in Eq. (8) the experimental value of Δm is used.¹³ For too low values of m_t , the solution from the ϵ constraint lies outside the allowed boundary, as given in (7c). As m_t increases, the solution moves inside the allowed domain given by (7c) and approaches the other two boundaries given by (7b). The direct observation of V_{ub} from b decay and the measurement of m_t from the t-quark discovery in the future could determine all the mixing angles based upon this model. In Fig. 2 we give the minimum *t*-quark mass $m_{t, \min}$ required by fitting ϵ , as B_K varies from 0.2 to 1.2. We see that for τ_b in the psec range the smallest $m_{t,min}$ for $B_K \sim 1$ (the vacuum-insertion result) is about 20 GeV. For $B_K = 0.33$, as given in some calculations,¹⁴ the value of $m_{t,\min}$ rises rapidly from 30 to 90 GeV as τ_b increases from 0.6 to 1.4 psec. Conversely, given the experimental bound

FIG. 2. The minimum value of m_t $(m_{t,\min})$ for fitting ϵ , as a function of B_K for various τ_b .

on m_t (currently $m_t > 21$ GeV from PETRA experiments), from Fig. 2, a maximum value of B_K can be obtained for a precise value of τ_b . For given B_K and $m_t \ge m_{t,\min}$, s_2 and s_3 are completely determined in terms of δ . In Fig. 1(a)-1(c) we give such points. Here we restrict our discussions to $B_K > 0$; then only $s_\delta > 0$ regions are allowed. For $B_K < 0$, from this ϵ restriction, the solutions are simply given by $s_\delta \rightarrow -s_\delta$.

Given the narrow region of s_2 and s_3 , we give one typical example from Fig. 1(b), for the case of $B_K = 0.33$, $\tau_b = 1.0$ psec, $m_t = m_{t,min} = 50.6$ GeV, $\delta = 132^\circ$, $s_2 = 0.077$, and $s_3 = 0.036$,

$$V_{ij} = \begin{pmatrix} 0.9737 & 0.228 & 0.008\ 22 \\ -0.227 & 0.972 & -i0.0021 & -0.0162\ +i0.0568 \\ -0.0174 & 0.0504\ +i0.0267 & 0.670\ -i0.740 \end{pmatrix}.$$
(10)

Next we give the box-graph calculation of $\text{Re}M_{12}$, which is simply given by the same expression Eq. (9) for $\text{Im}M_{12}$ with $\text{Im}(\lambda_i\lambda_j)$ replaced by $\text{Re}(\lambda_i\lambda_j)$. Now the *u* quark does contribute since $\text{Re}(\lambda_u\lambda_u) \neq 0$. However, the box graph has been demonstrated to be inadequate in estimating the *u*-quark contribution.¹⁵ In Fig. 3 we give

$$[(\Delta m)_{\rm box} = -2 \,\text{Re}M_{12}]/[(\Delta m)_{\rm expt} = 3.52 \times 10^{-15} \,\text{GeV}]$$

as a function of B_K for given $m_t = m_{t,\min}$ for that particular value of B_K . We see that for small values of B_K , we need large compensation from low-energy intermediate contributions. Here the sign of B_K being positive is important; $B_K > 0$ gives $(\Delta m)_{box} > 0$ as required by experiment. If B_K is taken to be negative, then $(\Delta m)_{\text{box}} < 0$, opposite in sign comparing to the experiment so even more positive contributions from other sources are needed to compensate the wrong result given by $\text{Re}M_{12}$. It is interesting to note that $\Delta m (K_L - K_S)_{\text{box}}$ is essentially independent of τ_b in the range of 1.4-0.6 psec, i.e., $m_{t,\min} \approx 30-90$ GeV. This is due to the fact that s_2 and s_3 are so small that the real part of $V_{td}^* V_{ts}$ is much smaller than $V_{cd}^* V_{cs}$, so that the charm contribution actually dominates. Interestingly, this reminds us why the early estimate of the charm-quark mass from $(\Delta m)_{box}$ by Gaillard and Lee¹⁶ using $B_K = 1$ was quite reasonable.

594

0.8

0.6

0.4

0.2

0.0

02

0.4

0.8

1.0

1.2

FIG. 3. Comparison with experiment of theoretical calculations for $\Delta m = m_{K_L} - m_{K_S}$ from the box-graph calculation, and the dispersive part of the $K_L \rightarrow \mu \overline{\mu}$ amplitude $A(K_L \rightarrow \mu \overline{\mu})$ from the pure weak-interaction quark-diagram (see Ref. 6) calculations, at $m_t = m_{t,\min}$.

вκ

06

As emphasized in Ref. 6, similar uncertainties exist in calculating the dispersive part of $K_L \rightarrow \mu \overline{\mu}$. Given all the parameters, we can also calculate the dispersive part of the amplitude of $K_L \rightarrow \mu \overline{\mu}$ from the purely weak-interaction quark diagrams, $A(K_L \rightarrow \mu \overline{\mu})_{weak}$ (see Sec. III of Ref. 6 for details). In Fig. 3 we also give the comparison with experiments of the theoretical calculation,

$$A(K_L \rightarrow \mu \overline{\mu})_{\text{weak}} / A(K_L \rightarrow \mu \overline{\mu})_{\text{expt mean}}$$

at $m_t = m_{t,\min}$. We see that the discrepancy can be very large, especially in the large- B_K region. Note that the decreasing behavior of

$$A(\overline{K}_L \rightarrow \mu \overline{\mu})_{\text{weak}} / A(\overline{K}_L \rightarrow \mu \overline{\mu})_{\text{expt mean}}$$

as B_K increases is mainly from the decreasing behavior of $m_{t,\min}$ as B_K increases. While $\Delta m(K_L \rightarrow K_S)_{\text{box}}$ has a factor B_K , it thus increases linearly with B_K . Although $A(K_L \rightarrow \mu \overline{\mu})_{\text{weak}}$ grows with m_t , it would not be a large fraction of A_{expt} unless m_t is much greater than 100 GeV.

fraction of A_{expt} unless m_t is much greater than 100 GeV. Next we calculate the $B^0 \cdot \overline{B}^0$ mixing probability.⁷ The $B^0 \cdot \overline{B}^0$ mixing parameter r(B) is the time-integrated probability $(B^0 \to \overline{B}^0)$ of B^0 becoming \overline{B}^0 relative to that $(B^0 \to B^0)$ of B^0 staying as B^0 , $r(B) = (B^0 \to \overline{B}^0)/(B^0 \to B^0)$ and for $\overline{r}(B) = (\overline{B}^0 \to B^0)/(\overline{B}^0 \to \overline{B}^0)$. The *CP* violation can give rise to a difference in such mixing between particle and antiparticle, i.e.,

$$a(B) = [\overline{r}(B) - r(B)] / [\overline{r}(B) + r(B)] \neq 0 \quad .$$

In Fig. 4 we give r(B) and a(B). We see that for a very conservative guess of $B_b f_B^2 = (0.1 \text{ GeV})^2$ we have appreciable mixing in \overline{B}_s , B_s as noted before.^{6,7} The mixing \overline{B}_d , B_d is much smaller. Note that the mixing parameter is very sensitive to the parameter $B_b f_B^2$; if the value $B_b f_B^2 = (0.33 \text{ GeV})^2$, as given in some calculations,⁶ is used, then the mixing of B_d , \overline{B}_d can be appreciable.

Using now much better determined V_{ij} , we can also use

FIG. 4. The $B^0 \cdot \overline{B}^0$ mixing parameter r(B), see Eqs. (11), and the *CP*-violation parameters a(B) [see Eq. (12)] are given for B_s and B_d states.

them as input in the calculation of heavy-quark decays and productions. For example,⁷

$$\Gamma(D^+ \to \pi^0 \pi^+) / \Gamma(D^+ \to \overline{K}^0 \pi^+) = \frac{1}{2} |V_{cd}/V_{cs}|^2 = 0.027$$

Another implication is that now $V_{us}/V_{ud} \approx -V_{cd}/V_{cs}$, the apparent deviation of $\Gamma(D^0 \rightarrow K^+K^-)/\Gamma(D^0 \rightarrow \pi^+\pi^-)$ from 1 has to be explained from other sources,^{7,17} such as substantial SU(3)-symmetry breaking.

Previously, the $\mu^+\mu^-$ inclusive production from ν and $\overline{\nu}$ scattering were used to estimate the products of the quarkmixing matrix and the distribution functions of nucleons.^{6,18} With the knowledge of V_{cs} and V_{cd} , see Eq. (7d), we can learn more about the sea-quark distributions. From the CERN-Dortmund-Heidelberg-Saclay experiment,¹⁹ the measurement of $|V_{cs}/V_{cd}|^2 = 2S/(U+D) = 1.19 \pm 0.09$ in νN $\rightarrow \mu^-\mu^+X$ implies $2S/(U+D) = 0.065 \pm 0.005$; also a similar analysis from $\overline{\nu}N \rightarrow \mu^+\mu^-X$ gives $2S/(\overline{U}+\overline{D})$ $= 0.52 \pm 0.07$, which indicates substantial SU(3) breaking in the sea-quark distribution.

We would like to thank J. Lee-Franzini for stimulating discussions about *b*-decay physics and J. Donoghue for informative discussions on the dynamical calculation of $K^0 \leftrightarrow \vec{K}^0$.

595

- ¹E. Fernandez, Phys. Rev. Lett. <u>51</u>, 1022 (1983); N. S. Lockyer *et al.*, *ibid.* <u>51</u>, 1316 (1983).
- ²See reports by J. Chauveau and J. Lee-Franzini, at the 7th International Conference on Experimental Meson Spectroscopy, BNL, 1983 (unpublished).
- ³M. Kobayashi and T. Maskawa, Prog. Theor. Phys. <u>49</u>, 652 (1973).
- ⁴For earlier fits to find V_{ud} , or s_1 , see M. Roos, Nucl. Phys. <u>B77</u>, 420 (1974); R. Shrock and L.-L. Wang, Phys. Rev. Lett. <u>41</u>, 1692 (1978); for more recent fits, see J. F. Donoghue and B. R. Holstein, Phys. Rev. D <u>25</u>, 2015 (1982); A. Garcia and P. Kielanowski, Phys. Lett. <u>110B</u>, 498 (1982); and for the most recent fits, WA2 experiment at CERN, M. Bourquin *et al.*, CERN report, 1983 (unpublished).
- ⁵For earlier analysis of V_{ij} see R. E. Shrock, S. B. Treiman, and L.-L. Chau Wang, Phys. Rev. Lett. <u>42</u>, 1589 (1979); V. Barger, W. F. Long, and S. Pakvasa, *ibid.* <u>42</u>, 1585 (1979); J. S. Hagelin, Phys. Rev. D <u>20</u>, 2893 (1979); S. Pakvasa, S. F. Tuan, and J. J. Sakurai, *ibid.* <u>23</u>, 2799 (1981).
- ⁶L.-L. Chau, W.-Y. Keung, M. D. Tran, Phys. Rev. D <u>27</u>, 2145 (1983).
- ⁷L.-L. Chau, Phys. Rep. <u>95</u>, 3 (1983).
- ⁸P. Ginsparg, S. Glashow, and M. Wise, Phys. Rev. Lett. <u>50</u>, 1415 (1983).
- ⁹F. Gilman and J. Hagelin, Phys. Lett. <u>126B</u>, 111 (1983).
- ¹⁰Here we assume the QCD correction is small as in Ref. 8; however they chose different quark masses, $m_b = 4.6$, $m_c = 1.4$, $m_u = 0$ GeV.

- ¹¹T. Inami and C. S. Lim, Prog. Theor. Phys. <u>65</u>, 297 (1981); <u>65</u>, 1772E (1981).
- ¹²F. Gilman and M. Wise, Phys. Rev. D <u>20</u>, 2392 (1979), with $\Lambda_{\overline{MS}} = 100 \text{ MeV}$ (\overline{MS} refers to the modified minimal-subtraction scheme).
- ¹³In the calculation of E. A. Paschos, B. Stech, and U. Türke [Phys. Lett. <u>128B</u>, 240 (1983)], Δm in Eq. (8) was also calculated from the box diagram. This is why B_K was determined to be about 1 in their approach. See our discussion later in the text.
- ¹⁴P. Colic, D. Tadic, and J. Trampetic, Phys. Rev. D <u>26</u>, 2286 (1982); J. Donoghue, E. Golowich, and B. Holstein, Phys. Lett. <u>119B</u>, 412 (1982).
- ¹⁵For discussions on these uncertainties, see C. Itzykson, M. Jacob, and G. Mahoux, Nuovo Cimento Suppl. <u>5</u>, 978 (1967); C. T. Hill, Phys. Lett. <u>97B</u>, 275 (1980); D. F. Greenberg, Nuovo Cimento <u>56</u>, 597 (1968); L. Wolfenstein, Nucl. Phys. <u>B160</u>, 501 (1979).
- ¹⁶M. K. Gaillard and B. W. Lee, Phys. Rev. D <u>10</u>, 897 (1974).
- ¹⁷See talks by G. Goldhaber and L.-L. Chau Wang, in *Experimental Meson Spectroscopy-1980*, proceedings of the 6th International Conference, Brookhaven National Laboratory, edited by S. U. Chung and S. J. Lindenbaum (AIP, New York, 1981).
- ¹⁸E. A. Paschos and U. Türke, Phys. Lett. <u>116B</u>, 360 (1982).
- ¹⁹See also talks by L.-L. Chau and K. Kleinknecht, at the International Conference on Electroweak Effects at High Energies, Erice, Italy, 1983 (unpublished).