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Recently a generalized topological-unitarization scheme has been developed in which the effect of
"sea"-quark loops is taken into account from the beginning. At the lowest-order planar "zero-
entropy" level, a self-consistent calculation of the leading Regge trajectory a(t) gives a ground-state
mass mo ——0.13a' ' and a coupling go /4~ of the order of the fine-structure constant, suggesting a
strong-electroweak unification. This calculation does not entail any free (input) parameters.

During the past several years considerable progress has
been made in developing a topological-unitarization (TU)
approach for calculating soft-process amplitudes, the
domain where most of the data in particle physics is to be
found. In striking contrast to many other approaches in
the confinement region, quark loops play an essential role
from the beginning in TU, a feature which is in harmony
with the important role that "sea" quarks are known to
play for small values of the fractional quark momentum
within hadrons in deep-inelastic lepton-hadron scattering,
with the ready formation of hadronic jets, and with the
rather large phenomenological values of typical hadronic
couplings.

In the. TU approach one starts with planar quark duali-
ty diagrams of the type shown in Fig. 1, where the solid
lines are (purely mathematical) quark lines and the dashed
lines carry the four-momenta of the hadrons. Higher-
order corrections are then developed via a topological ex-
pansion. Earlier (1/Nti,„„)versions of this approach, '

while unambiguous and successful for qq mesons (Mz),
could not consistently take into account 83 (qqq) and M4
(qqq q ) states. However, the generalized topological-
unitarization scheme of Chew and Poenaru and Stapp
provides a consistent way of overcoming this difficulty by
effectively writing 83 ——q5 and M4 ——55, where 5=qq is a
"diquark" with a certain well-defined topological struc-
ture at the lowest-order level. Figure 1 is then generalized
by allowing one or more q~5 line replacements. Higher-
order corrections, which would lead to "interactions" of
the dashed hadronic four-momentum lines with these 5
lines, can then be argued to be small. '

At the lowest-order "zero-entropy" level the basic (pla-
nar) dynamics can be represented symbolically by Fig. 2
(where the left side is a shorthand notation for the sum of
the graphs of Fig. 1 and their q~5 generalizations) and
each S-matrix element can be consistently factored into a
known spin-momentum factor and a common spin-
independent dynamical function T of the external four-
momenta. Within this fully relativistic level it can be
shown that the usual simple quark-model qq and qqq had-
ronic ground-state families are generated despite the pres-
ence of quark loops, ' and that an interesting
"topological-supersymmetry" property arises, with qq-
qqq-qqq q degeneracy and with realistic consequences for
hadronic cross sections. This topological-supersymmetry
property states that at the zero-entropy level the masses of
the ground states qq, qqq, and qqq q have the same value
mo and that all the ground-state hadronic coupling con-
stants can be computed in terms of a single basic coupling
constant go. The unitarity relations and dynamical equa-
tions satisfied by our T amplitudes turn out to be identical
to the equations which would be satisfied by the corre-
sponding S-matrix elements if all the ground-state parti-
cles (collectively denoted by z) were spinless. We can then

compute in a self-consistent way the zero-entropy con-
stants mo a' and go, which in turn would permit us to cal-
culate the higher-order contributions; here o." is the slope
of the lowest-order Regge trajectory.

For zz scattering at moderate values of t, the dominant
contribution to the sum of graphs of Fig. 1 and their q —+5
generalizations is expected to come from the infinite
ladder sum of the s-channel unitarity graphs of Fig. 3,
which generates a leading "output" Regge trajectory tx(t)

w
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FICx. 1. A typical planar quark-duality diagram.
FIG. 2. Zero-entropy dynamics, where m labels all possible q

and 5 lines.
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respectively. Equation (5) is in fact exact if we have a fac-
torizable model. It gives a Regge pole atj =a(t) if

with a residue

FIG. 3. Infinite ladder sum of s-channel unitarity graphs.

v=s+ —,'(t —4mp ), (2)

and the upper limit s(t) corresponds to a point between z
and the next significant contribution above it, at least if
we invoke semilocal duality to prevent double counting.
The constant I o is related to the basic diinensionless zzz
coupling go of our TU theory through

and in which the masses of the vertical-line clusters
a, b, c, . . . must be bounded to avoid double-counting, say,
between Figs. 3(a) and 3(b). The ladder exchanges within
Figs. 3(b), 3(c), . . . themselves have the form of the entire
sum of Fig. 3. In practice we will approximate them by
the Regge exchange a(t) in what follows.

Figure 1 does not give rise to the usual Regge cuts.
When combined with analyticity it therefore implies sim-
ple finite-energy sum-rule (FESR) duality, which can be
used, for example, to relate Figs. 3(a) and 3(d) and gives

f ds[l p5(s —mp ) —y (t)v '"8(v)]=0, (1)

where the 5-function term is the lowest nonvanishing con-
tribution of Fig. 3(a) (coming from the ground state z of
mass mp) to the s-channel absorptive part A (=ImT),
y ~ (t)v '" is the asymptotic Regge behavior of A, v is the
usual crossing-symmetric variable (s —u)/2 or

W(s, t) =I II (t)5{s sII (t)), — (10)

where the s integral over Eq. (10) was required to be equal
to the one over Eq. (9) for all s, and the integral over Eq.
(9) for s&sII was required to be equal to the one for
s &s~. Exactly the same set of approximations were
made for the clusters b and c of Fig. 3(b), with Eq. (1) re-

placed by the generalized finite-mass sum rule

f ds[y (t')y (t")5(s —mp )

K(j,t)8

j=a(t)

Figure 3(a) gives, approximately,

W(s, t)=I p5(s —mp )+y (t)v '"8(s —s)8(sp —s) . (9)

The 6 function is again the contribution of the ground
state z and the Regge term takes into account all the
higher (s & s) contributions to W in the semilocal duality
sense of Eq. (1). Since we are insisting on no double
counting between Figs. 3(b) and 3(c) we have inserted a
step function 8(sp —s) to exclude states above the effective
threshold s =sp of Fig. 3(b). Since sp is relatively large
and is expected (because of duality) to be a relatively slow-
ly varying function of t, we shall take it to be a constant.
In practice, 8' was further approximated by a single 5
function

I p
——N(N —1)mp gp (3)

—y (t)g(t', t",t)co '" " ' " '8(co)]=0,

where 2V =32 is the multiplicity of each quark loop in
Fig. 2 (2 spins X2 charges X4 generations X2 chirali-
ties). Note that Fig. 2 requires gpN'~ (N —1)' /4m. to
be of the order of unity.

In previous papers it was shown that, if we make a cer-
tain simple peaking approximation for Fig. 3(b), the
ladder dynamics of Fig. 3, when combined with FESR du-
ality, leads to a linear a(t) 'We shall .continue to assume
this as a first approximation in what follows.

To deal with the graphs of Fig. 3 we make the
kinematic-singularity-free Mellin-transform projection:

A(j, t)= f dvA(s, t)v ~ (4)

and formally associate a coupling-strength parameter P
with each of the clusters a, b, c, . . . . If we then take the
[1,1] Pade approximant of the resulting expansion in P, we
obtain, for a given t,

3 (j,t) = W(j, t) I[1 K(j,t)], —
where

Kj(,t) =B(j,t)!W(j,t),
and W and B are the contributions of Figs. 3(a) and 3(b),

and the analog of the right-hand side of Eq. (9) again ap-
proximated by a single 5 function, this time at
s =sz(t', t",t); here co=s+ —,(t —2mp —t' —t"), and s(t)
and so are the same as before.

For t&0, Fig. 3(b) involves a double integral over the
internal momentum transfers t' and t". We therefore re-
strict ourselves to the value and first two t derivatives at
t =0, which can all be reduced to single integrals. We
also set

(12)

and introduce a t' cutoff at a(t')= ——, to avoid the
tachyon singularities at a(t')= —2, —3, . . . which arise
because of our incomplete implementation of duality.
Neither of these approximations should have too much of
an effect on our final results, however, because of the
sharp peaking of our integrands for small

~

t'
~

and
~

t"
~

.
Finally, an upper cutoff 8(s2 —s) was introduced into the
contribution B(s,t) of Fig. 3(b) to prevent double counting
with Fig. 3(c), since each of these should represent, in a
duality sense, the entire contribution to 2 near its own s
threshold. Thus, for example,
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i+
8(s,0)= [s(s —4mp )] '~ dt'

j Tz(s, t')
~

g(a(r')+ —', )g(s —4s~ )g(s2 —s),16~ 0 (13)

where

r+ = —
2 s +sx +mp + —,

' [(s —4sx )(s —4mp )]'~

sx ——$~(0,0,0) (14)

a'mo —0.017, go /4m=, '

a's(0)=0.05, s '(0)=—1,
a'so —0.20, cx's2-0. 80 .

(17)

and Tx is the "amplitude" for zz~XX with Regge ex-
change a(t')

Equations (7) and (8) and their first two derivatives at
t =0 now lead to six conditions on our parameters

Note that our s(0) is not far from the background thresh-
old of 4mp . On the other hand, if we combine Eq. (1)
with the exact relation

a'(mp )I p
——y~~ (mp )

E;=0, ~ =1, . . . , 6 (15)
demanded by crossing symmetry, we obtain

which can only be solved numerically. We therefore
varied our parameters so as to minimize a dimensionless

6
X = —,

' Q (F;/e;)

where we have introduced a set of e; for dimensional
reasons and for properly weighting each term in the sum.
We must remember that physical restrictions on our pa-
rameters result in correlations between them, which in-
duce, in turn, further restrictive constraints on our solu-
tions. In such a highly nonlinear situation, we must there-
fore begin our search for a solution by dropping one or
more of our constraints and then attempting to find a con-
dition where the addition of a further constraint does not
change our results in any appreciable way. We must then
be close to the final solution, where, of course, the number
of parameters is equal to the number of constraints.

We have restricted ourselves to solutions for which any
reasonable extrapolation of s (t) from r =0 leads to v(t) & 0
(which permits our formalism to be well defined, as it
stands, for all t). We then found that the solution with the
smallest X, which corresponded to 10 & ~F;

~

&10
for all of the F; of Eq. (15), led to

s(mp )= 1.03a' ' »s30),
which corresponds to a very rapid variation of s3t) in the
0& t & mo range. It would be interesting to see whether
this persists if we were to improve our calculation and
perhaps extend it to finite positive t.

Our value of gp(=0. 4e) is close to the value of e, where
e /4m= $37 This is consistent with certain recent ideas
about a possible unification of soft hadronic physics and
electromagnetic interactions within a topological expan-
sion. Note that our a'mo «1. This means that there
are two different energy scales in our problem, one set by
a' ' and a smaller one by mo. The latter suggests the
possibility of a PCAC-type (partial conservation of axial-
vector current) constraint at the zero-entropy level, with
the z playing the role of the pion.
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