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Study of muon-number-violating hyperon decays
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Muon-number-violating hyperon decays are discussed, first from a phenomenological point of
view and then considering some possible sources of muon-number violation. We show that branch-
ing ratios as large as of the order of 10 for the decays X+~pp+e —+ and:- ~Ap*e —cannot be
ruled out. W'e note, however, that such branching ratios are unlikely, since they would require
muon-number-violating interactions of very special structure.

I. INTRGDUCTIGN

In the minimal standard SU(2)L, XU(1) gauge theory of
the electroweak interactions' involving only a single Higgs
doublet, muon number is conserved if the neutrinos are
massless. For massive neutrinos the weak eigenstates and
the mass eigenstates of the neutrinos do not coincide in
general, resulting in muon-number violation (and in other
transitions between different lepton families). In the pres-
ence of only the three known lepton families the branch-
ing ratios of muon-number-violating processes (such as
prey, p X~e N, ECi ~pe) are orders of magnitude
below the present experimental limits. ' This is due to
the suppression factors m„ /m~ present in the ampli-
tudes and the experimental limits on the neutrino masses.
Larger branching ratios for muon-number-violating pro-
cesses are possible, however, in many theoretical schemes
that go beyond the minimal standard model. The possibil-
ities include existence of flavor-changing neutral gauge
bosons (for example, the gauge bosons associated with
horizontal gauge interactions, or the gauge bosons present
in extended hypercolor theories ), existence of flavor-
changing neutral Higgs bosons (in the standard model this
would require the presence of two or more Higgs dou-
blets ), composite models, muon-number violation medi-
ated by light leptoquarks (present in some grand unified
theories and in extended hypercolor theories ), muon-
number violation mediated by supersymmetric partners of
the usual SU(2)L &(U(l) gauge bosons, ' and existence of
new electroweak interactions. " Large branching ratios
might result also in the minimal standard model if further
lepton families, involving heavier neutrinos, exist.

The relative size of the rates of various muon-number-
violating reactions depends on the mechanism of muon-
number violation, and on the model and its parameters.
This underlines the importance of searctung for all possi-
ble muon-number-violating processes.

In this paper we investigate what information one could
obtain from experimental searches for muon-number-
violating decay modes of the usual octet hyperons, ' in
particular, as compared to the information provided by
muon-number-violating K decays.

In Sec. II we study the muon-number-violating hyperon
decays in a phenomenological framework, and consider

the constraints imposed on their branching ratios by the
available experimental information on muon-number-
violating E decays. In Sec. III we discuss the branching
ratios in the light of possible sources of muon-number
violation, suggested by current theories. In Sec. IV we
surnfnarize our conclusions.

II. PHENGMENGLGGICAL CONSIDERATIGNS
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Analogous decay modes are possible for the antihyperons.
%'e note that none of the above decays conserve strange-
ness. The decays (lf) and (lg) will not be considered in
the following, since the former has to compete with the
large X ~Ay rate, and the latter requires a AS=2 effec-
tive quark current (and therefore is not expected in the
same order as the b,S =+1 transitions).

As yet, no experimental limits have been set on the
branching ratios of (la)—(lg) or on the branching ratios of
the corresponding antihyperon decays. To give some per-
spective concerning present and future experimental possi-
bilities, we note that experiments carried out to search for
rare hyperon decays have so far been sensitive only to
branching ratios of the order of 10 or larger. Sensitivi-
ties to branching ratios of the order of 10 ' —10 ' seem
to be the ultimate ones that one can contemplate in the
foreseeable future.

Some possible mechanisms for the decays (la)—(lf) are

Considering only decay modes which do not involve
neutrinos and/or photons, and which contain no more
than three particles in the final state, the following
muon-number-violating, lepton-number-conserving decays
of X—+', A, and:- +—' are possible:

(la)

(lb)

(lc)
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shown on Fig. 1. Before considering these, we shall dis-
cuss the branching ratios of (la)—(le) in terms of effective
muon-number-violating interactions, represented by gen-
eral four-fermion couplings. In what follows we shall
refer to a four-fermion coupling in which the quark bilin-
ear transforms as a vector, axial-vector, scalar, pseudosca-
lar and a tensor as a V-, A-, S-, I'-, and T-type coupling,
respectively. Their contribution to the branching ratios of
g~bp+e +— ja,b=spin- —,

' baryons involved in (la)—(le)j
will be denoted at Bk(a~bp+e +) (k =—V, A, S, P, or T).
Unlike E~pe decays which are sensitive only to A- and
P-type couplings, or E~mIJ, e decays to which only V-, S-,
or T-type couplings contribute, muon-number-violating
hyperon decays receive contributions from couplings of all
types.

For our further discussion the following special cases
will be of particular interest: (1) an effective interaction
involving vector and axial-vector currents; (2) an effective
interaction constructed from scalar and pseudoscalar den-
sities; and (3) a tensor-type four-fermion coupling. With
the electron mass neglected, there are no interference
terms in the a —+bpe rates between V- and A-type or 5-
and P-type couplings.

In the following we shall quote the results only for
hyperon decays. The results for the corresponding decays
of antihyperons are the same since, neglecting corrections
of order a (and in the absence of important diagrams with

W 'i
e (p. j

p (e)

ps (e)

absorptive parts, which we shall assume), the rates of
g~bp e+ and a~bp+e are equal (assuming CPT in-
variance) to the rates of a~bp+e and a~by e+,
respectively.

(c)

FIG. 1. Possible contributions to the decays (la)—(1f). (a)
Electroweak contribution; (b) contribution of a flavor-changing
gauge boson; (c) flavor-changing Higgs-boson contribution; (d)
leptoquark contribution.

A. V- and A-type couplings

The most general local nonderivative effective interaction for s —+dp*e —and s~dp+e —involving vector and axial-
vector currents is of the form'

Y~d+gd Y~s) +e Y'Y5~(g~ vs Y~d +gV2

+ex'C (gvAsYAY5d+gvAdY~Y5s)+ey'Y5C (g~~sYa sd+F~&dYxYss)l+H c (2)

where gjk and g~k (j,k = V,A) are constants measuring the strength of the couplings relative to G/~2 (G—:Fermi
constant =10 /m~ ).

Neglecting the induced hadronic form factors (their effect is of the order of a few percent), the q dependence of the
form factors that remain (effects amounting at most about 10%), and the mass of the electron, the rates of the decays
a —+bp e+ and a —+bp+e are given by'

1«bp e+)=, , —
2

'- (m. —mb)'(~v'I+i I'( lgvv I'+ lg~v I')+~~
I Gi I'(

I gv~ I'+ lg~~ I')~

2 Ug +Kgb
3

1«bv+e )=, , 2
(m. —ms)'(~v I+i'I'( lgvv I'+ ls~vl')+~~

I
Gi I'(lgv~ I'+ Ig~~ I')&. (4)

In Eqs. (3) and (4), m and ms are the masses of a and b, F~ and Gq are defined by the matrix elements

ba ba
ba&b(P') IdY~s I~V»&=~V') Pi'r~+ o xp'0 + Vz ~a (p)

ma+PPlb ma+mb

ba baG2 63&bV') IdY~Y& I~V»&=uV') Gi Y~+ — —~~a'+ e~ Y5~.V»,
PPla + fPlb ma +77lb
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The branching ratios can be written as

Bv~«~bP e )=)'v(
I gvv I + Ig~v I

+YA( lgv~ I
+ lgAA I

)

Bv~«&s +e )=r v( lgvv I'+ ls~v I')

+x~ (
I gv~ I'+ lg~~ I

') .

The constants y~ and yz, given in Table III, have been
evaluated using F=0.44 and D=0.81 (Ref. 16).

We observe that Bv& (:" ~X pe) and Bv z (:-
~X pe) are smaller by 2—3 orders of magnitude than the

I

(8)

respectively; q =p' —p. In the limit of SU(3) symmetry,
which we shall assume, the form factors F

&
are related to

the Dirac form factors of the neutron and the proton, and
G~ are linear combinations of the symmetric and an-
tisymmetric reduced matrix elements I' and D. The total
width of a, the values of m, mb—, and the form factors

and G~ are listed in Table I. The quantities x~ and
Kg are kinematic factors dependent on m&/(m, +mb) and
(m~ —mb)/(m, +mb). ' Their values are given in Table
II.

TABLE I. m, —mb, I (a~a11), and the form factors in Eqs.
(3) and (4).

m, —mb I (a —+a11}
(MeV) (eV} Fba

y+ ~p
A~n

—+X
A

0 y0

251.08
176.03
123.98
199.3
122.4

8.23 & 10
2.50~ 10-'
4.01~ 10-'
2.27 &&

10-'
2.27 X10-'

1

(3/2)'
—1

—(3/2)'
1/V 2

F—D
(3F+D)/V 6

—(F+D)
( 3F+—D)/V 6

(F+D)/v 2

others. This is due to the relatively small values of I,—mb in = ' —+X ' pe. From the remaining decays,
which all have comparable rates, X+~ppe and:- —+Ape
(Ref. 17) are the better candidates for an experimental
study, since A~npe requires the more demanding neu-
tron detection.

The only direct experimental information on the cou-
pling constants in Eq. (2) comes from searches for the de-
cays KI~pe and 'K ~sr p—e. T—he contribution of (2) to
their branching ratios is given by'

B(KI ~p+e ) =B(KL ~p e+)

m
G m„'mafia 1 —

2 ( Igv&'+iegv~'I +
I
g~w'+~eg~~'I )I (KL ~all) 8m' " mx.

=63.6( lgvA +icgvw'
I

+
I
gas'+iegwa

I ), (9)

B(K+~~+p+e )=B(K ~m p e+)= . , B(K+~~'p+v, )(
I gvv I

'+
I g~v I

')1

sin Oc

=0.66( lgvv I
+ Ig~v I

(10)

and

1B(K ~rr+p e+)=B(K ~~ p+e )= . , B(K+~~ p+&p)( lgvv I
+ lf~v I

sin 0~

=o 66(
I g vv I

'+
I s~ v I

')

where (adopting the Wu- Yang phase convention) KL
K2+eK~, e=(2.3)&10 )e' / (Ref. 19), fz.—1.23m~

is the K+—+p+v& decay constant, and 0~-0.22 is
the Cabibbo angle. ' The constants gk~+' and gk~

' (kl
= VA, AA ) are defined as

and

gki+'=
2 (gkI+gki) (ki = VA, AA)

gkl (gkl gkl) (kl = VA, AA) .( —)

2

(12)

(13)

Eqs. (3), (4), (43), (44), (86), and (87).TABLE II. The kinematic factors Kj (j = V,A, S,P, T) in

~v Kg KS" ba

y+ ~p
A ~n

0 go

0.681
0.250
0.011
0.395
8.4X 10—'

2.02
0.747
0.032
1.18
0.025

0.672
0.249
0.011
0.393
8.4~ 10—'

0.218
0.059
1.0~10-'
0.108
7.4~ 10—4

8.10
2.99
0.130
4.72
0.101
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a~b

TABLE III. The quantities appearing in Eqs. {7),(8), (S1), (52), (89), and (90).

(m, —m~) ys (m, +md) gp
gV fA (MeV ) '(Mev)

g+ ~p
A —+n

A
0 yp

1.4X 10-'
4.5 X 10-'
1.6X 10-'
1.5 x 10-'
1.0X10-'

5.5 X10-4
6.8x10-'
7.3 X 10
1-3X 10
4.7X 10-'

8.4X10
1.4X10
2.4X 10
5 9X10
1.5X 10

5.2
2.0
4.0X10-'
5.8 X 10
2.3 X10-'

2.2X10-'
2.7X10-'
2 9X10
5.1X 10-4
1.9X 10

I g~v I

'+
I g~ I

' & 10 ', (19)

The experimental limits

8(KL, ~pe),„~,&2X10 (90% C.L. ) (Ref. 21), (14)

B(K+~m+p+e ),„z«5X10 (90% C.L. ) (Ref. 22),

(15)

and

8(K+~~+p e+), ~«7X10 ' (90% C.L. ) (Ref. 22)

(16)

imply

I gva'+«gva
I

+ Igag'+«gwa
I

&3X10

Ig~y I'+ Igvv I'«Xlo ',

By(a~bp+e —) 1.5yvBv(K+~n+p +e+) . —

Thus,

Bv(X+~pp+e +—)=(2X 10 )Bv(K+~~+p +e +), —

Bv(:" ~Ap+e +—
) (2X10 )By(K+~n+p +e+) . —

(21)

(22)

The experimental limits (15) and (16) imply the bounds
[ignoring the small difference between the upper limits
(15) and (16) and using for both the value (15)]

B(a~bp, +e +—
) & Q™v. (23)

The bounds Qz are listed in Table IV. For X+~ppe and
:- ~Ape they are

8(X+~pp+e —) & 10 (24)

1. V-type couplings

For gyz ——g~ ——gyz ——gzz ——0 we obtain from Eqs. (7),
(8), (10), and (11) the relation

respectively.
Let us consider the contributions of V- and A-type cou-

plings separately.

and

8(:- ~Ap+e —) & 10 (25)

Z. A-type couplings

Using the identities

z(1+e) lgj~ I
+T(1—e) lgjx I

= lg,'~+'+ieg, 'w
I

+ lgJ~
'

seg, '„ I

—(J =1'A»
we obtain the sum rule

—,
' [8&(a +bp e+)+B~—(a~bp+e )]=y~'[(1.6X10 )8~(KI +pe)+9 18—„(Ks~p.e)],

(26)

(27)

relating the contributions of A-type couplings to the branching ratios of a~bp e —,KL ~pe, and Ks~pe. The contri-
bution of (2) to 8 (Ks ~pe) is given by'

B~ (Ks ~pe) = 1 1=
r(Ks all) 8~

G m~ m~fx 1—f72'
(

I gv~
' —iegyA I

+
I g»

mz

=0.11(
I gyp l&gVA I'+ Ig» —ieg~' I') . (28)

TABLE IV. The upper bounds in Eqs. (23), (31), (37), (39), (70), (74), (80), and (81).

1.0X 10
3.4X10-"
1.2X 10
1.1X10
7 7X10

~ba

1.7x 1O-'4

2.1x 1O-'4

2.3 X10-"
4.0X 1O-"
1.5 X10-"

ba
QA,

5.0X 10-'
~.2 X 10-'
6.7 x 10
1.2 X 10-'
4.3 x 10—'

5.7X10-"
9.S X 10-"
1.6X 10
4.0x10-"
1.0X10-"

gha

2.9X 10
1.1X10-"
2.3 X 10
3.3 X10-"
1.3X 10

baQp,

8.6X 10
3.3 X10-'
6.6X 10—»
9.6X10-"
3.8X10-"
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No experimental limit has been set so far on 8(Ks +p—e).
In the following we shall use

8 (Ks —+pe),„~,& 10 (29)

which is consistent with the lifetime of Ks and with data
on its partial decay rates. The limit (29) implies

so that

B~ (X+~pp e+)=Bz (X+~pp+e ) & 3 X 10

and

(35)

8& (a ~bp e+) =8&(a~bp+e ) & (6X 10 )y„"', (34)

Igv~ —iegv~ I + Ig~ —ieg~ {30) Bz(:- ~Ap e+)=8„(:- ~Ap+e ) &8X10 (36)

,' [Bz (—a~bp e+)+Bz (a ~bp+e )] & Q~'~,

where Q~ I are given in Table IV. In particular, '

,
' [8~—(y+~pp e+)+B~(X+~pp+e )]&2X10

(31)

(32)

In models where the contribution of 8(Ks +pe—) in Eq.
(27) can be neglected we have

In general 8(Ks~pe), and consequently Bq(a~bpe),
could be larger. Using the limit (29), Eq. (27) yields

—,
' [8&(a~bp e+)+Bz(a~bp+e )]&Q~, . (37)

The upper bounds Qz, are listed in Table IV.
Observing that the limits (14) and (29) imply

~
Bz(a~bp e+) 8„(a~—bp+e ) (

&(2X10 )y~

(38)

2 [Bg(-" ~Ap e+)+8~(= ~Ap+e )]&4X10

(33)
and also that Q~, &&(10 )y~, Eq. (37) can be rewritten
as

An example is the case when g~k =gjk (jk VA, AA), since
then

8«s~p )=
I el [1{Kg~pe)/I (Ks~pe)] &2X 10

For gk~ = —
gk~ (kl = VA, AA) one would have

8( Kl pe)= ~te
~

I (Ks pe)/1 (KI all),

Bg(a~bp*e+—) &Qg, .

Thus,

Bq (X+~pp+e )& 5 X 10—

(39)

implying 8(Ks~pe) &7X10 . Equation (27) yields in
this case

and

Bq(:- ~Ap+e +—
) & 10

The most general coupling is of the form

B. S- and P-type couplings

Hsp= 2[[ePgsssd+ gssds)+eel y5sP(gpsrd+g psds)+eP (gsps Eysd+gspdiy P)

+e & ysp(gpps iysd+f pp~&yss)]+H c. (42)

The Hamiltonian (42) gives rise to a +bp+e —with ra—tes

2
'2

6 ma+mb b.™) 'II"
I {I I'+I

192m 2m~

2

and

b m mb+ /Cp
ma+mb

II"~ I'{ lgs~ I'+ Ignis I') (43)

I (a~bp+e ) = 62
192~

'3

&s II's'I { I gss I
+ I&s I2ma

T

mg —mb+ ~z
mg +mb I +~

I

'(
I gs~ I

'+ If~~ I') (44)
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where ~~ and ap are kinematic factors, analogous to ~z
and x~, dependent on m&/ (m, +mb) and
(m, —mb )/(m, +mb ). They are listed in Table II.
The form factors Fs' and Fp' are defined by

(b
I
ds la)=ubFs'u, (45)

and

( )= G'(q ) 1+
ms+md (m, +mb) G)'(q~)

m +mb ~ q2 G) (0)G)(q) 1+
ms+my 2 2 Gha( 2)

(50)

(46)
To obtain the last line in Eq. (50) we used the PCAC (par-
tial conservation of axial-vector current) relation

They can be expressed in terms of F~' and G
&

using the
relations

(d y~s) =i (md —m, )ds,
BXg

(47)

(dykey&s) =(m, +md )diyqs,
BXg

(48)

Fba( 2) Fba( 2)
m —mdS

and

Fha ( 2)
(49)2 m 2 Fba(q2)

where m, and md are the current masses of s and d. One
obtains

G3 (q )=l(m, +mb) /(m& —q )]G~ (0) .

The branching ratios of a ~bp+e +—are given by

B«bi e+)=ys(
I gss I'+ lgps I')

+yp (
I gpp I

'+
I gsp I

')

B«bp+e ) =ys'(
I
g-s

I

'+
I gps I

')

+yp( I gpp I
+ Igsp I') .

The constants ys (m, —md ) and yp (m +m~), which
are independent of the quark masses, are given in Table
III. In calculating y~ we have neglected the F3-
dependent term in Eq. (49). As expected, also in this
case the branching ratios of:- ' ~X ' pe are suppressed
relative to the others by 2—3 orders of magnitude. The
contribution of (42) to B(KI ~pe) and B(K ~n.~pe) —is
given by'

B(KI ~p+e )=B(KI~p e+)

G mafia
1 1 2 3 2

I (Kl ~all) 8m

2 2
mp

2mg mg+md
(

I gsp +iegsp
I

'+
I gpp +iegpp

=(3.5X10 )(m, +mz) MeV ( lgsp'+iegsp'I + lgpp'+iegpp'I ), (53)

B(Ks~p+e ) =B(Ks~p, e+)

m1 2 3 2G mafiaI (Ks~all) 8m. m~ m, +md
(

I gsp iegsp —
I

+ I gap 'egad

=(6X10')(m, +md) Me& (
I gsp

' 'egsp 'I + I gpp' 'egpp 'I— (54)

2 26 mg 2 2B(K+~~+p+e ) =B(K ~m p e+)= Ifs I
~( lass I + I gps I

)
I (K+~all) 32m

-(7.4x lo')(m, —m~) ' Me&'(
I gss I

+
I gps I

) (55)

2 2

B(K+~~+p e+)=B(K ~~ p+e ) =
I fs I

J (
I gss I

+ I gps II (K+~all) 32vr

=(7.4&1o')(m, —m„) ' Me&'( Igss I'+ Igps I') . (56)
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gki+'= .(g—u+gki) «1 =SP,PP) (57)

The coupling constants gpp~ and gsP' are defined in the
(+) (+)same way as gzz and g~, r.e.,

I gsp l—egsp
' I'+

I gpp legpp

(2X 10 (m, +md ) MeV, (63}

(gk( —gk( ) (kl =SP,PP) .
2

(58)
Igps I + lgss I

&7X10 ' (m, —md) MeV

and

(64)

The quantity fs in Eqs. (55) and (56) is the form factor as-
sociated with the K+~n+m. atrix element of the scalar
quark density [(m+ lsd I

K+) =mzfs(q )] and is given
by

lgps I'+ Igss I'&1o "(m.—md)'MeV '. (65)

1. 5-type codlings

We shall consider now the special cases of pure S-type
and pure P-ty pe couplings.

fs(q') = f'+(q')
(m, —me)mx

q' f'"(q')-1—
m —mz f'+(q )

(59)

From Eqs. (51), (52), (55), and (56) it follows that

Bs(a ~bp e+ )=(1.4X 10 MeV )(m, —md )

X ys'Bs(K+ +~+p—+e ),
Bs(a ~bp+e )—(1.4X 10 MeV )(m, md )—

(66)

where the form factors f+(q ) and f (q ) are defined as Xy~~Bs(K+~m+p e+) . - (67)

Emax (Emax )2

E~'"—x +mz /2m'
(x' —m ')'~'dx

& '(p. )
I y d IK+(p»&

=[f+(q')(prc+p 4+f (q')(pz -p)~] . —
We have taken f+(q )=f+(0), used the SU(3)-symmetric
value f+(0)=1, and neglected the f (q )-dependent term
in Eq. (59).

The quantity Jr in Eqs. (55) and (56) is a phase-space
integral:

In particular,

B (X+~pp~e +)=10— Bs(K+~n+p+ e.+)—
and

Bs(:- ~Ap+e +)=(8X10— )Bs(K+~m+p +e+) . -

(68)

(69)

Equations (66) and (67) and the experimental limits (15)
and (16) lead to the bounds [ignoring again the small
difference between (15) and (16)]

=5.70& IO MeV (61) Bs(a ~bp+e —
) & Qg (70)

(E„'"= maximum energy of the pion; m„—:muon mass).
The experimental limits (14), (29), (15), and (16) imply

lgsp +legsp I +
I gpp +legpp

(6X10 ' (m, +md) MeV, (62)

I

(cf. Table IV). Thus,

Bs(X+~pp+e —+) (6X 10

B,(=-' Ap'e ') &4X 10-"-.
(71)

(72)

The sum rule analogous to (27) is in this case

2. I'-type couplings

,' [Bp(a ~bp —e+)+Bp(a ~bp+e )]

yp (m +md ) [(2.8 X 10 MeV )Bp(KL, ~pe) + ( 1.7 X 10 MeV )Bp(Ks ~pe)] (73)

If the term in (73) involving Bp(Ks~pe) can be neglect-
ed, as is the case, for example, when gk~ =gk&
(kl =SP,PP), we have

, [Bp(:- ~Ap e—+)+Bp(:-~Ap+e )](3X1()
(76)

,' [Bp(a~bp e+)+—Bp(a~bp+e )] &Qpi (74)

(cf. Table IV). For X+—+ppe and:- —+Ape Eq. (74) reads

,' [Bp(X+~pp e+)—+Bp(X+~pp+e )] (3X10

For gk~ = —gIa (kl =SP,PP) the experimental limit (14)
implies B(Ks~pe) & 7X 10,so that

Bp(a ~bp e+ ) =Bp(a ~bp+e )

(75) (10 ' yp(m, +md) (77)
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For X+—+@pe and:- ~Ape (77) gives

Bp(X+—+pp e+)=BP(X+~pp+e ) &6X10

B&(:- —+Ap e+) =Bp(:" ~Ap+e ) (6X10
In general the limit (29) applies, leading to

,' [Bp—(a +bp—e+)+Bp(a +bp—+e )] (Qp',

(78)

(79)

(80)

bp e+) B~—(o bp+e )I

&(4X10 "MeV ')y~(m, +md)', (82)

and because

IIp, , »(2X10 "MeV ')y~~(m, +m„)'.
The bounds for Bp(g ~pp e —) and B&( ~ ~Apse —

)

(cf. Table IV), and therefore

Bp(a~bp*e +—
) & Qp~, ,

since the experimental limits (14) and (29) imply

(81) and

Bp(X+~pp+e —
) (9 X 10

B (:- Ap+e +—)(10

(83)

(84)

C. T-tgpc coUp11Ilgs

The general effective Harniltonian is of the form

MT ——- [cog„p(g»so "d+g»do. "s)+cog ~y5p(gTTso "d+g'TTdo "s)]+H.c.
2

Neglecting the induced form factors, the a +bpe r—ates corresponding to (85) are

(m. ™»'&T'
I
Ti'

I

'(
I g» I

'+
I grr I

'»
2m~

(85)

(86)

I T(a~bp e ) =
62

192m
mb ) ~T I

&i'
I

'(
I g» I

'+
I g» I

')2' ~
(87)

The kinematic factors ~z [dependent on m„/(m, +mq)
and (m, —m~)/(m, +ms)] are given in Table II. The
form factor Ti is defined by

For X+—+@pe and:- —+Ape we obtain

(5 X 10 )BT(E+~n+p +e+)-
BT(X+~pp+e —)= (94)

(b(p')
I doqy I

o(p)) =~(p')(Ti"oq„+ )~ (p) .

The branching ratios can be written as

(88)
10 BT(E:+~~+p +e+)—

BT(:- +Ap+e -
)=——

If' I

' (95)

+
I ger I

BT«bp+e )=1'T(
I ger I'+

I g TT I') .

An estimate of T& usin the MIT bag model gives
approximately T

&
—G

&
. y T calculated with these values

are shown in Table II.
The contribution of the interaction (85) to B (K—~~pe)

No estimate is available for fT. Equations (94) and (95)
show that unless fT(0.2 (fr &0.1), %~ape is more
sensitive to a T-type coupling than &+~@pe (:- ~Ape).

This ends our discussion of the phenomenological as-
pects of muon-number-violating hyperon decays. The
main conclusions can be summarized as follows.

(1) For given coupling constants the branching ratios of
X+—+@pe, " —+Ape, and A~npe are comparable and
about 2—3 o1dcI's of magnitude laI'gcI' than thc branching
ratios of:- ~X pe and:- —+X pe. Thus, the best can-
didates for an experimental search appear to be the decays
X+~ppe and:- ~Ape.

(2) For a V-type or an S-type interaction the branching
ratios of X+-~@pe and:" ~Ape could be as large as
10 ". The decays E~mpe are, however, more sensitive
to these types of couplings by 3 orders of magnitude.

(3) B(X+~ppe) and B(:- ~Ape) due to an A-type in-
teraction for which I (Ks —+pe) (I (KL ~pe) cannot be
larger than a few times 10 ' . For a general 3-type in-
teraction branching ratios of the order of 10 for
X+~ppe and:- —+Ape, though unlikely, cannot be
ruled out. The decay E~~pe is more sensitive than

B,(X+ ~+p+e -)
=BT(K +m p e+)—
=(4.6X10 ') Ifz I'(

I g» I'+
I gTT I'» (»)

where the form factor fT is defined as

&~+
I

s~""~
I
&+4~)) =- Vxa." s&".) . -—

B(+—~~—+p+e —
) is given by the same expression, except

for gTT~gT~, gTT~g TT. It follows that
ba

BT(a~bp+e +-)=22 Bz (E+~~+p +8+) . —(93)—
IfT I'
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X+~pp, e and:- ~Ape by a factor of 10 and 10,
respectively, but at a certain level of experimental sensi-
tivity X+~pjje and/or = ~Ape may be more accessible.

(4) For a P-type interaction 8 ( X+~p jj,e) and
8 (:- ~Ajje) are negligible if I'(Ks —+pe) & I (Kr ~pe).
For a general P-type interaction 8 (X+ nappe) of the order
of 10 and 8(:- ~Ape) of the order of 10, though
unlikely, cannot be ruled out. However, in this case the
decay X~~pe is more sensitive than X+~@pe and
:" —+Ajje by a factor of 10 and 10, respectively.

(5) For a tensor-type interaction the upper bounds on
8(X+—+ppe) and 8(:- ~AIje) depend on the unknown
ratio of the form factors T& and fz [cf. Eq. (93)]. With
T& —G, (Ref. 29}, 8(X+~ppe) [8(:- ~Ape)] would
be more sensitive to these couplings than 8(K+~m~jj, e)
if fr &0.2 (fr &0.1).

A tensor term is expected at the tree level only from
spin-0 leptoquark exchange (cf. Sec. III). The correspond-
ing constants gTT and gTT are related in this case to the
coupling constants of scalar-type terms. As a conse-
quence, the upper bounds on 8(a~bpe), which follow
from 8(K—

mojave),

„&„are independent of the form factor
T'
We note that if A- and P-type couplings appear simul-

taneously, the constraints on their strength might be
weaker [and consequently the upper bounds on
8(a~bjj,e) less stringent] than for pure A-type or pure
P-type interactions, in view of the possibility of cancella-
tions in the KL, ~jje and/or Ks +jje ampli—tudes. On the
other hand, inspection shows that the upper bounds on the
strength of pure S, V, and T couplings from K+~m. +pe
decays increase by not more than a factor of 5 if these
couplings appear simultaneously.

straint
I
U, 3Up3 I

(10 valid for 35 MeV&m3 (300
MeV (Ref. 31), and taking m, =30—40 GeV we obtain

I gvv I
=

I gvv I
&1o ',

implying negligible branching ratios

(100)

8 (a ~bp+e )=8 (a ~bjj, e+ )

=1.5(y v +y~ )8 (K+~m+p+e )

&(8X10 )(yv+yg ) . (102)

Coherent p ~e conversion in nuclei is likely to be an
even more sensitive process in this model.

B. Extended electroweak models

An example is a gauge theory of the electroweak in-
teractions based on SU(2)L X SU(2)z )& U(1). In some ver-
sion of these models muon-number-violating processes
may have large rates even without the existence of further
families of leptons, due to the presence of heavy right-
handed neutrinos. " The dominant diagram for sd ~ep is
expected to be the same as diagram (a) in Fig. 1, but with
right-handed rather than left-handed gauge bosons. The
resulting effective interaction is then of the form (2), with

8(a~bjj, e+)=8(a~bjj+e )

((2X10 ")(yv+yg ) . (101)

8(a +by—, +e +) m—ight be larger in the standard model if
further generations involving heavier neutrinos are
present. However, as the relations (98) and (99) remain
valid, the decays X+—~m +—pe are the better probes, Eqs.
(7), (8), (10), (11), and (15) implying

III. THEORETICAL POSSIBILITIES FOR a ~bpe

A. a ~bye in the minimal standard model

gAA =gvA =gAv=gvv (103)

The transition sd —+pe is described in lowest order by
diagram (a) in Fig. 1. The corresponding effective interac-
tion is of the form (2) with (assuming that ms is the larg-
est mass in the model )

1

4m~ 2
Gmg U«Up j Vdj VgjI ( E» y Eqj)' (96}

2
2 ~ Gm~ U«Up~ +dj V~ji (e» ~ eqj ) ~4~ v2

(98)

gAA gVA gAV gVV (99)

In Eqs. (96) and (97), U„, U&, (V@,Vj) are elements of
the lepton (quark) mixing matrix, relating the weak and
the mass eigenstates; m; are the neutrino masses. The
quantities l(e, e~) are functions of e„;=m;2/m~2 and
e ——mq /m~ ., n is the number of fermion generations.2

In the presence of only the three known fermion genera-
tions the largest possible neutrino mass is given by the
upper limit of 250 MeV for m3 (Ref. 4). Using the con-

gAA gVA gAV gVV ~

so that the bound (102) holds.

(104)

~h =gh(PVSy jd +pASyhy5d+gvdyhd + '

+~vP yhe+a'~Pyhy5e +pvey je+ ' ' ' ) I

(105)+H. c. ,

where g~ is the horizontal gauge coupling constant and

C. Flavor-changing neutral-gauge-boson exchange
[diagram (1) in Fig. 1]

An important example is flavor-changing gauge bosons
associated with possible horizontal gauge symmetries. 5

Horizontal gauge symmetries are invoked to distinguish
the different fermion generations and also to attempt to
reduce the large number of undetermined parameters
(masses, mixing angles, the CP-violating phase angle) in
the standard model.

The simplest possibility is horizontal interactions
governed by a U(l) gauge group. The associated gauge
boson F~ is Hermitian and in the general case couples to
the lepton and quark mass eigenstates as
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the quantities Pv, Pz, . . . , depend on the U(1) quantum-
number assignments and on the various mixing angles and
phase parameters. The interaction (105) conserves flavor
in the absence of generation mixing.

The Lagrangian (105) leads to an effective four-fermion
interaction [assuming mr »(m, —mb) ] of the form (2),
with

vZ
gjk = 6

2

ojpk (j=VA; k=VA),
my,

gk= o'gq (j =VA; k = VA),Gm„'' (107)

where m~ is the mass of the horizontal gauge boson.
If the quark- I' couplings conserve CP (i.e., if

Pv, P„, . . . , are real), we have gjk=gjk and therefore
8~(a~bpe) obeys Eq. (31). Bv(a~bpe), of course, is
given by Eq. (20).

In the general case we have from Eqs. (106) and (107)
2'~k-

gjk =e gjk, where Pk is the phase of Pk. For
Pz ——~/2, 3m. /2 one would have gjz

———gj„(j= V,A), so
that the bounds (34)—(36) apply. The constraint on
8 (ICs~pe) from 8 (Kl ~pe),„~, would be the weakest for
cot/ = Ime, in which case the upper bounds for
8~ (a ~bp, e) are twice the values given in (34).

It is important to note that the couplings in (105) re-
quired for the existence of EL ~ —+pe and E —~m —pe con-
tribute also to the EL-Ez mass difference Am&, and in
general also to the CP-violating E&-E2 m1x1ng parameter
e, resulting in severe constraints on the EL, z —+pe and
E —~m —pe branching ratios. Barring cancellations
among various contributions to Am+, large rates for these
decays are possible only if the ratios of the effective I'-
quark to F-lepton couplings are small. For example, in
the CP-invariant case 8(KL ~pe) and 8 (IC ~~+pe) can-
be as large as the experimental upper limits (14) and (15)
only if

(j = V,A). From the sum rule (27) we then obtain

8~(a~bp+e ) &&8~(a~bp e+) &4Q» . (108)

D. Flavor-changing neutral-Higgs-boson exchange
[diagram (c) in Fig. 1]

In the standard SU(2)L XU(1) model with only one
Higgs doublet the Higgs meson couples to fermions
through scalar densities and the couplings conserve flavor.
In the presence of two or more Higgs doublets the neutral
Higgs bosons have in general also flavor-changing cou-
plings to fermions, and both scalar and pseudoscalar cou-
pllngs occul.

The most general coupling of a Hermitian Higgs field P
to (sd) and (pe) is of the form

I pl =(fsP e+fpP iy5e+ fs'sd +fps iysd)P+H c. .(109)

The exhange of the Higgs boson leads to an effective in-
teraction of the form (42) [assuming mH »(m, —mb) ],
with

On the other hand, if generation-number conservation is
strongly violated, but only by large mixing angles in the
leptonic sector, 8(a~bp+e ) and 8(a~by e+) could
be comparable and at the same time the contribution of
the horizontal interactions to the E -E ampiltude would
remain suppressed. As a consequence, 8(a~bye) as
large as the bounds Qz', are then not ruled out.

Flavor-changing neutral color-singlet gauge bosons are
present also in extended hypercolor theories. The effec-
tive AS=1 muon-number-violating interactions they give
rise to are of the form (2). Unlike the horizontal gauge
bosons discussed above, these gauge bosons are con-
strained to be light [enough to cause observable effects in
EL supe, %~cree (Ref. 39)] by the requirement that
they generate the masses of ordinary fermions.

vZ fj *fk'
gjk 6 2

mII

v2 fj *fk"'
gJk = 6 2 (j,k =S,I') .

(110)

respectively; similarly 8 (Xs~pe) =7X 10 would re-
qull e

(Ref. 34).
In models based on non-Abelian horizontal gauge

groups the horizontal bosons can have flavor-changing
couplings even in the absence of generation mixing. In
the limit of equal gauge-boson masses and of no genera-
tion mixing, the processes a &bp e+, a~bp+e—, and
E—+~~+—p—e~, which are generation-number conserving,
are allowed, while generation-number-nonconserving pro-
cesses, such as a ~bp+e, a ~bp e+, K—+~m. —+p e—,
and the E ~E transition amplitude, are forbidden.
Thus, if generation-number conservation is broken only
weakly, one expects gjk «gjk (j,k = VA) and consequent-
ly 8(a~bp+e ) &&8(a~bp e+) and gJ~+' —ig~'z

'

It follows that gjk =e '
gjk, where tP cs the phase of fk'.

The contribution of 5-type couplings to 8(a~bye) is
constrained by 8(%+~sr+pe) [cf. Eqs. (66-) and (67)]. If
the Higgs-quark couplings conserve CP, we have gzk

——gjk,
and consequently the bound (74) applies for Bp(a +bpe)—
The weakest constraint on Bp(Ks ~pe) and thus on
Bp(a +bye) is obtained —for cotg=Ime. The correspond-
ing upper bound on Bp(a~bpe) is twice the value of the
bound in Eq. (77).

In the presence of several neutral flavor-changing Higgs
bosons Bp(a +bpe) could be as —large as Qp, [cf. Eq.
(81)]. However, one must bear in mind that Bp(As~pe)
is larger than Bp(X+~ppe) and Bp(:- —+Ape) by about
factors of 10 and 10, respectively. It should be noted
that, as in the case of flavor-changing gauge-boson ex-
change, the experimental values of km~ and e impose
severe constraints on the branching ratios of ELq —+pe
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and X+——+~+—pe. ' '"' Large rates for these decays are pos-
sible only if the ratios of the effective quark —Higgs-boson
to lepton —Higgs-boson couplings are small, or if cancella-
tions occur among the various contributions to the K -K
amplitude.

Further contributions come in general from charged
Higgs bosons [diagram (a) in Fig. 1, with the 8"s replaced
by charged Higgs bosons]. In the standard model with
two (or more) Higgs doublets the corresponding effective
interaction is of the form (2), with gvv ——tv ———gvz= —g~, gvv ——g~ v ———g v~ ———g~~ (Ref. 42). Conse-
quently B(a~bp+e +—

) satisfy the bounds (102).

E. Leptoquark exchange [diagram (d) in Fig. 1]

Leptoquarks appear in theories which unify the strong
and the flavor interactions, and also in extended hyper-
color theories. In extended hypercolor theories and also
in some classes of grand unified theories they are suffi-
ciently light to cause observable effects in some rare de-
cays. Strangeness-changing processes mediated by lepto-
quarks are not constrained significantly by the SCI-Ks
mass difference, since in lowest order leptoquark ex-
change does not generate a nonleptonic interaction. Both
spin-1 and spin-0 leptoquarks occur.

1. Spin-I leptoquarks

The most general four-fermion interaction involving s, d, e, and p resulting from the exhange of a spin-1 leptoquark
(LQ) is of the form (assuming m Lo »m, )

(f~syi„pey d+fvvdyi pey s+fzvsyiyspey d+f~vdyiy5pey s+fvzsyi pey y5d
G

2

+fvgdyi pey"y5s+fawsyiyspey ysd+fawdyiyspey y5s)+H. c. (112)

Rearrangement of the fermion fields by a Fierz transformation leads to an effective interaction represented by the sum
of the Hamiltonians (2) and (42), in which

g VV —gAA ~ gVV gAA ~ g VA gA V~ g VA gA V~ gPP gss~ gPP gss ~ gSP gPS ~ gSP — gPS ~

As a consequence, the branching ratio for a &by e+—is given by

(113)

B«bp e+)=(yv'+y~ }(
I gvv I

'+
I g~v I

')+(ys'+yp')(
I gss I

'+
I g~s I

'}

+interference terms between ( V,A) and (S,P) couplings . (114)

The same expression holds for a +bp+e w—ith the re-
placement g;k —+gjk.

Inspection of the expression for B(E+~m+pe) shows—
that the effect of the simultaneous presence of V-type and
S-type couplings is only an increase of the upper bounds
(18), (19), (64), and (65) by a factor of about 2. As the in-
terference terms in (114) are not likely to change the order
of magnitude of B(a~bye), we expect from the experi-
mental limit (15) on B(E+~m+pe) (using m, +md
=m, —mq}

I

lar and pseudoscalar, rather than vector and axial-vector
densities. The Fierz-transformed form is the sum of the
Hamiltonians (2), (42), and (85), with

gAA = —gVV~ gAA = —gVV ~

gvA gAV~ gvA gAV ~

gPP gSS & gPP gSS

B(X+~ppe) &5X10

B(:- ~Ape) &4&&10

2. Spin-0 leptoquarks

(115)

(116)

gSP =gPS gSP =gPS

gTT gss gTT gSS ~

gTT =lgPS, g TT =/gPS
The effective interaction arising from spin-0 leptoquark

exchange is analogous to (112), but constructed from sca-
I

Hence,

B(a~by e +=}( yv+ Ay)( lgvv I + lggv I
)+(ys'+ye'+yr)( lgss I

+ lgi's I

+interference terms among ( V,A) (S,P), and (T) couplings . (118)
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8(a~bp+e ) is given by the same expression, but with

gjk —+gjk. As already mentioned at the end of Sec. II, in-
spection shows that the upper bounds on

~ gvv ~

+
I g~v I I gvv I

'+
I g~v I ~ I gss I

+
I gm I

/ gss /
+

/ gzs f
in the simultaneous presence of S, V, and

T couplings are not larger than those for pure S- and V-

type couplings by more than a factor of 5. Using
Tt —G~ (cf. Sec II.), m, =150 MeV and md —7 5M. eV
(Ref. 27), we obtain

8 (X+nappe) & 10

8(:- ~Ape) &9X10

(119)

IV. CONCLUSIONS

Our results based on phenomenology were summarized
at the end of Sec. II. We found that our present
knowledge of strangeness-changing muon-number-
violating couplings, provided by IC decays, does not ex-
clude branching ratios for X+—+pp*e—+ and:" ~Ap*e-+
as large as of the order of 10 . Branching ratios of this
size would require an axial-vector-type interaction with

gj~+gj~ ——O(egJ~) (j = V and/or A,
~

e
~

=2.3X10 ),
in addition to sufficiently large values of gj~
[for gj~ +gjz ——0 8 (KL «pe), », already constrains
B(X +~ ppe) and 8(:- ~Ape) to be less than about
10 ]. Among the possible sources of muon-number
violation we considered, interactions of this structure
could arise only from horizontal interactions governed by
non-Abelian gauge groups, or from the exchange of
color-singlet gauge bosons of extended hypercolor
schemes. The relation gi~+gj~ ——O(eg~~ ) does not, of
course, follow naturally in any model, and would have to
be therefore regarded as accidental. We note also that if
8~(X+~ppe)=(5X10 )y (and therefore B~(:- ~Ape)
=10 y), one would have Bz (Ks +pe) =10 y —for
10 &y & 1 [cf. Eq. (27)]. The upper bounds on
8(X~~ppe) and 8(:- ~Ape) in models with a U(1)-

type horizontal gauge symmetry are of the order of10-'-10-'.
A pseudoscalar-type interaction with gzp+g~p

=O(egJ~), j =5 and/or P, which might (in principle)
arise in models with several neutral flavor-changing Higgs
bosons, could lead to 8(X+~ppe) and 8(:- ~Ape) of
the order of 10 and 10, respectively. If
B(X+~ppe)=10 y [and therefore 8(:- ~Ape)
=10 y], one would have Bt(Ks~pe)=10 y for 10
&y (1.

In the standard model and in the
SU(2)L, X SU(2)z XU(1) model with heavy right-handed
neutrinos the V- and A-type couplings in the effective
muon-number-violating interaction have the same
strength. Among the AS= 1 muon-number-violating pro-
cesses the decays X—~m. +—pe are the best probes in such
situations. This is so also for scalar-type couplings, which
could arise, e.g., from neutral-Higgs-boson exchange. The
decays EC~mpe are also the best probes of ES=1 muon-
number-violating couplings generated by spin-1 or spin-0
leptoquarks.

%'e note that if both neutral gauge bosons and neutral
Higgs bosons would contribute, larger values than quoted
above for the contribution of axial-vector-type and
pseudoscalar-type couplings to 8 (X+~ppe) and
8 (:- ~Ape) cannot be excluded, since cancellations
might occur in the EI ~pe and/or Ed~pe amplitudes.
Finally, in the unlikely event that a —+bpe is mediated by
a light boson of mass comparable to a value of the magni-
tude of the four-momentum it can carry, the ratios
8(a~bpe)/ 8(KLs~pe), a'nd possibly also the ratios
8(a~bye)/ 8(K+~rr+pe), wou—ld be enhanced relative
to those obtained for local four-fermion couplings.
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