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Flavor thresholds and A in the modified minimal-subtraction scheme
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A discussion of the modified minimal-subtraction (MS) prescription in QCD is presented. Effects of fla-
vor thresholds on o.,(p, ) and AMs are examined. Two parametrization options are described. In the first

(xz)
approach, distinct mass scales AMs associated wi.h N~, the effective number of flavors, are introduced.

In the second scheme, a standard N+-independent A&& is adopted but the functional form of n(p, ) is

slightly modified.

In quantum chromodynamics (QCD) the SU(3), running
coupling n, (p, ) obeys the renormalization-group equation

p, n, (p)—= ,P(n, ) =ban, +bin, +b2n, +
Bp

a factor of 2 smaller than the largest momentum transfer in
the process. Suggestions for choosing the optimal IL have
been discussed in the literature;9 this paper will not address
that issue.

Formally integrating Eq. (1) yields

The first two terms in the perturbative expansion of P(n, )
are renormalization-scheme independent and given by'

1 I bi p bll ng(p)
ns(po)
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(2a) , (b2bo —bi') [n, (p, ) —ag(pa)] +O(n, ')
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where N~ is the number of color-triplet quark flavors. '
Higher-order terms depend on the renormalization prescrip-
tion. 4 Within the framework of modified minimal subtrac-
tion (MS),45

b2 has been computed by Tarasov, Vladi-
mirov, and Zharkov and found to be

5033NF 325'b2=— +
64 3 9 27
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The P function in Eq. (1) describes the evolution of the
effective coupling n, (p, ) as a function of the mass scale p,
(or distance 1/p, ). It incorporates the large color-charge-
screening vacuum-polarization effects controlled by the re-
normalization group. Of course, the question arises as to
what %F should be employed for a given p, . The answer is
provided by convention. In the standard MS scheme, NJ: is
specified to be the number of quark flavors with mass ~ p, .
New flavor thresholds are treated as step functions in P(n, )
at p, =quark masses, so that n, (p, ) is continuous (up to two
loops7) but its derivative is discontinuous at those values.
Real threshold corrections of the form m~2/Q2, where m~ is
a generic quark mass, are to be accounted for separately and
not incorporated into the running coupling. This prescrip-
tion is somewhat awkward for p, near a quark mass; but it is
very convenient for asymptotic values of p, and analysis of
grand unified theories. 8

The step in N~ by one flavor at p, =m~ rather than, say,
2'~ may seem peculiar. One should, however, recall that
within the framework of dimensional regularization, p, is
merely a unit of mass introduced to keep the bare coupling
dimensionless;4 it is not the momentum transfer. The value
of p, in the expansion parameter n, (p, ) appropriate for a
particular process is not specified by the MS prescription;
nevertheless one expects that p, should generally be at least

1
A = p, exp

bpa, (p),bp2 bpn, (p, )

+ (b2bp —bi )a, (p, ) +O(a, ')
3 (4)

where C is an arbitrary constant (which may be viewed as a
constant of integration ). Using Eq. (1), it is easy to verify
that for a given NF region p, (d/dp, )A=O. However, be-
cause the b's change as the effective N~ changes, either A
or C must also exhibit an N~ dependence. One may choose
an NF-independent C (say, C=O for all NF) and then have

with pa a reference mass scale. Given n, (pa) one can com-
pute n, (p, ) for arbitrary p, by iteratively solving Eq. (3). Of
course, N+ must be changed by one unit at each p, = m~ in
the manner described above. So, for example, given an
a, (pa) with m, ~ pa ~ ma, all other n, (p, ) corresponding to
that domain are determined by iteratively solving Eq. (3)
with NF=4. After a, (m, ) and n, (m&) are obtained, n, (p)
for m, ~p. ~m, and mb ~@,~eg, are similarly obtained us-
ing NF=3 and 5, respectively. ' This procedure can be re-
peated for p, ~m, with N~=6, once m, is known. For
p, & m„one might try to continue this evolution using
NF = 2; however, at those low p, values (effective
m, =250 MeV), 'a the coupling n, (p, ) is of O(1) and the
perturbative expansion in Eqs. (I) and (3) becomes invalid.
Results of this iterative procedure are illustrated in Fig. 1.

The above prescription is well defined but cumbersome.
It is often more convenient to introduce a reference mass
scale A which incorporates the iteration procedure and pro-
vides a functional form for n, (p,). The conventional way of
defining AMs for that purpose and ambiguities due to chang-
ing N+ domains will now be discussed.

A p,-independent mass parameter A should have the form
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(&F) (wF) .
distinct A F corresponding to different NF regions or keep A fixed for all NF by introducing distinct C ~ in Eq. (4).
Both possibilities will be subsequently examined. In either case, iteratively solving Eq. (4) for n, (p, ) gives

n, '(p, ) = — ln(p2/A2) + [lnln(p2/A2) —bo C/b, ]
2 bp

2b) [ln ln( p, /A ) bp C/b) ( b2bo/b( —1)]
bp ln ( p, '/A') ln'( p, '/A')

or inverting

2b) [lnln(p'/A ) —bo'C/b)]
b, In( p'/A') b ' In( p'/A')

4b~
& & bp C 1 bpbp 5 1+

2 2 2
ln ln( p, 2/A2) — —— + ——+ 0

(5)

(6)

For all applications known to the author, only the first two terms in these expressions are retained. That is generally a good
approximation as long as p, /A is large. The extra terms have been retained in Eqs. (5) and (6) to provide a measure of the
truncation error and the validity of the expansion.

The conventional definition of AMs (given by Bardeen, Buras, Duke, and Muta3) sets C =0 in Eqs. (4), (5), and (6).
This simplifies somewhat the functional form of n, (p, ). Unfortunately, as mentioned before, to do so for all N~ requires

(w )
distinct AMs for different effective flavor regimes. Putting numbers into Eq. (4) with C = 0 gives '
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Relationships between AMs pairs are obtained using the
continuity of n, (p) at quark masses. For example, given a
value for n, (m2, ), one determines both AMs and AMs from
Eqs. (7c) and (7b). It is also convenient to have some ex-
plicit approximate relationships between these mass scales.
Again using continuity and iteration, one finds from Eq. (5)
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Rather than requiring C =0 for aH NF and thereby
(wF)

rendering AMs dependent on NF, an alternate strategy is to
employ a single "standard" AMs and retain NF-dependent

These mass scales will turn out to be quite different in mag-
nitude. To illustrate this point, take AMs = 100 MeV, the
central value obtained from the radiative Y decay branching
ratio, " and assume m, =35 GeV. For those values, one
finds (approximately)
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FiG. 1. o.,(p, ) as a function of p, using n, (2 GeV) =0.20 as input.
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(10)
l

C in Eqs. (4), (5), and (6). Having a standard AMs may
(WF) .

help to avoid confusion and provide a useful means of com-
paring different experiments. In addition, a glance at Eqs.

(WF)(5) and (6) indicates that C ~ does not significantly com-
plicate the form of n, (p). Indeed, the benefit of having an
NF-independent AMs in the logarithmic arguments of those
expressions would seem to more than compensate. Specify-

ing a standard AMs, the C are [from Eq. (4)] given by
(WF)

(WF)
C =in(A ,/A—„, —) .

(~F)If one of the A—
s is chosen to be the standard, then its

(WF)
corresponding C F is zero, while the others are simply
determined from Eq. (10) and the relationships in Eq. (g).
[For a more precise determination Eq. (5), including its
higher-order terms, can be employed. ] One might be in-

clined at this time to choose AMs =A~~ as the standard,
since it is currently the most accurately measured one." In
that case, the NF=3, 4, 5 parametrizations are given up to
terms of O(1/In3(p, 2/AMs )) by

12 s&
lnln(p2/AMs2) +2C

u, (p) =
2

1—
27 in( p, '/AMs ') ln( p, '/AMs ') m, & p, ~m, (1 la)

n, (p) = 1—
25 In (p, '/AMs ') ln ( p, '/AMs ') mc &P, ~~mb (1 lb)

n, (p, ) = 1—
23 ln(p, '/AMs ') ln( p, '/AMs ') mb + p' mt (11c)

where for AMs = AMs
(4)

C =ln(AMs/AMs) = ——7[in(m, 2/AMs ) +
~~ inln(m, /AMs )]

C"' =in(A„—,/A„—",') =0,
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In the future AMs will probably become a more natural
standard (after m, is known). It is smaller than the others
[see Eq. (9)]; a feature which should reduce somewhat the
truncation errors in a, (p, ) when only terms up to
0 (I/ln2(p, '/AMs ) ) are retained as in Eq. (11).

A more radical approach would be to choose a convenient
scale, say, AMs=50 MeV, as the standard and keep all

(~F)C F ~0. Although that would certainly cause confusion,
it might have some benefits. For example, one might in-
voke a value that minimizes the truncation error in n, (p, )

I

(XF)or simplifies the C
%hich of the above parametrizations will prove more

popular is not clear. The first scheme has a simpler a, (p, )
(wF) (&F)

form, since C =0; however, its distinct AMs may be
cumbersome. The second approach has the advantage of
requiring a single "standard" AMs at the expense of intro-

(WF)
ducing C ~ terms in the n, (p)expansion, . Time will tell
which of these parametrization options will become the
more accepted convention.
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