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Hadronic matter form factors: pp, np, and the valon model
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We define the "matter form factor" (MFF) in hadron-hadron elastic scattering as the Fourier-
Bessel transform of the eikonal. The MFF's for pp and ~p are extracted directly from the measured
differential cross sections. We show that the valon model is a convenient framework in which these
form factors can be analyzed and related to each other.

I. INTRODUCTION transform of f:
It is a nice feature of impact-parameter pictures of

hadron-hadron scattering that they connect the measured
observables to the geometric and dynamic structure of the
colliding hadrons. ' Clearly, what we see in hadron-
hadron collisions at present energies cannot simply be
identified with electromagnetic form factors as measured
in lepton-hadron elastic scattering. Rather, hadron-
hadron elastic scattering defines its own form factor
through the impact-parameter formalism. This "matter
form factor" (MFF) measures the interaction of a gluonic
probe with the excited matter of the overlapping hadrons
and should incorporate the static matter distribution of
the participating hadrons as well as the dynamical modes
of excitation of hadronic matter during the high-energy
collision.

The "valon model" is an attractive picture of hadron
structure, consistent with a large body of experimental
facts and theoretical findings in hard and soft hadronic
processes, in perturbative and nonperturbative QCD. It
has produced explicit and simple expressions for charge
and matter distributions in nucleons and pions at low and
moderate Q . Since the charge distributions have been ap-
plied successfully to the study of charge form factors in
Ref. 7, it seems worthwhile to investigate whether the
matter distributions can be analogously related to MFF's.
In particular, we wish to predict the 7rp MFF from the
"experimental" pp MFF, similarly to the valon-model pre-
diction of the pion charge form factor from the proton
charge form factor. Of course, the valon-model descrip-
tion of charge form factors will have to be suitably gen-
eralized to accommodate the complicated central-region
dynamics in hadron-hadron scattering.

II. DEFINITIONS AND ASSUMPTIONS

Consider elastic scattering of hadrons A and I3 at ener-
gies which are sufficiently high for the differential cross
section to be well described by the spin-nonflip, purely ab-
sorptive scattering amplitude f (s, t) (Ref. 9):

dt
=n.

i f (s, t)
i

(s is the c.m. energy squared, t the four-momentum
transfer squared, and Q = t). The impact-paramete— r
representation is defined by the inverse Fourier-Bessel

f (s, t)=i f h (s,b)JO(bV' t )b d—b

with h(s, b) purely real. s-channel unitarity relates it to
the inelastic overlap function G (s,b):

h (s, b) = 1 —[1—G (s,b)]'

The eikonal Q is defined from h by the relation

Q(s, b) = —in[1 —h (s,b)] . (4)

Using (3), it can also be expressed in terms of G:

Q(s, b)= ——,
' in[1 —G(s, b)] .

We are now ready to define the "MFF of the system AB"
as the Fourier-Bessel transform of the eikonal (normalized
to unity in the forward direction):

f Q(s, b)Jo(bv' t )b db—
M„g(s, t) =

A(s, b)b db

Our working hypothesis is that this quantity can be cal-
culated in the valon model. We generalize the valon-
model ansatz for charge form factors ' to an ansatz for
the MFF:

M„~(s,t)=Kg(Q )IC~(Q )V(s, Qz),

where K~,Kz give the contribution of structureless valons
to the host hadrons' MFF while V is the valon-valon ("re-
duced") MFF. Note that the MFF is not positive-definite
in either (6) or (7).

The reduced MFF is a complicated object, some intri-
cate combination of the bound-state structure of the col-
liding valons and of its dynamical excitations. It is not
yet calculable. However, since the internal structure of
valons is built by virtual QCD processes only, it ought to
be the same for all flavors of valons and also be indepen-
dent of the host hadron. We can therefore expect valon-
model universality, but only modulo the unknown
dynamical part of the reduced MFF. In fact, our results
presented below suggest there exist "equivalent energies"
at which MFF's for different hadron-hadron systems are
related by valon-model universality.

Oc 1984 The American Physical Society



29 HADRONIC MATTER FORM FACTORS: pp, mp, AND THE. . . 53

10

O10
10

dO
dt pp

Vs = 52.8 GeV L
p, = 400 Gev/c

-2
10

~ 10
D
LL

IX
QJ
~~o

10'
0 5

I 1 I l

1 2 3 4
Q'(GaV lc )

FICx. 1. The pp matter form factor from overlap data at four
ISR energies. Dotted curve at V s =23.5 GeV, dashed curve at
V s =30.7 GeV, dash-dotted curve at Ws =44.7 GeV, and solid
curve at Ws =52.8 GeV.
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FIG. 2. Five-exponential fit to the pp differential cross sec-
tion. Data are from the ISR at ~s =52.8 GeV and from Fer-
milab at p~,b ——400 CxeV/c and large —t. Typical error bars are
shown.

III. THE pp MPF

We have used two methods to extract the pp MFF from
experimental data. The input to the first is the tabulation
of G(s, b) by Amaldi and Schubert. ' We transform to
eikonal values according to (5), performing a natural cubic
60-node spline at each CERN ISR energy. Then we ex-
tract Mpz by (6), using a double-precision 32-point Gauss-
ian quadrature between Bessel-function zeros. The results
for four ISR energies are shown in Fig. 1. We have not
included the top ISR energy because the resulting MFF
had violent oscillations, probably due to several question-
able data points signaled in Ref. 11. This numerical
method can only be trusted up to t =5 (GeV/c) —.

To do better, we fit the pp differential cross section as
measured at the ISR for v s =52.8 GeV, ' and at Fermi-
lab for p~,b

——400 GeV/c and large —I;.' We need the

TABLE I. Parameters for fits to the pp and mp differential
cross sections [Eq. (8)]. AJ is in (mb)'~ (GeV/c) ', BJ in
(GeV/c)

large —t data to improve the numerical Fourier-Bessel
transform. Generalizing a form used in Ref. 9, we set

a,.~f (s, t) =i g Aje ' (8)

with J=5. Aj and BJ as obtained using the CERN
MINUIT routine are listed in Table I. The fit is shown in
Fig. 2. We perform the Fourier-Bessel transform of the
eikonal obtained from (8) and get an independent extrac-
tion of the pp MFF. The result as compared to the extrac-
tion by method 1 for the same s, Q is shown in Fig. 3.

Method 2 should give a reliable idea of the larger-Q
behavior of the pp MFF. In our fit, which does not have
multiple diffraction zeros, the MFF goes negative at
Qo ——5.65 (GeV/c) . This confirms previous findings. '
Qo would be different for different s.

We can now establish the relevance of the valon model
to the pp MFF. For the proton, we use

Eq(Q )= —,
' J dx[2L~ (x)Tq (K)

+L (x)T (K)]
i
- „,- . (9)

Here, Lz (Lz ) are the longitudinal-momentum-fraction
distributions of U (D) valons in the proton

pp

0.606 66
3.2310
1.6289

—0.03443
—0.000 799

15.042
6.6985
3.8590
1.0353
0.380 62

1.8075
1.2652
0.035 29

—0.00426

BJ

6.4557
2.8597
1.0190
0.427 99

L (x)=7.98x ' (1—x)
(10)

L~ (x)=6.0lx (1—x)

and T~ (T~ ) are the transverse-momentum distributions
of U(D) valons in the proton
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(12) as an illustrative example, this would mean that we
can write

U

& &o'
CL
C)
LL

Ld~10

(13)PP P 2+Q2
2 — 2

M q
K——Ep (14)

g 2+ Q2

with the same value of a . But even though the reduced
MFF is only approximated by the BSW factor, the mere
hypothesis of its universality at equivalent energies along
with the factorized ansatz (7) allows us to eliminate it be-
tween the MFF's for the two systems. Therefore,
knowledge of the experimental pp MFF should enable us
to predict the mp MFF by the formula

K
PP (15)

2 3 4
Q (Gav/c )

FIG. 3. pp matter form factors by various methods at
Vs =52.8 CseV and for Q &5.3 (CxeV/c) . The points repro-
duce the solid curve of Fig. I. Solid curve: extraction by
method 2. Dashed curve: Eq. (9) squared. Dash-dotted curve:
Eq. {12).

We take our pp MFF extracted by method 2 at
vs =52.8 GeV as representative of the ISR regime and
predict a mp MFF which should not be far from what can
be extracted directly from the harp differential cross section
at pi, b

——200 GeV/c (the energy at which diffractive struc-
ture appears in ~p scattering). For the pion MFF due to
structureless valons we take

IC (Q )= f dxL (x)T~(K) ~-

I. (x)=1.77x ' (1—x) (16)
—6%2

TU(K )
—6. 1K2 TD(K )

—3K2
P

The square of quantity (9) is represented by the dashed
curve in Fig. 3. An immediate way to come closer to the
experimental MFF is to multiply it by a factor of the
form suggested in Ref. 2 (BSW)

2 2

Mqp-E~ (Q ) (12)
~2+Q2

where a would now be s-dependent in principle. The
dash-dotted curve in Fig. 3 is obtained by fixing the pa-
rameter a to Qo . A future theory of the reduced MFF
might justify one to untie a from the exact value of the
experimental zero, making it a free parameter to actually
fit the extracted MFF. For instance, a =7 (GeV/c)
yields a good fit to the extracted MFF shown in Fig. 3

[Q (5.2 (GeV/c) ].
The coefficients in (11) are from Ref. 7 (simultaneous

fit to p, n, m. charge form factors), but in (10) we prefer to
use coefficients from Ref. 6 (fit to structure functions
determined from p% and vX deep-inelastic-scattering data
at high Q ). Using coefficients from Ref. 7 in the longitu-
dinal distributions does not make much difference, but the
resulting approximation (12) is somewhat worse.

IV. THE mp MFF

Let us assume that we work at equivalent c.m. energies
for pp and mp elastic scattering. Taking approximation

K
O

—1~10

I I I l I

2 3 4 5
(GcV /c )

FIG. 4. The mp matter form factor. Solid curve: prediction
from the pp MFF extracted at V s =52.8 GeV. Dashed curve:
direct extraction from Fermilab data at p~,b ——200 GeV/e.
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10 TABLE II. Parameters for fit of Eq. (17) to the mp differen-
tial cross section following Ref. 18. All parameters are in
(GeV/c)

10
0 Gev/c ai

CX2

CX3

2.863
2.038
0.012 65
0.6237

Pi
P2
133

6.120
2.886
0.4467
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FIG. 5. Four-exponential fit to the mp differential cross sec-
tion. Data from Fermilab at p&,b ——200 GeV/c. Typical error
bars are shown.

The resulting prediction is the full curve in Fig. 4.
To check our prediction, we extract the mp MFF direct-

ly from m. -p data on the differential cross section taken
at Fermilab for p»b ——200 GeV/c (Refs. 15 and 16). The
value at the optical point is calculated from the total cross
section given in Ref. 17. We use method 2 with a four-
exponential form for the scattering amplitude [J=4 in
Eq. (8)]. The fit is shown in Fig. 5, the parameters are
given in Table I, and the result for the harp MFF is the
dashed curve in Fig. 4.

The agreement is good up to Q -=5 (GeV/c) . The "ex-
perimental" MFF goes negative at Qi ——8.5 (GeV/c),
whereas our prediction inherits the Qo ——5.65 (GeV/c)
from the pp MFF. This is the only source of disagreement
and indicates that p»b ——200 GeV/c for mp is not quite
equivalent to v s =52.8 GeV for pp, but of the same or-
der. In fact, it is easy to verify that Eq. (14) with a =8.5
(GeV/c) is a good approximation to the "experimental"
mp MFF, and that Eq. (13) with this value of a yields a
pp MFF which is nearly the median of the curves in Fig.
1.

As is apparent from Figs. 2 and 5, our sum-of-
exponential fits to differential cross sections never have
multiple diffraction dips. At the same time, they lead to

MFF's which go negative at relatively low values of Q .
If one interprets the mp data point at t —=9 (GeV/c) as a
second dip, for instance, by fitting with the form proposed
in Ref. 18,

f z(s, t) =aie +a2e +a3e Jo( yt)—p, t pzt I33~

(their coefficients are reproduced in Table II), then one ob-
tains a ~p MFF which is nearly identical to our extraction
in the Q range shown in Fig. 4, but stays positive up to
Q =20 (GeV/c) . This is why we never show any MFF's
beyond 5 (GeV/c): we feel one should first gain some
theoretical understanding of the behavior of (reduced)
MFF's in that region. At any rate, there definitely seems
to be a link between this problem and the question of fur-
ther diffraction dips.

V. CONCLUSIONS

In this paper we have displayed the s and low-Q depen-
dence of the pp MFF within the ISR regime. The good
agreement between two independent methods gives us con-
fidence in the extracted form factors. Therefore we also
extract the ~p MFF from Fermilab data at pl, b ——200
GeV/c.

Our working hypothesis of identifying the MFF defined
in the impact-parameter formalism with a generalization
of the valon-model ansatz for charge form factors has
produced interesting results. The products of MFF's due
to the distributions of structureless valons in p and m. by
the BSW factor approximate the extracted pp and mp
MFF's quite well. The fact that valon-model factorizabil-
ity and universality allow a close prediction of the mp

MFF from the pp MFF and vice versa indicates that these
hypotheses are correct modulo the energy dependence of
the reduced (valon-valon) MFF, which thereby becomes
an object of considerable physical interest.
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