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The constraints obtained in I for the asymptotic two-body meson matrix elements of the weak
nonleptonic Hamiltonian are related to the physical E~mw and D~Xm. decay amplitudes by using
a soft-pion approximation in the infinite-momentum frame of the parent particle. In this new mild-
er extrapolation, a part of the so-called surface terms survives in addition to the usual equal-time-
commutator term and plays a significant role, especially for the D~E~ decays. However, to the
approximation in which only the ground-state-meson contribution is kept in the surface terms, the

~

b, I
~

=
2 rule for the K~2vr decays and the 6e6* rule [iu exact SU(3) symmetry] for the D~ICn

decays are shown to hold exactly and the amplitudes predict a reasonable value for the ratio of the
rates, I (Es~m+m )/E (D ~E m.+). A semiquantitative scenario is also drawn, which suggests
that the L = 1 meson contribution to the surface terms plays an important role for the violation of
these selection rules and yields the right order of magnitude for the violation of the

~

b, I
~

=
z rule

in E~2m decays. For the D —+Km decays it leads to a more significant violation of the 66 rule.

I. INTRODUCTION AND SUMMARY

The strange- and charm-meson nonleptonic decay is one
of the unresolved and persistent problems of particle phys-
ics. ' In perturbative QCD, the popular prescription to ex-

plain the
~

4 I
~

= —,
' rule is to assume the enhancement of

the penguin diagram. The enhancement may be justified,
if the factorization (or vacuum-insertion) approximation,
which was introduced a long time ago and provides a
way to translate the information at the quark-gluon level
into that of hadronic level, is a good approximation.
However, if one applies the same method to the Cabibbo-
angle-favored charm-meson decays (to which penguins
cannot contribute), one finds that the D &E m. and—
E *

m modes are much suppressed compared with other
two-body or quasi-two-body modes such as D ~K m+,

p and D —++ &, EC &, EC p . This 1s

in sharp contradiction with experiment. There are also
other (more qualitative) propositions based, for example,
on the hypothesis of conservation of total quark numbers
or the dominance of 8'-exchange diagrams, etc. In view
of these situations, a new approach, ' which pays a prop-
er attention to the long-distance-physics aspects of the
problem, may be in order.

The task of this paper is to give a unified description of
the characteristics of the strange- and charmed-meson
nonleptonic interactions, by relating the physical ampli-
tudes to the asymptotic two-body ground-state-meson ma-
trix elements of II' ' and H' ' ' already discussed in
the preceding paper called I, using a new soft-meson ap-
proximation. The soft-pion technique has provided a

powerful nonperturbative approximation in low-energy
physics, although it sometimes produced ambiguous re-
sults. One relates, for example, the Ks +2m. decay —ampli-
tude to the two-body matrix element (vr ~H' ' '~K) via
the soft-pion approximation, retaining only the equal-
time-commutator (ETC) term and discarding the so-called
surface term in the limit q&~0. However, for the hype-
ron non-leptonic decays one is forced to retain a part of
the surface term (the baryon-pole terms) because of the
appearance (in the soft-pion limit) of the singularity due
to the mass degeneracy. In fact, these pole terms do play
a significant role in the current-algebra calculation of the
hyperon decays using the soft-pion approximation. This
seems to suggest that the dropping of the surface term in
the q&~0 limit is a rather tricky procedure and the extra-
polation may not be as smooth as one w&shes.

In this paper, we are led naturally to use a new "soft"-
meson approximation which is more accurate (see espe-
cially, Appendix A for comparison) than the usual q&~0
method. Tomozawa' has noted that one can achieve ef
fectiveiy the q&~0 limit, if we consider the extrapolation
q~0 in the infinite-momentum frame of the incident
momentum p~. In this frame, such a quantity as (q.p&)
remains finite even in the limit q ~0, so that a part of the
surface term survives in the limit q —+0. Since the con-
straints on the two-body ground-state weak matrix ele-
ments (derived in I) are valid only in the asymptotic limit,
we are naturally led to work in the infinite-momentum
frame of the parent particle (p &~ oo ) and a hard-pion ex-
trapolation q ~0 can then be realized by taking a limit
q~0 in this frame. By using this method, we can relate
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the K—+2m. and D +K—nainplitudes to the two-body
asymptotic matrix elements of H'' ' ' and H'

We then show that, to the extent that the ground-state-
meson contribution dominates over that of the higher lev-

+
els in the nonvanishing surface term, we obtain

I
4 I

I

= —,

rule for the K—+2m. decays and its charm counterparts for
the D~Km decays W. e then compute the ratio of the
amplitude of Ks~m. +m. decay to that of D +K —n.+ de-
cay and show that the prediction is in reasonable agree-
ment with the present experimental ratio
I (D ~K n+)/I. . (Ks em+—n). . Therefore, a unified
description of strange- and charm-meson decays seems
feasible in the present approach. We also give a semi-

quantitative estimate of the violation of the
I
b, I

I
= —,

'

rule and its charm counterpart, which arises mainly from
the contributions of the first excited meson states to the
surface term. We show that the magnitudes of the viola-
tion are of the right order of magnitude and are larger for
the D decays.

II. CONSTRAINTS ON THE ASYMPTOTIC
TWO-BODY WEAK NONLEPTONIC

MATRIX ELEMENTS

ground st-ate meson matrix elements of H' ' ' and its
charm counterpart, i.e., the 20 dominance [or 66* rule in
exact SU(3) symmetry] for the similar asymptotic matrix
elements of H' ' '. The

I
AI

I

= —, selection rule ob-
tained is asymPtotic (y~ oo ) and is given by (H =H' ' '),
for example,

—W2( IH IK (p))=( + IH IK+(p)&,
—v z(p'IH IK"(y))=(p+ IH IK*+(y)),
—~2&~OIH IK*O(y»=&~+ IH IK'+(y)& . (2.3)

In addition, we also obtained" SU(6)-type asymptotic con-
straints such as ( p ~ oo ),

(2.1)

(m+ IH IK+(p))=(p+ IH I
K*+(p))

=+(~+ IH IK*+(y)) . (2.4)

The charm counterpart of the above asymptotic

I
b I

I

= —,
' rule is the asymptotic b, V=O rule given, for

example, by

(Ko
I

H'- -'
I
D'(y) &

= —(~+ IH' 'IF+(y)), yahoo . (2.5)

Only asymptotic SU(3) [not SU(4)] symmetry was needed
in deriving Eq. (2.5). Altogether, we obtained in I
(H =—H'- -'),

We here summarize the constraints obtained in I on the
asymptotic two-body ground-state meson matrix elements
of the relevant weak nonleptonic effective Hamiltonian,
H~ (H' ' ' and——H' ' '). In I, we have obtained the

I
5 I

I
= —,

' rule and octet rule for the asymptotic two body-

&K '
I
H

I
D'(y) &

= —
&
~+

I
H

I
P+( y) &

= —c«~c &
~+

I

H" '
I

K (P ) &

«*'IH ID*'(y) & = —&P+ IH IP"(y) &= cot~c&P+ I—H" ' IK*+(y) &

& K '
I
H

I
D"(P) & = —

&
~+

I
H

I
P*+(y) &

= —c«~c &
~+

I

H" '
I
K*+(P ) &,

&K'I H ID'(p) & =&K"IH ID"(p) & =+«'IH ID"(y) & p

(2.6)

(2.7)

(2.8)

(2.9)

However, the last equality of each of the above sum rules
was obtained by using the algebra (Oc is the Cabibbo an-
gle)

[H'- -', V,]=cote,H"-', (2.10)

and asymptotic SU(4) symmetry for the SU(4) charge VDo.

Therefore, they are more susceptible to the effect of SU(4)
symmetry breaking but will still be of great value in relat-
ing the strange-meson decays to the charm-meson decays.

III. NEW SOFT-MESON APPROXIMATION
IN THE INFINITE-MOMENTUM FRAME

We consider the decay of pseudoscalar meson Pi(pi)
into two pseudoscalar mesons Pz(pz) and Ps(q),
Pi(pi)~Pi(pz)+P3(q), where pi, p2, and q denote the
four-momenta with pi ——p2+q. (Pz, P1) is either (m, m) or
(K,n ) system.

In order to take full advantage of the asymptotic con-

straints already obtained and also to minimize the effect
of flavor symmetry breaking by using the notion of
asymptotic flavor symmetry [i.e., asymptotic SU(2) and
SU(3) symmetries for the (n, m ) and (K,~) systems,
respectively], we evaluate the invariant amplitude propor-
tional to (Pz(pz) Pi(q)

I
H~ I P, (p) ) in the frame in

which all the participating particles have infinite momen-
ta, i.e., yz~oo and q~oo with pi ——pq+q. It then fol-
lows' that the inuariant amplitude of the physical matrix
element (P2(pz)P1(q)

I
H~

I Pi(pi ) ) must be symmetric,
even in broken flavor symmetry, with respect to the ex-
change of four-momenta of the final two pseudoscalar
mesons, p2= .-q. [In exact SU(3) symmetry, 111 wllicll P2
and P3 belong to the same flavor multiplet with the same
mass, tins symmetry must, of course, be satisfied. ] There-
fore, in applying the soft-meson approximation, we have
to pay close attention to this inherent constraint' which
exists even in broken symmetry. %'e, thus, always consid-
er the amplitude which is symmetrized with respect to the
two final pseudoscalar mesons. We thus define
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M(Pi~P2P3)s) =
2 &Pz(p2»3(q)+P3(pz»2(q) IHw IPi(pi)&&2qp. (3.1)

In anticipation of the use of Lehmann-Symanzik-Zimmermann (LSZ) reduction formulas, we define a hypothetical am-
plitude

T„")(P)~P,Pi, q)= i j—d x e '«"(Pk(p2)
I
T[AJ (x),H)) (0)]

I P)(p)) & . (3.2)

AJ&(x) is the axial-vector current and (j,k) takes either j=2 and k =3 or j=3 and k =2. (Note that the index j
represents the flauor index of the meson PJ.) The standard reduction and the use of PCAC (partial conservation of
axial-vector current)

B„AJ„(x)=fjmJ P& (x)

leads to
g J(x) denotes the field of PJ with mass mj

2 .2,
M(P)~P2Pi), y

—g —— — q„T„~ +gq +mj ' (.)
2J=2s f m '

(3.3)

and decay constant fjJ

g +Olj
.2f)mj

(3.4)

Jd xe '«"5(x )(P„(p )
I
[AJ(x),H (0)] IP, (p, )& .

Here g. k implies the summation over j=2, k=3 and j=3, k=2. We now consider the invariant amplitudej,k
M = (2p)p2p2p ) M(P) ~P2P3 ),„m, evaluated in the infinite-momentum frame (IMF) with p )~ ao, and carry out a
soft-meson approximation q ~0 in the IMF, i.e.,

M " '=[(2p)()2p2())' M(P) ~P2Pi), y ] p
- =M +M (3.5)

M = lim g (2p)p2pip)'~ (2fj) 'iq&T&~',
q ~O P ]~~ j=2,3

—tg(2fj ) '(2plp2p2p) ('Pk(p2)
I
[AJ~0»H~(0)] I Pi(pi) & .

j,k

(3.6)

(3.7)

(3.9)

We now insert a complete set of single-particle boson intermediate states (which, in our theoretical framework, should be
the qq meson states) between the factors A Jz(x) and H)r(0) in Eqs. (3.8) and (3.9). We then decompose the intermediate
states in terms of leuels, exactly in the same way as we do in the level realization of algebras discussed in I. Namely, we
may write the sum over the intermediate states as, for example,

g(Pk(p2) IA~~(x)
I

nL &(nL IH)i (0)
I
P)(p))& . (3.10)

Pgi

nl denotes the mesons belonging to the level I. In this decomposition we keep only the "diagonal" term, i.e., the
ground-state-meson intermediate states, since the external mesons I' belong to the ground-state mesons. We show later
that the nondiagonal higher-intermediate-meson-state contribution is relatively small. We thus see that the concept of
levels is also useful for evaluating M . Among the ground-state mesons, only the vector mesons contribute to the inter-
mediate states of Eq. (3.10). We denote the vector mesons appearing in T„'1'+' and T&~' ' as V„and Vt, respectively, and
their four-momenta are denoted as (p„,p„p ——(p„+m„)' ) and (p),p)p

——(p) +m) )' ). After performing the integra-
tion over d x and over the momenta of the intermediate states in Eqs. (3.8) and (3.9) we obtain

Here M is the surface term and M corresponds to the usual equal-time-commutator term. AJ (0)
i j d—x Ap(x, 0) is the axial-vector charge and the index j denotes the flavor index of PJ. In the IMF with q =0,

p) ——p2 ao. Therefore, qp
——(p) +m) )' —(pq +m2 )' —+0 like (m) —m2 )/2

I p) I
as

I p) I

—&ac. This imphes
that in the IMF one can effectively achieve q&~0, without assuming the masslessness of the pseudoscalar meson. In the
conventional soft-ineson approximation, it is hoped that the surface term (3.6) can be dropped in the limit q„—+0. How-
ever, if the extrapolation q&~0 is not as smooth as we would wish, the neglect of M is not warranted, as exemplified
by the calculations of the hyperon nonleptonic interactions. In the proposed q ~0 extrapolation in the IMF, the surface
term does give a contribution. The extrapolation involved is much less severe than the q„~O, as will be demonstrated in
Appendix A, but we now have to retain some parts of M in addition to M

%'e decompose T&~' as T&' ——T&'+'+ T&~' ', where

Tp'+' i f1 x e '«"e(xp)(P——k(p2) I
A p(x)H)r(0)

I
P)(p) ) &, (3.8)

T~~' '=i Jd xe '«"8( —xp)(Pk(p2) IH))(0)AJ„(x) IP)(p))& .

(J. +) RH (P)~Vn )
(2p lp2p2p) T„' = P ——[AP&, ~„«.e. )

I
- - + .

n 2pnp(pnp pip) n )
(3.11)
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I/2 ( ) gw( VI~Pk )
(2pi02p20) Tp = g 2

(klel){~II, I vip, I p = p
+

PIO PIO P20 I 1 pi=p2 (3.12)

Here k„=pi —p„and kl —pl —p2, e„and el are the polarization four-vectors of V„, and VI. gw(PI ~V„) is the weak
coupling constant defined by

(2p.02pIO)'"& vn(pn) IHw
I
Pi(pi) &=gw( i

{gI„]p z is the invariant matrix element of Al„(0) (j =2 or 3) and is defined in terms of the form factors,

{Al„]p I =(2p202p 0) ~ (Pi (p2) IXI„(0)
I

V (p ))
=F"'(q„')(e„)„+F'"(q„')(p„+p2 )„(q„e„)+F"'(q„')q„„(q„e„).

(3.13)

(3.14)

Here q„ is q„=p„—p2. In Eqs. (3.11) and (3.12), g„and QI involve also the spin summation and the dots denote the
higher-level contributions.

If we insert the PCAC relation Eq. (3.3) between the states (Pk(p2) I
and

I V„(p„) and use Eq. (3.14), we then obtain,
at q„=0, the Goldberger-Treiman (GT) relation'

F'"(0)+(mk —m„)F' '(0) = fl G ( V„—~PkPI ),
where G( V„—+PkPI ) is the off-shell (ml ——0) coupling constant for the interaction V„—+Pk+Pl defined by

(2p202pno) (Pk(p2) I
JJ(0)

I Vn(p. ) & =G( Vn—PkP, ( Vn ~Pk~j iqn )(qnen ) .

(3.15)

(3.16)

JJ(x) is the source function of P~(x) and we will assume that K(0)=1. In order to compute the surface term in Eq. (3.6),
we now evaluate, for example, q& {A&I' Ip„v in the limit q ~0 and p I~ co . We note 2p„O(p„O —p iO )

(m. ' —mi')+O(l~
I pi I'» q. (p. —p2) « Il'

I pi I

'» q (p. +p2) (mk' —mI')+O(ll'
I pi I

'»
~(mk —mi )(mk —m2 ) '(q„.e„)+O(ll

I pi I
), etc. Then using the GT relation, Eq. (3.15), we obtain

mk
2 2

2 fI.G(V„PkPI)(q„.e„)
I

mk —m~

Substituting the above result into Eq. (3.6) and carrying out the summation over the spin states of Vs, we finally obtain
for the surface term which is explicitly symmetric in indices 2 and 3 and corresponds to Fig. 1,

M = ig—
m2 —m)2 2

«Pi ViP3)gw(Vi P2)+
Sm(2

m2 —m)
gw(Pi V. )G(V. P2P3)+

Sm„

m3 —m&
2 2'

gw(Pl~ V )G(V P3P2)
Sm„

m3 —m)2 2

SmI
ViP2)gw(Vi P3) + (3.17)

We denote the invariant matrix element of Hw and axial-vector charge Al in the IMF by ( V
I Hw

I
P ) and (P

I Al I
V),

etc., i.e.,

( V
I
Hw

I
P)—:(2ki02k20)' ( V(k2)

I
Hw I P(ki))-„ (3.18)

(P IAI I
V)(2m) 5 (ki —k2)—= (2ki02k20)' (P(k2) IXI I

V(kI)) „ (3.19)

Then Eq. (3.17) can also be cast (see Sec. IV for derivation) into an alternatiue instructive form involving the axial-vector
charges,

M =i+s . 1

f3

+i+ 1

I

m2 —m)2 2

(P, I~3 I
V„

m~

—m)2 2

&P2 IHw I

mI —m2

&&v. IHwlPi&+-- —, , &P3 I~21 v. &&v. IHwlPi&
mn —mi

2 2m3 —m)
VI & & Vi

I
~3

I
Pi &+

ml —m3

(3.20)

We stress that all the intermediate states are on the mass sheH. The terms which involve higher-level contributions nl
(L & 1) denoted by the dots can also be cast into a similar form, i.e., for example, g(P2 I A3

I
nI ) (nt

I Hw
I
Pi ), expli-

citly demonstrating the role played by the axial-vector charge in selecting Out the intermediate-state contributions. M
can be evaluated by using the remarkable relation [AI(0),Hw(0)] = [Vi(0),Hw(0)] in our IMF, utilizing asymptotic fla-
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vor symmetry (instead of exact symmetry),

M = —(2f ) '(2p, 2p )' (P (p )
~

[V„II (0)] ~P, (p, ))

—(2f2) '1 (2P102P20)'"&P3(P2)
l [ V2 II1Y(0)]

I Pl(pl) &
p p

(3.21)

In the IMF, V; (i =2 and 3) acting on the states
~
P~ ) (j =1,2, 3) produces only the ground-state-nonet pseudoscalar-

meson states. From Eqs. (3.17) or (3.20) and (3.21), we see that the decay amplitudes are now expressed in terms of the
two-body asymptotic matrix elements of H' ' ' and H' ' ' which allows us to predict the rates of the charmed meson
decays from the strange meson decay rates.

IV. PREDICTION QN THE RATIO I {D —+X m+)/I (X, —+m+m )

We first compute the ratio of the rates of the typical unsuppressed strange- and charm-meson decays to obtain a quan-
titative idea about the method used. In Sec. V we discuss the approximate selection rules (the

~

6 I
~

= —, rule and its
charmed counterparts). We choose the Kz~vr+rr as the model strange-meson decay. For the charm-meson decays,
the branching ratios are now fairly well known, ' although their lifetimes are not yet firmly established. For r(D ), we
adopt' tentatively the value r(D )=(4.8+15)&&10 ' sec which is presently cited. We choose the D ~K sr+ as the
typical D-meson decay, since no selection rule is found for this decay in the present theory. The branching ratio of this
decay is reported to be about 3%. Using these numbers, we tentatively estimate

I D' K- +
(4.1)

I (Ks~n+rr )

From Eq. (3.5), we write for the invariant amplitudes

M~"~'(K,' ~+~ )-M"'-(K,')+Ms(K,'),
Mr""'(DO~K 17+)-MErc(DO)+METC(DO),

(4.2)

(4.3)

where —implies that the soft-meson approximation in the IMF developed in Sec. III has been used. From Eq. (3.21),
M are given by

M (K~)= —(f ) '[(2p 2p,o)' ( (p ) ~II ~K (p ))]- (4.4)

(4.5)

In deriving Eqs. (4.4) and (4.5), we have already used the asymptotic
~

b, I
~

= —, rule, Eq. (2.1), and its charmed counter-
part, Eq. (2.6), obtained in I for the asymptotic two-body matrix elements of II' ' ' and H' ' '. For M in Eqs. (4.2)
and (4.3), we keep only the diagonal terms. From an intuitive (overlapping of wave functions, etc.) as well as the more
sophisticated argument which will be given in Sec. V, the nondiagonal term will certainly not produce a leading contri-
bution. Corresponding to Fig. 1, the contribution of the intermediate ground-state mesons (i.e., the vector mesons) to
Ms can be written schematically as follows ( p 1

——p2~ oo );

M (Ks)=(4v 2) '(2P102P20)'~ [M(K (pl )~K*+m+vr+(p2)vr (.q)—;q =0)
+M(K (pl )—+K" n+~m (.p2)rr+(q);q =0)j, (4.6)

M (D )=(4) '(2P102P20)'~ [M(D (pl)~K* ~K (P2)m+(q);q =0)+M(D (pl) +K" ~m+(P2—)K (q);q =0)
+M(D (p, )~F*+K ~m+(p2)K (q);q =.0)] . (4.7)

In terms of the strong VPP couplings G and the weak two-body VP couplings glY, the general forms of the amplitudes M
which appear in Eqs. (4.6) and (4.7) are given by, as in Eq. (3.17),

(2P102P20) M(Pl ~V~P2(P2)P3(q)iq 0)~ ~ i( mV ) (m 1 m2 )glY(Pl~ V)G( V~P2P3) r

(2P102P20) M( 1~V~P3(P2)P2(q)iq )~ ~ 1 (2mY ) (m 1 m3 )glY(Pl~ V)G( V~P3 2) ~

(2P102P20)'~2M(P1~ VP3~P2(p2)P3(q);q =0) = i (2mv ) '(m
1

—m2 )G—(P, ~VP3)gw(V~P2),

(4.8)

(4 9)

(2P102P20) M(Pl~ VP2~P3(P2)P2(q)iq 0)~p ~ 1(2m V ) (m 1 m3 ) (Pl~ P2)glY( V~P3)

(4.10)
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Pi(pl) Vn

(a)

Ps (q)

Ps(q}

P((p(} Vn

Ps(q)

Pa(q} In this theoretical framework, the asymptotic axial-vector
matrix elements, such as ( Vk IAJ I

P; ), can be para-
metrized (when we vary the flavor indices i, j, and k), in
broken flavor symmetry, by the conventional "exact
SU(N) symmetry plus mixing" prescription. However,
this simple prescription cannot be used for the strong cou-
pling constants G, since Eqs. (4.16) and (4.17) involve the
physical masses mv and fj. The weak coupling constant

g~(q ) defined by Eq. (3.13) is related, at q =0, to the
asymptotic invariant weak matrix element (P

I Hvrl V)
defined by Eq. (3.18) as follows:

PI(pl} Ps(ps} P)(p(} V) Ps(pp}
gtv(V~P) =— (P IHsvl V) .

pl y —rnp
(4.18)

(c)
FIG. 1. General schematic diagrams of the contributions of

the on-mass-shell intermediate states V„and VI to the surface
term M . S' denotes the weak vertex and the wiggly line

represents the pseudoscalar meson with q =0 instead of

q = —m in the reference frame with p &~ oo.

The ratio of the physical amplitudes, r =
M~ "' (D ~K m+)/MP""'(Kg ~n+n. ), is then given by

FTC 1+s (D )r=r p 0

1+s(Ks )
(4.12)

r is the ratio of the ETC term of the two decay ampli-
tudes and s (D ) and s (K, ) denote the ratios of M /M
for each amplitude, ie.

r ETC M ETC(DO) /METC(K0 )

s(Ks)—:M (Ks)/M (K )

s(D )=M (D )/M (D )

(4.13)

(4.14)

= —i(2n) 5 (p~ —pq)
fj

2 2 (2p &02pzo)
1/2

s

&&'(p2}
I
~J(0)

I &(pi) & .

We have, for example,

G(Ps~VkPJ)=(fj. ) '(2rrsv„}& Vk
I A, IP;&,

G(Vk~PPJ)=(fz) '(2mv }(P;IAJ I
Vk), etc.

(4.15)

(4.16)

(4.17)

Equations (4.16) and (4.17) illustrate the importance of the
use of the concept of asymptotic flavor SU(N) symmetry.

The off-shell (i.e., q =0) strong coupling constants [see
Eq. (3.16)], for example, G(P~~VPJ. ), is related to the
asymptotic axial-vector matrix element ( V IAJ I

P, ) de-
fined in Eq. (3.19), through the important general asymp-
totic formula based on PCAC,

(+ (P2 }
I A,. I

& (p & ) &-

This also demonstrates that, although we have in the
present theory simple asymptotic flavor-SU(N)-symmetry
relations among the asymptotic weak matrix elements
(P

I Hrr I
V) as obtained in I, the corresponding relations

for the actual weak coupling constants gsv at q =0 limit
are more complicated because of the mass factor
mv(mv —mz )

' in Eq. (4.18). One thus sees that a
naive treatment of flavor symmetry [especially in SU(4),
SU(5), . ) symmetry] could lead to a misleading result.
The present method copes with the problem of broken
symmetry in a more serious way, apart from the fact that
it does not rely on the dominance of particular diagrams
at the quark-gluon level. In Sec. III we have cast Eq.
(3.17) into the more illuminating form, Eq. (3.20), by us-

ing Eqs. (4.16)—(4.18) derived above.
By using the relation between (m. IH' ' 'IK ) and

(K IH' ' 'ID ) given in Eq. (2.6), we obtain r
——3.I4.

In s(Ks) and s(D ) the weak couplings will disappear
using the relations given in Eq. (2.8) and the s's depend
only on the values of strong coupling constants G or the
asymptotic axial-vector matrix elements. Since all G's are
related by asymptotic flavor symmetry, it is sufficient to
determine, for example, G(p ~m+w ) =(f~). '2m~
X(m+ IA + lp ). From the rate I'(p ~~+m )=1.58+5
MeV, we obtain

I
G(p ~7r+m )

I

—12.4. By using this
value, we find s (Ks)-0.21. In deriving this value of s we
have chosen the relevant signs, i.e., the positive sign in Eq.
(2.4) and f~G(p ~~+a )&0. The value of s(Ks) im-
plies that for the K+~2m decay, the ETC term is more
important than the surface term. On the other hand, the
same calculation [using asymptotic SU(4) symmetry]
yields, s(D )-0.49, i.e., the surface term plays a more
important role for the D +Km decay—s. ' Using the
values ofr, s (Ks ) and s (D ), we finally obtain

Mr"'J'(D ~K n.+)r= o — 39
M~""(K,' ~+~)- (4.19)

From the ratio of the rates R=I (D ~K m+)/I (Ks
(nfc/nD)'(

I qD I/I q» I
}

I
~ I' where qD

and q~ are the c.rn. momenta in the D and K decays, we
thus obtain R,~-4.4 which may be compared with the
present preliminary experimental value given by Eq. (4.1).
The agreement seems reasonable. As will be briefly dis-
cussed in the next section, the most important correction
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to the prediction Eq. (4.19) will come, among others, '

from the nondiagonal term in M (D ) involving the 0++
and 2++ mesons.

V. APPROXIMATE
I

b, I
I
=

~ RULE
AND ITS CHARM COUNTERPART

For the decay modes K+~m'+n and D+~K ~+, for
which approximate selection rules are at work in the

present theory, we write analogs to Eqs. (4.2) and (4.3)

M ""'(K+~rr+m. )-M (K+)+M (K+), (5.1)

M ""'(D+~K sr+)-M (D+)+M (D+) . (5.2)

Since (m.
I Hp

I
K)'s satisfy exact

I
b, I

I

= —,
'

rule,
M ~c(K+)=0 as shown previously. Using the same
method as applied to M (IC, ) in Eq. (4.6) we find that the
"diagonal" term of M (K+) is proportional to

2 2

IK'+
&

&K*+
I
~„.I

K+ &+ &~'
I
H~ IK"& &K"

I ~.—I

K+ &) .fg m»~ —m~
(5.3)

f» '(~+
I
H

I
I + ) +f '(K'

I
H

I

D'—), (S 4)

Equation (5.3) vanishes, since (m
I
H p I

K' ) 's satisfy the
strict

I
5 I

I

= —,
' rule and for the asymptotic axial-vector

matrix elements we find 2(K +
I
3 0 I

K+)
=(K' IA I

K+). Therefore, to the approximation
that we keep only the "diagonal" term, MD, in M the
K+ ~m. +m decay is strictly forbidden [of course, in exact
SU(2) symmetry] and I (Ks ~vr m ) /I (Ks ~sr++ ) = —,

for the Eq. The observed small violation of the rule must
come from the "nondiagonal" term, MND(K). As shown
before, for the amplitude of D+ —+E m+ decay
M (D+) is proportional to (H=H' ' ')',

%'e now discuss a semiquantitatiue estimate of the "non-
diagonal" contribution to M . This term should account
for the small violation of the

I
b, I

I

= —, rule in the
X~2m. decays and will also explain the possibly larger
violation of the selection rule observed in the D+ —+K m+
decay. As discussed in Sec. VI of I, in the present theory,
all the diagonal two-body asymptotic weak matrix ele-
ments (L IHp I

L) are always constrained to satisfy the
strict

I
b, I

I

= —, rule, octet rule, and its charm counter-
part. However, this is not necessarily the case for the non-
diagonal ones, (L

I Hrr
I

L') with L&L'. The M can al-
ways be written in the instructive form [see Eq. (3.20)]
such as, for example,

which vanishes in the SU(3) symmetry limit f» f, ——
using the asymptotic selection rule obtained before, i.e.,
Eq. (2.6). The "diagonal" term of M (D+) is proportion-
al to [again using Eq. (2.8)],

(I2 I~3 Int. &(nL IHp'II &) (L =0, 1,. . . ) (5.6)

Because of the nonet structure of qq mesons, for the
EC+ ~m. +w and D+~E m+ decays only the terms
described by Fig. 1(c) and l(d) (i.e., the Vt term or the u-
channel intermediate states) contribute to M, whereas for
the K ~em. and D ~Krr decays both the V„(or s
channel intermediate states) term described by Fig. 1(a)
and 1(b) and the Vt term appear in M .

For the relative importance of the contributions from
each level (L =0, 1,2, . . .) in Eq. (5.6), we may develop the
following scenario. The leading contribution, of course,
comes from the ground-state (L =0) mesons in the diago-
nal term but the L =1 states contributes appreciably in
the nondiagonal term. The contributions of the I.)2
states will not be very important as illustrated below. The
contribution of the L =1 0++ state to MND(K+) is,
analogous to Eq. (5.3), proportional to

(vz(~+ IH I»+)(»+ Ia, IK+)f m„2—m'

(K IH ID* )(D" I2 ID+)

(mD —m» ) f (mD m)—
2 2 2 2

(5.5)

This expression vanishes in the SU(3) symmetry limit, i.e.,
mD, =m „m» ——m„, and f» f, demonstrating ——expli-
citly the working of the asymptotic 6e6 rule of exact
SU(3) symmetry in broken SU(4) symmetry. Since we
have never used the concept of exact flavor symmetry,
Eqs. (5.4) and (S.5) are vahd in broken SU(3) and SU(4)
symmetry. For D we obtain from ETC term alone,
I (Do~K m+)iI (D K vr')=Iv 2(f If )'/[2(f»if' )—1] I

=2 compared with current experimental value'
1.6+0.9. However, we see that the above selection rule
[which is strict in exact SU(3) symmetry] is obeyed fairly
strictly even in broken SU(4) symmetry, as long as we keep
Only the "diagonal" term in M . The ratio
R—:I (D+~K m+)/I (D &K m+) compute—d from
Eqs. (4.5), (4.7), (5.4), and (5.5), using the physical values
of f», f and the masses (m ~, m „.. . ) involved, is of
the order of ——,0, whereas the present preliminary experi-
ments seem to suggest the value of 8 in the range of

1

v&(~+ IH IK'*+)(K"+ Ia, IK+)
+(m

I
H

I

K*' )(K** I3
I
K+) .

If the weak a. and K * vertices satisfy exact
I
AI

I

= —,3 10

+(~'IH~ I»')(»'Iw. —IK+)),
(5.7)

where ~ is the 1 =—,
' 0+ meson. The I- =1 2++ state also

gives the contribution through K**(1420) which is pro-
portional to
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rule, the above contributions of a and K*' to MND(K+),
of course, vanish. From the result discussed in Sec. VI of
I, we also have simple asymptotic constraints relating the
relative strength of the weak asymptotic matrix elements
to that of asymptotic axial-vector matrix elements, i.e.,

(I.=0Ia IL. =o) (L =oIA. IL =o) (5.8)

Therefore, we have an interesting relation useful for the
estimate of the relative importance of the level contribu-
tions to M, i.e.,

&L. =oI A IL, =1&&L, =1IH~ IL =0&

(L =o IA IL, =o)(I.=o Iu IL, =o)

M(K+~m. +m. )T 0M (Kg ~n+n )

MND(K+)

M (Ks)+M (K )+MND(Ks)

M (K+)/M (K )

1+M (K )/M c(Ks)

0.2[(M ND(K+ ) /Mg) (Ks )]
1+0.21

(5.1 1)

MND(K )/MD(Ks)=
' —=0.2 —0.4 .s + s o 0.2 —0.4 1

0.5 2

For MD(Kg )/M (Kq) we have used the value 0.21 ob-
tained in Sec. IV and we have neglected MND(Ks ) without
a serious error, since MND(Ks ) &MD(Kz). Crudely we es-
timate

(L=oIA IL. =o)

Equation (5.9) will also hold for L =2, . . .. Then we see
that the diagonal term of Mz(Ks) and the a, K*', . . .
contributions to the MND(K+) (we know that the v,
K', . . . weak vertices violate the

I
b, I

I

= —,
' rule) are pro-

po«onai
I
(K '

IA I

K+)2, . . . , respectively.
It is instructive to consider the saturation of the algebra

[A +,A ]=2 V+, sandwiched between the states

(K+(p )
I

and
I
K+( p ) ) with p ~ oo. Inserting the inter-

mediate states (L =0, 1, . . . ) between the charges A + and

A, we obtain in the limit p ~ oo,

I
&K*'IA.— I

K+
& I

'+
I

&&' IA.— I

K+
& I

'

+
I

(K-' IA I
K+& I'+ ~ ~ =1 . (5.1o)

The dots denote the contribution of L )2 states (including
the radially excited states such as K*, etc). By using
PCAC and the rate of K ~Km decay we obtain

I

(K* IA I
K+)

I
=0.5, i.e., the asymptotic fractional

contribution of the ground state to the algebra is around
50%%uo. From the rate of K*'—+Km decay we get

I

(K** IA I
K+)

I
-0.07 which is significantly small-

er. This suggests that
I
(K (L) IA

I
K+)

I
is small for

the higher-spin states with 1.& 2, so that L, )2 states will
not play an important role for the violation of the

I

b, I
I

= —,
' rule. However, the fact that

I

(K* IA
I
K )

I
=0.»n Eq. (5.10) suggests that

I
(v IA I

K+)
I

is relatively large' and it is probably
reasonable to estimate

I
(~ IA

I

K+)
I

(0.2 —0.4.
%'e now write, assuming that the weak ~ vertex

violates' the
I

b, I
I

= —,
' rule and keeping only the ~ term

in MND(K+),

(5.12)

The factor =—,
' comes from the kinematical mass factor

appearing in Eq. (5.7) and the corresponding one for
MD(Ks). It reflects the fact that the v is heavier than the
K*. We then obtain T- 30

——„. If the nondiagonal
weak vertex (n

I
H~ I v) violates' the

I
5 I

I
= —,

' rule, it
will then produce the nonvanishing MND(K+) term in
Eq. (5.11) and the resulting value of T is thus of the right
order of magnitude to explain the violation of the

I
KI

I

= —,
' rule in the K—+2m decays. It may be noted

that in Eq. (5.11), the ratio of the surface versus the ETC
term -0.21 plays an important role for the suppression of
the

I
b, I

I
= —, contribution. Exactly similar argument

can be repeated for the D+~K m+ amplitude. A main
difference is that for the D -decay, the ratio of the surface
term to the ETC term is 0.49 compared with the value of
the same ratio in the Ks decay 0.21. Therefore, the sur-
face term, which involves the selection-rule-violating
term, plays a more important role for the D-meson decays.
Therefore, the violation of the selection rule in the D+
decay can be considerably larger than the case of the

I
5 I

I
=—,

' rule. Very crudely, T'=M(D+~K n+)/
M(D ~K m+) is estimated to be larger than T by a fac-
tor -7. We hope that we can, in the future, present a
more rigorous version of the scenario described above by
solving the algebraic constraints involving the L, = 1

states. However, we feel that the argument already in-
volves a very new element toward the understanding of
the problem of approximate dynamical selection rules of
the %~2m. and D~Km decays.

The inclusion of the neglected nondiagonal term in the
surface term of the K~ and D decays, especially the
scalar-meson contribution to the D decay, will also modi-
fy the value of R =I (D ~K m+)/I (Ks~m. +—

m )=4.4
obtained in Sec. IV probably upward, to be more con-
sistent with Eq. (4.1). With the future determination of
more precise values of the lifetimes of the D mesons, the
study of the level realization involving the I. =1 level be-
comes interesting.
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APPENDIX A: THE MERIT OF
THE NEW SOFT-MESON TECHNIQUE

We consider the decay process a(p~)~f3(p2)+rtk(q)&
where ~ denotes the pion or other pseudoscalar mesons for
which we use a soft-meson approximation. Conventional
soft-meson approximation q& ~0 involves a rather drastic
extrapolation, since, by four-momentum conservation, we
have to approximate the amplitude at the unphysical
point, m =m~ or p&

——p2. By using the LSZ reduction
formula, we write the invariant amplitude

R =i Jd x e 'q"(m —U)9(xp)

Here F(m p, 0,0) is the amplitude computed by the usual
soft-meson approximation i.e., F(m p, 0,0) =limq

which is given by [compare with Eq. (3.4)],

(p i [Ak(0),H (0)]
i
a)F(m p, 0,0)=—

+ hm qpTI
k

q -&p
(A4)

Therefore, we obta&n

R h„, -F(m~, 0,0)

(m~ —mp )
=F(mp, 0,0)+

ImF(s', 0,0)
—~ (s' —mp )(s' —m~ ie—)

(A5)

E(s,0,0)=E(m~, 0,0)+
s —m 2

a

ImE(s', 0,0)
~

~—~ (s' —m )(s' —s —ie)
(A6)

Therefore, for the physical amplitude of a~P+n, we.
have Rph„, -F(m 0,0), where E(m, 0,0) can be

evaluated by the new soft-meson approximation

F(m~, 0,0)= lim R,
q 0 P]=Pp

The dispersion integral in (A5) corresponds explicitly to
the term neglected in the usual soft-meson approximation
and it is not an easy task to make a reliable estimate of
this term.

In the new soft-meson approximation, i.e, q~0 in the
frame p& ——p2~oo, s~m~ (not mp ). Therefore, we

have instead of (A3),

(A2) F(m, 0,0)=— (p~ [Ak(0),H (0)]a)

In the usual soft-meson approximation q ~0, s =
2

P—(p2+q) ~mp . So we can write Eq. (A2) for the case
k =Oandt=m =0,

l k+ llm qp Tpf q-p p, = p,- (A7)

F(s,0,0) =F(m p, 0,0)

s —m p ~ In&'(s', 0,0)+ 2
ds—~ (s' —m p )(s' —s —ie)
(A3)

Therefore, in the new soft-meson approximation, the
problem reduces to the evaluation of the nonvanishing
contribution of the surface term of (A7) in the limit con-
sidered.
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