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A new approach to hyperon nonleptonic weak interactions is discussed. It is based on (i) the de-
rived asymptotic constraints on the two-body ground-state-baryon matrix elements of the weak non-

leptonic Hamiltonian which satisfy the
~

AI
~

=
z rule and its SU(3) counterpart and (ii) the new

soft-pion approximation in the infinite-momentum frame of parent particle. In the new extrapola-
tion, a part of the so-called surface term survives in addition to the usual equal-time-commutator
term. The result based on the first approximation which keeps only the ground-state-baryon contri-
bution to the surface term is presented. It is shown that the Lee-Sugawara sum rules are satisfied
reasonably well for both the S and P waves. Improvement of the approximation should be possible
with less ambiguity than the usual approach, by including the contribution of the L=1 baryon
states to the surface term. Nowhere is the concept of exact SU(3) symmetry used.

I. INTRODUCTION AND SUMMARY

The derivation of the approximate
~

AI
~

= —,
' rule in

the strange-particle decays has been attempted by many
authors' for the past three decades. One of the popular
ideas is to suspect that the origin of the rule is rather
kinematical, i.e., it is related to the symmetry properties
of the quark wave functions of hadrons. The argument,
sometimes called Minamikawa-Miura-Pati-Woo theorem,
was found to be able to impose the

~

6 I
~

= —,
' rule and

other constraints, in a nonperturbative way, on the baryon
two-body weak vertices. However, the same idea failed to
impose any constraint on bosons. Another contrasting
idea is to ascribe the origin to some dynamical enhance-
ment of particular diagrams at the level of underlying
quarks and gluons. Historically, a similar idea was also
entertained earlier in the Sakata model. The recent popu-
lar proposal is the assumption of the enhancement of
penguin diagram in the QCI3-corrected effective Hamil-
tonian. A difficulty in this type of approach is related to
the confinement problem. That is, one has to translate the
information obtained at the quark-gluon level into the
language of observable hadrons. For example, for
penguins one has to rely heavily on the validity of the fac-
torization (or vacuum-insertion) approximation which was
also introduced a long time ago. The factorization ap-
proximation was not very successful in the Cabibbo-
angle-unsuppressed D-meson decays. Attempts, based on
the effective Hamiltonian with @CD corrections coupled
with the conventional soft-pion technique, have also been
discussed recently. In these theories, many meson-pole
amplitudes are added in a rather ad Roc way to the calcu-
lation, suspecting that the soft-pion extrapolation washes
away these contributions. Overall, the situation is still

rather confused.
In this paper, we show that the hyperon nonleptonic de-

cays, although more complicated to treat than the E;-
meson decays discussed in the preceding paper II, can
also be approached in exactly the same way. In a recent
letter, we have shown that in the theoretical framework
proposed, there exist certain asymptotic constraints, which
include the celebrated

~

b. I
~

= —,
'

rule, among the asymp
totic two-body ground-state-baryon matrix elements of the
strangeness-changing nonleptonic weak Hamiltonian H.
%'e relate these asymptotic two-body constraints to the
physical hyperon decay amplitudes by using a soft-pion
extrapolation. We employ a new (much milder) soft-pion
approximation [carried out in the infinite-momentum
frame (IMF)' of the parent hyperon] developed in paper
II. In this new extrapolation a part of the so-called sur-
face term survives, in addition to the usual equal-time-
commutator (ETC) term. The surface term can be cast
into the form

where 8 and 8' are the baryons in the B~B'm. decay, 2
is the SU(2) axial-vector charge, and nL denotes the
baryons belonging to the level L (L =O, l. . .). In this pa-
per, we report the sum rules obtained when we keep, in
this new approach, only the diagonal term (i.e., the L=O
ground states) in the surface term. A reasonable result is
obtained. Because of the neglect of higher-L, -state contri-
butions, the result is, of course, not perfect. However, the
theoretical ambiguity involved is considerably less com-
pared with the corresponding old treatment. Nowhere is
the concept of exact SU(3) symmetry used and the sum
rules are valid in broken SU(3) symmetry. It also gives us
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a clear indication where one has to look for improvement.
The inclusion of the next 1.=1 (but not L )2) baryon-
state contribution to the surface term should be itnportant
to remove the bulk of the remaining discrepancy with the
experiment. However, the meson-pole contributions,
which are often added after carrying out the conventional
soft-meson approximation, need not be considered here,
since they are already contained in the present formula-
tion in the ETC term evaluated in IMP. This is discussed
in Appendix A.

II. CONSTRAINTS ON THE ASYMPTOTIC
TWG-BODY GROUND-STATE-BARYON WEAK

NGNLEPTONIC MATRIX ELEMENTS

%'e here summarize the constraints obtained on the
asymptotic two body -ground-state-baryon ( —, octet and

i+
—', + decouplet) matrix elements of the weak Hamiltonian,
(8'

~
H

~
B(p )) with p-+00. The weak Hamiltonian in

the standard model contains a sizable 27-piet. However,
the requirement of levelwise realization of asymptotic
SU(3) symmetry in the algebras involving the H and 2 's
imposes severe constraints on the asymptotic ground-
state baryon matrix elements of H. Namely,
&88

I
H

I Bs(p ) & and &810 I
H

I 810(p ) ) are required
to satisfy the strict

~

b, I
~

= —,
' rule and also octet rules

in the limit phoo. Furthermore, (Bs ~H
~
810)= (8'10

~

H
~
Bs ) =0 is required for p~ oo and there arise

SU(6)-type constraints which relate (Bs
~

H
~
Bs ) to

(810
~

H
~
810 & in the same asymptotic limit. As a result,

the asymptotic matrix elements of —,
'

baryons,
(88 ~H ~88(p )) with p —+Do, can be parametrized in
terms of just one coupling constant and they are of pure f
type. In contrast, in the framework of the Minamikawa-
Miura-Pati-Woo theorem &Bs I

H
I Bs &'s are para-

metrized with the d/f ratio —1. The parametrizations of
(Bs

~

H
~
Bs(p ))'s with p~ao for both the parity-

conserving and parity-violating Hamiltonian H =H or
H =H are thus given by

(p iH i
X+)=—w

(n
~

H
~

X ) =(I/V 2)w1

(n (H (A )=—( —')' w

(=-(H" iz-)= "
(= ~H

~
X ) = —(I/~2)w

( 0
~

HPc
~

AO) (
3 )1/2wPc

( ~HPV
~

y+) PV

(n iH i
X ) =(1/V2)w,

&n ~H' ~A0&= —(-,')'"w',

( ~Hpv(y —) pv

(='~H' ~A')=(-')' ' '

(2.1)

III. APPLICATION OF THE NEW SOFT-PION TECHNIQUE

We consider the hyperon decay 8(p1)~8'(p2)+m(q) and write the amplitude as

M(B~B'm-, q)=(2q0Es Es/ms mz)' (8'(p2)m(q)
~

H(0)
~
8(p1)) . (3.1)

Using PCAC (partial conservation of axial-vector current), d&A z (x)=f m P (x), and the Lehman-Symanzik-
Zimmermann reduction formula, M can be cast into the form

M(8~8'n ,q)=i(f m-) '(q2+m ) q„T„(q)+fd x e '«"5(x0)(8'(p2)
~
[&0(x),H(0)] ~8(p1))

X (EsEslms ms)

where T& is given by

T„(q)=i fd x e'«"(Es Es/ms ms )' (8 (p2)
l

T[~p(x»H(0)] I
8 (p1) ) .

A „(x) is the conjugate complex of A„(x).
%'e now consider a new soft-pion approximation q~0, instead of the more drastic extrapolation q&

—+0, in the IMF,
i.e., p1~ co and approximate Eq. (3.1) by

M(B 8'n-, q)-M(B 8'n; q =0) =M +M (3.3)

where

ME c= f~ '(EsEslmsm—s)'/ (8'(pg)
~
[A-(0),H(0)] ~8(p1))- (3.4)

M =if ~ '[q~ T„(q ~0)]- (3.&)
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(3.7)

We now insert a complete set of single-particle on mas-s shel-l baryon intermediate states (which, in our theoretical frame-
work, should be the qqq baryon states with level excitations) between the factors A&(x) and H(0) in Eqs. (3.6) and (3.7).
As in Ref. 7, we decompose the intermediate states in terms of levels g„~ nl. ) (nL

~

(L =0, 1,. . .), in the same way as

we do in the level realization of the algebras discussed in I. In this paper we keep only the "diagonal" term, i.e., the
L =0 ground-state baryons (i.e., —, octet and —,

' + decuplet), which gives the leading (though not completely dominant)
contribution. After the integration over d x and the momenta involved and the spin summation over intermediate
states, n and I, we obtain,

In Eq. (3.4) A (0) is the axial-vector charge defined by A-(0) = —i Id x A o(x, O). M has the same form as the usual
equal-time-commutator (ETC) term in the conventional soft-pion extrapolation, except for one important difference that
the term should now be evaluated in the IMF, i.e., p q

——p2~ Oo. This is, in principle, important, since this permits us to
compute the ETC term without using exact flavor symmetry. M denotes the so-called surface term. In the convention-
al soft-pion extrapolation, T& is known to involve terms (baryon pole terms) which become singular for q&~0. To
avoid this difficulty one usually subtracts the Born amplitudes corresponding to the process 8~8 m. from both sides of
Eq. (3.1) and then applies the q„~O limit to the resulting expressions. Even after this subtraction, some doubts still
remain as to whether the extrapolation is as smooth as one wishes and whether the terms which are formally dropped are
not producing a significant contribution. As a possible correction, Cxronau, " for example, took the L'-pole contribu-
tion. As mentioned in Sec. I, several recent works also propose to add various meson-pole (scalar-meson, etc.) contribu-
tions as a possible remedy for the extrapolation involved. In the present soft-pion procedure which involves a much
milder extrapolation, as shown in Appendix A of Ref. 7, the situation is less ambiguous.

We decompose T„(q) as T„=T„'(q)+T& (q),

Tz '(q)=i fd xe '~"8(xo)(EBEB/mBmB)'~ (8'(p2) ~A„(x)H(0) ~8(pi)), (3.6)

T& '(q)=i J d xe '~"8( xo)(E—BEB/mBmB)' (8'(p2) ~H(0)A&(x) ~8(p&)) .

r

(+) i'Y'Pn +mn ) pc pv 1«)=XuB(p2)I~."jB' g ' (8 n) uB(pi) I
- - +2E„(E„EB)—75 pn=pl (3.8)

( —) — pc, pv ( ir p—i+mal)T„- (q)=guB(p2)g (l 8) Ix„j„u,(p, )
~'Ys 2Ei(Ei EB)—pl= pr

(3.9)

Here PC and PV refers to the parity-conserving and -violating Hamiltonian, respectively, and the 1 (Ys) refers to the PC
(PV) case. n and l denote the ground-state —,+ hyperons. As shown in Sec. II, (8&0 ~H ~88) and (88 ~H ~8&0) are

constrained to vanish in the asymptotic limit. In anticipation of taking the asymptotic limit p] ——p2~ ~ later, we have
omitted the ground-state —,+ decuplet from the intermediate states n and /. The dots denote the nondiagonal higher-
level (L = 1,2, . . .) contribution. IA„jB„ is defined, for example, as follows and is expressed in terms of the well-known
axial-vector form factors G(q ) and E(q ) as

uB(p2)IAMB„u„(p„):(EBEB/mB mB)'~ (—8'(p2) ~A~(0)
~
n(p„))

uB'(p2)IiY Y5GB' (qn )+(q ) Vs+8' (q )ju (p ) (qn p«p2) .

The on-mass-shell weak couplings g are defined by

(3.10)

(n(p„)
~

H ' (0)
~
8(p&)) =(m„mB/E„EB)' g ' (B~n)u„(p„) uB(pi) . (3.1 1)

To compute Eq. (3.5) we now evaluate the invariant quantity if 'g„q„T&+'(q), etc., in the IMF (pi~co) and make
the soft-pion approximation q ~0. We then obtain [upper (lower) form refers to PC (PV) case]

fif q&T& (q~O)] =fn (mB+mB)g GB„(0)iuB(p2)Y5 uB(pl) I- - +.)- g ' (8 ) 1

p )~ca I +pln B 75 p &

——p2~oo

r

PC, PV(l
[if 'q„T„' '(q~O)] =f '(mB+mB )g — GIB(0)iuB (p2) YsuB(p) )

I
- - + . . (3.13)

p (~co Pl I+Plg

deriving Eq (3 I» we have used q. ' «I/
I pi I

'» (q. q)~O(1/
I pi I

'» 2E.(E.—EB) (m mB

+O(1/
~ pi ~

), iy p„~iY pi+0(.1/
~ pi ~

), etc., in the limit pi~ ap.
The extrapolation involved is from the physical point q = —m~ to q =O. Therefore, if the hyperon decay amplitude

is a smooth function of q, we obtain, for the surface term M in Eq. (3.5)
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g
Pc,PV(8 n ) Pc,PV( l 8~) 1M =f~ ' (m~+m~)g G~„(0)+ (mii+m~ )g Gtii(0) iud (p2))'s &a(pl)+ ' ' '
(m„+mii ) (m, +mii ) VS

(3.14)

Here the upper (lower) form refers to the case of H =H (K ), and the dots denote the neglected nondiagonal (L
=1,2, . . . intermediate states) terms. Using the remarkable relation [A (0),H ' ]=[V (0),H ' ], the ETC term in
Eq. (3.4) then becomes

=f '(EIiEli&mama)'"(8'(p2)
~

[I'- H ] ~
8(pl)) (3.15)

We evaluate Eqs. (3.14) and (3.15) in the next section. Be-
fore doing this we add here several important comments.

(1) In the present calculation, the intermediate states n
and l are on the mass shell. G~ „(0)'s are the axial-vector
couplings at zero-four-momentum-transfer-squared limit
of hyperon semileptonic decays, n~B'+e+v. By using
the Goldberger-Treiman relation, ' obtained by inserting
the PCAC relation between the states (8'(p2)

~

and
~
n(p„)), see Eq. (3.10), one can replace Giiz(0) in Eq.

(3.14) by the slightly off-shell (m~ -+0) 8 8' n. coupli-ng-.
Then the (explicitly given) diagonal term in Ms, Eq.
(3.14), reproduces the baryon-pole amplitudes in the con-
ventional theory of hyperon decays based on current alge-
bras and the soft-pion technique. There, these amplitudes
were subtracted from the hyperon-decay matrix elements
before the application of soft-pion approximation, in order
to avoid the appearance of awkward singularity in the
q„~0 limit. On the contrary, in the present approach,
they are automatically contained in the diagonal term of

I

I

M . A subtle but potentially important difference is that
in the present approach all the quantities appearing in M
are on the mass shell (except for the extrapolation
q = —m ~0), whereas in the conventional approach
the (added) pole terms have to be treated as the Feynman
diagrams.

(2) M contains nondiagonal (L = 1,2, . . .) terms. The
diagonal term (L =0) considered give the leading contri-
bution. However, the next L, =1 intermediate states in
M will be fairly important. The higher level contribution
(L =2,3, . . .) can be neglected. This statement is in line
with the usual expectation that the pole contributions
from the higher resonances (L =2, 3, . . . ) become small
from the argument of wave function overlapping at the
vertex. One can give a more instructive argument as fol-
lows. We define the asymptotic matrix elements of the
axial-vector charge 3, (8',a

~

A
~

B,a) (a is the helici-
ty), and the invariant matrix element of H,
(8',a

~

H
~
B,a), in the IMF by

(8',a ~~~ ~B,a)(2~)'&'(ki —k2)=(EgEii/miims)' (8'(p2, a) ~A ~8(pi, a)) P, =P2 (3.16)

(8',a ~H ~B,a) =(E~E~lm~mti)' (8'(p2, a) ~H ~8(pi, a)) (3.17)

The off-shell (m~ =0) hyperon-pion B~B'n. coupling
constant G(8~8'n)is related t. o (8',a

~

A
~
B,a) as fol-

lows:

G(8 +8'm) = —f~ —'(mii+mii )(8',a
~
A~

~

B,a),
(3.18)

where a= —,'. One can also work out the relation between
(8',a ~H ~B,a) and the weak coupling constant g (at
zero four-momentum transfer squared) defined in (3.11) as
follows:

g (8~8')=2(m~+m~) '(8', a ~H ~B,a),

I

are the explicit manifestation of the application of asymp-
totic SU(3) symmetry. In this formulation,
(8',a ~A ~B,a) can be parametrized according to the
usual SU(3) parametrization, i.e., exact SU(3) plus mixing.
However, the SU(3) parametrization of G (8 +8'vr) exhib-—
its explicit deviation from exact SU(3) according to Eq.
(3.18). In the same way, although the asymptotic two-
body hyperon weak matrix elements, (8',a ~H ~B,a),
satisfy the

~

b, I
~

= —,
' rule and octet rule, etc., as discussed

in I, g(B~B')'s satisfy more complicated relations ac-
cording to Eqs. (3.19) and (3.20). Equation (3.20) also ex-
plicitly demonstrates that in the SU(3)-symmetry limit

a = —, , (3.19)
(8',a~H ~B,a)=0. (3.21)

g (8~8') =2(mt' —mii ) '(8', a
~

H
~
B,a),
1

2 (3.20)

The appearance of various masses in Eqs. (3.18)—(3.20)

With the help of Eqs. (3.18)—(3.20) and the correspond-
ing relations involving higher (L = 1,2, . . .) states, one can
always cast M into the more instructive form, in terms of
the asymptotic matrix elements of the axial-vector charges
and H, i.e.,
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M (PC)= — g (8' IA I
n)(n

I

H I8)(m„—m~)(m„+m~)

(m~+mg )+ g &8' IH"
I
l &&l I~~ I8& iu&'(P2)3 5uB(pl)+ ' ' '

I mt m&' mt+m
(3.22)

Ms(pv)= — g (8'Ia In)(n IH'vI8)f „(m„—mz)(m„+m~ )

(8'IH
I
l)(l IA I8) iu~(p 2) u~(p~)+

( mt
—mg )(mt+my )

(3.23)

The nondiagonal term denoted by the dots in Eqs. (3.22)
and (3.23) also takes the same form as the diagonal term
explicitly written. The forms of Eqs. (3.22) and (3.23) are
instructive for the estimate of the nondiagonal contribu-
tion. They explicitly show that as the masses of inter-
mediate states (n and 1) increases their contributions to M
decreases like 1/m„and 1/mI . Also the asymptotic ma-
trix elements, (L'

I
3

I
L ), will assume appreciable

values only for the case of L'=L and L'=L+1. There
fore, the most important nondiagonal contribution should
come from the L, =1 states. '

(3) As long as we keep only the diagonal term in Ms,
present calculation in its appearance does not look very
different from the old current-algebra calculation with
soft-pion approximation. Of course, on the asymptotic
two-body baryon weak vertices we use the new constraints
rather than the Minamikawa-Miura-Pati-Woo constraints.
In the conventional soft-pion extrapolation, many authors
add many boson- and baryon-pole amplitudes with the
purpose of compensating the possible effect of extrapola-
tion. In the present milder extrapolation, one needs to
evaluate the nondiagonal term in M to increase the accu-
racy of the computation. However, only the excited
baryon states give the contributions there. Therefore, the
effect of meson pole terms, such as the popular K'-meson
term, "etc., should already be contained in the ETC term,M, evaluated in IMF. We give an argument that this
is indeed the case in the present extrapolation in Appendix
A. In the old pole model of hyperon decays, the S-wave
amplitudes are known' to be described well by the E*-
pole model. On the other hand, it is known' that in the
current-algebra calculation, the S-wave amplitudes are
also well described in terms of a pure ETC term with
predominantly pure f-type coupling (d~/f„——0.3) in
SU(3) symmetry. The fact that the ETC term in the
present theory is a pure f coupling (in contrast with the
d~ If~ = —1 in the Minamikawa-Miura-Pati-Woo
theorem) is, therefore, compatible with the claim that the
K -pole effect is already included in the ETC term and
need not be added by hand. Instead one has to worry
about the I. =1 baryon contribution to M .

IV. SUM RULES FOR HYPERON NONLEPTONIC
DECAYS

In Sec. III, we have expressed the hyperon nonleptonic
decay amplitudes, M and M, in terms of g and g

3m& +mx ——2(m„+m- ) . (4.1)

However, if we consider further the presence of exotic
commutator such as [V O,A ]=0 (which should also
hold in the usual model of flavor symmetry breaking) we
encounter the X-A degeneracy, i.e.,

mz ——mx =—(mz) . (4 2)

Note that Y is not the I =1 decouplet. It only describes
the fictitious degenerate mass of the A and X inherent in

I

and the axial-vector semileptonic coupling constants as in
Eqs. (3.14) and (3.15), or equivalently in terms of the
asymptotic two-body hyperon weak matrix elements
(8'IH

I
8) and the asymptotic axial-vector matrix ele-

ments (8'
I
A

I
8) as in Eqs. (3.22), (3.23), and (3.15).

The purpose of this section is to study, by using the
asymptotic constraints on (8'

I
H

I

8 ) summarized in
Sec. II, how well these constraints can produce the sum
rules (for example, the I.ee-Sugawara sum rules)' which
explain phenomenologically the experiment well.

However, we have to be aware of the following two lim-
itations imposed by the approximation adopted in this pa-
per, although the same method with the same approxima-
tion seems to produce a more successful result for the
%~2m decays (see paper II).

(1) In this paper, we keep only the diagonal term in
M . In the case of K~2m. amplitudes, M turned out
to be more important than M and M consists of only
the diagonal matrix elements of H. However, for the P-
wave hyperon decay amplitudes, M is sma11 and M
thus has to play a more prominant role. Therefore, the
importance of the role of the neglected nondiagonal term,
especially the (L = 1

I

H
I

L =0) term, in M is enhanced
for the hyperon decays. Therefore, one has to expect a not
completely satisfactory result under the present approxi-
mation, especially for the P wave decays. -

(2) Although we use the concept of asymptotic SU(3)
symmetry, the treatment of broken SU(3) symmetry made
in this paper is known to have some deficiency, if we con-
fine our attention only to the ground-state baryons. There
is a leakage due to symmetry breaking. As was noted a
long time ago, ' the presence of the exotic charge commu-
tators such as [V~0, V~0]=0 [which are valid, if the
SU(3)-breaking interaction belongs to an octet] requires,
with asymptotic SU(3) symmetry, the presence of quadrat-
ic Cabell-Mann —Okubo mass formula, such as



29 NEW APPROACH TO NONLEPTONIC WEAK INTERACTIONS. III. 471

the present approximation. In the treatment of hyperon
decays, especially the P-wave amplitudes which become
singular [see Eq. (3.22)] in the SU(3) degenerate mass lim-
it, the presence of internal inconsistency due to the ap-
proximation such as Eq. (4.2) will be keenly felt, since the
masses of baryons play a crucial role in the sum rules, re-
flecting broken SU(3) symmetry. In view of Eq. (4.2), the
more realistic hyperon mass relation in the present approx-
imation is

(mp+m„)b, i
——(m=+mr)hp

(6i ——mr —m~ and bp ——m= —mr) . (4.3)

The above mass degeneracy can only be removed, if we
consider the SU(3) mixings between the ground-state
baryons and their radially excited states, for example.
These mixings should exist in principle and it has already
been shown' that an inclusion, for example, of the ninth
I =0 J = —,

'
baryon A' not only removes the X-A degen-

cracy in Eq. (4.2) improving the agreement of the Gell-
Mann —Okubo mass formula with experiment, but also re-
moves the sometimes rather considerable discrepancy be-
tween the experimentally known values of the hyperon
axial-vector semileptonic coupling constants and their
theoretical values given in Eq. (4.12). Therefore, we have
to include, eventually, the effect of the mixings discussed
above in the treatment of hyperon decays. For the boson
cases, we do not have the analog of X-A degeneracy as
long as we treat the qq nonet mesons properly.

We define the invariant physical amplitudes of the
hyperon decays by

M(B~B'n )

=tr~ (p2)[a(B~B'rr)+b(B~B'm )1's]&a(pi » (4 4)

where a and b denote the S- and P-wave amplitudes,
respectively. From Eqs. (3.14) and (3.15) we have for the
S-wave (parity-violating) decays, denoting G (0) by 6,

PV (A~n)a(A~pm )= [ g(A~—n)Gp„+g (X+~p)Gz+z]—

a (A~nrt ) = [—g (A~n)G„„+g (X ~n)6&oz]+0 2~i pv pv o

f (m„+mr) 5ll

(4.5a)

(4.6a)

a(X+~nm+)= [ g(X+~p)G—„~+g (A~n)G z++g (X ~n)Gzoz+]f (m„+mr)
1

[g (X+ p)+~2g c(X0 n)], (4.7a)

v2m, PC( X+ )
[—g "(X+-p)6 +g"(X+-p)6, ,]+ 'f.(m. +mr) " '+*+ v 2f

(4.8a)

a (X ~ng )= [g (X ~n)Gzoz +g (A-~n)G ]+0 pv V2g (X n)

f„(m„+mr)
PC 0

a(:- ~A~ )= [—gPV(:--~X—)6 +gPV(:-0~A)6 ]

PC 0
a (

0 A~o) [ gPv( 0 Xo)6 + Pv( 0 A)6 ]+ g

(4.9a)

(4.10a)

(4.11a)

The last term of each equation corresponds to the ETC term.
For P wave (parity--conserving) decays, we obtain similarly,

b(A~prt ) = [—g (A~n)GP„+g (X+~p)6@+A]+
(mp+m„) pc pc + g'v(A n)

f ~i

b ( ~Ann) = -[—g (A~n )6„„+g (X ~n)GxoA]
2(mr+ m„) pc 0 g (A~n)
f ~i IItl

(4.5b)

(4.6b)

b(X+~nm+)= "
[—g (X+~p)G„p+g (X ~n)Gxox++g (A~n)GAx+]

[gPv(X +p)+~2gPv(Xon)] (4.7b)

b (X+ pm ) = [—g (X p)Gpp+g (X+ p)6 +x+ ]—2(,)

f„b,i 2f
(4.8b)
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b(X+~nlr )= [g (X ~n)G p +g (A~n)GAz —]-(Pl++Pl+ ) pC 0 PC V2g (X n)
f ~i fr'x-

b(:- Alr )= [—g (:- X )G +g (:- A)G o ]+
(rrl +Ply) Pc Pc 0 g ( ~A)

(4.9b)

(4.10b)

b(:- ~Alr )= [—g (:- ~X )G p+g (X —+A)G p p]—0 0 -" r PC 0 0 PC 0 g
f g AX

17

(4.11b)

Here g (8~8') and g (8~8') are related to the asymptotic two-body weak baryon matrix elements,
(8'

~

H
~

8 ) and (8'
~

H
~

8 ) by Eqs. (3.19) and (3.20), respectively, and the relations among (8'
~

H
~

8 )'s are sum-
marized in Sec. II. For the axial-vector semileptonic coupling constant Gil s(0) defined in Eq. (3.10), the following sum
rules have been obtained a long time ago' by realizing the algebra, [2 +,A ]=2V3, among the ground-state —,

'+ and
—,
' + baryons. k denotes the fractional contribution of the ground-state baryons to the algebra (k=0.6). Writing Gz z(0)

as Gg~+ y

G,„=G„,=-,'Vk, G„=—G„„=-,'Vk,

(4.12)

AX' X'A

Gp ———G p ———,'Vk, Gpp ———G = ——,'Vk

a(X+~nm+) =0, (4.13)

without referring to special symmetry limit, etc. Another
feature of the S-wave decays is that experimentally they
satisfy the Lee-Sugawara (LS) sum rules' very well. We
define 5 (LS) by

The above parametrization of G's corresponds to the d/f
ratio —,', same as the SU(6) result. However, the value of
g~ (0)=GP„ is not —,

' but (
—', )v k.

We now discuss the sum rules of hyperon decays. From
Eqs. (4.5a)—(4.11b), the

~

5I
~

= l is always satisfied ex-
actly, as long as we keep only the diagonal term in M .
The most prominent feature of the S-wave decays is that
a(X+~nlr+), „P, is very small compared with other am-
plitudes, i.e., a(X+~nm+), „P,=O. This can be understood
easily. From Eqs. (4.7a), (2.1), and (4.12), we see immedi-
ately that our sum rules yield

~5 (LS)/a(A~plr )
~

=0.3 . (4.17)

This shows that the present sum rules reproduce the LS
sum rule fairly well for the S waves. It is known that a
good agreement is realized for the value of
d~/fii, — (0.3 0.4) for —the E—TC term, whereas our
ETC term is pure f type. We may note that in any theory
the S-wave amplitudes (rather than the P wave) should
first be accounted for' by the basic approximation pro-
cedure.

The I'-wave amplitudes involve terms proportional to
' and 62 ' which are singular in the degenerate mass

limit. They are thus much more sensitive to SU(3)-
symmetry breaking. Corresponding to Eq. (4.14), we de-
fine

I

SU(3) limit wi ——0] in Eq. (4.16), we then obtain from
Eq. (4.3)

5 (LS):—a(A~plr )+2a(:- ~Air )

—v3a(X+ plr ) . (4.14)

5 (LS)=b (A~per )+2b(:- ~Alr )

v3b(X+ plr —) . (4.18)

~

5 (LS)/a(A ~per ) ~,„p,=0.03 . (4.15)

5 (LS)=0, if the LS relation is satisfied. Experimentally,
it is known that 5 (LS)

b (A~plr )

(b2 —b, , ) 2V kwi +6w i

3Vkw +3wi

In place of Eq. (4.16), we then obtain

(4.19)

By using Eqs. (2.1) and (4.12) in Eqs. (4.5a), (4.8a), and
(4.10a), we obtain

5 (LS)
a (A~pm )

(b, , +b, ) 2v kw, +6w,
(m p+ m=) 3v k w', v+3w;c

(4.16)

In the SU(3) limit b,
&

——b,2 ——0, Eq (4.16) imp. lies that our
S-wave amplitudes satisfy the LS sum rules in the SU(3)
degenerate mass limit. If we set

~
wi

~
&&

~
wi

~
[in the

Therefore, if b,2
—b, i [equal mass spacing but—not the

SU(3)-symmetry limit], the P-wave amplitudes also satisfy
the LS sum rules. Since, from Eq. (4.3)

~
(42—b i)/bz

~

=(m= —m„)/(mi +rn„)=0.18, we ob-
tain again assuming wp « w]',5 (LS)/b (A~plr )=
0.12. This value should be compared with the experimen-
tal value ~5 (LS)/b(A~pm ) ~,„P, =0.3, which shows
that the P-wave amplitudes do not satisfy the LS suin
rules so well. However, the agreement is not as disastrous
either. It can even be said that in the approximation in-
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volved, the result obtained is rather a reasonable one. It is
in fact interesting to notice that the discrepancies between
the theory and experiments for both the S- and I'-wave de-
cays are of the same order of magnitude. As mentioned
before, to remedy the situation we have to improve not
only our soft-meson approximation by including the I, = 1

baryons in the nondiagonal term of M but also our
asymptotic-SU(3)-symmetry calculation by removing the
inherent X-A degeneracy. The drawback of the approxi-
mations used appears most prominently in the fact that
the sum rules lead to b(X +~ nm +) =0 in the contradic-
tion with experiment. The inclusion of I. =1 baryons,
especially the —, baryons, will remove this difficulty.
The SU(3)-singlet baryons such as F" (1405) may play an
interesting role there. To obtain a definitive handle of this
problem, we have to first solve the level-realization con-
straints including the L, =1 baryon states.
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APPENDIX A: MESON POLE AMPLITUDES
IN THE NEVE SOFT-PION APPROXIMATION

For illustration, we take up the E -meson pole ampli-
tudes in the hyperon decays in the light of new soft-pion
approximation introduced.

The inUariant K*-pole matrix elements are written as

M *(B~B*m;q)=fu (K*~m')G(B~B'K')

&q„ua (p2))', u~(pi ),
where f~ denotes the K*~m. vertex and q& ——(p, —p2)&.
In the conventional soft-pion approximation q&

—+0, (Al)
is dropped because it involves q&. However, (Al) can also
be written, if the pion is on the mass shell, as

(A 1)

M *(B~B'rr;q)=(ms m~ )f—p (K ~rr)G(B~B'K*)

Xi~~(p2)u~(p~) . (A2)

In the new soft-pion approximation q ~0 in the
p &

——p2~ oo frame, we never take qo~0 limit. Therefore,
one can still use the energy-momentum conservation. The
only extrapolation involved is q ~0 instead of
q = —m~ . Therefore, the (extrapolated) inuariant ampli-
tude can still be written in the same form as Eq. (A2), i.e.,

M *(B~B'm",q) (mg —m~ )f~(K—*~sr)G(B~B'K*)iu~, (pq)u~(p() (A3)

The only difference between Eqs. (A2) and (A3) is that for
the vertices in (A2) q = —m, whereas for the same ver-
tices in (A3) the extrapolation q ~0 is involved. This
shows that under the new milder soft-pion approximation,

the E'-pole amplitudes will not receive a drastic change.
The same argument also holds for the other meson-pole
amplitudes.
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