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A new approach to nonleptonic weak interactions is presented. It is argued that the presence and

violation of the
~

6 I
~

= T rule as well as those of the quark-line selection rules can be explained in

a unified way, along with other fundamental physical quantities [such as the value of gq(0) and the
smallness of the isoscalar nucleon magnetic moments], in terms of a single dynamical asymptotic
ansatz imposed at the level of observable hadrons. The ansatz prescribes a way in which asymptotic
flavor SU(X) symmetry is secured levelwise for a certain class of chiral algebras in the standard
QCD model. It yields severe asymptotic constraints upon the two-particle hadronic matrix elements
of uonleptonic weak Hamiltonians as well as QCD currents and their charges. It produces for weak

matrix elements the asymptotic
~

6 I
~

=T rule and its charm counterpart for the ground-state had-

rons, while for strong matrix elements quark-line-like approximate selection rules. However, for the

less important weak two-particle vertices involving higher excited states, the
~

b I
~

=
2 rule aud its

charm counterpart are in general violated, providing us with an explicit source of the violation of
these selection rules in physical processes.

I. INTRODUCTION AND SUMMARY

The origin of the approximate
~

b, I
~

= —, rule' has long
been one of the persistent problems of particle physics.
The success of the standard model of weak interactions
suggests that the rule is dynamica/ in origin. In the six-
ties, current algebra, PCAC (partial conservation of axial-
vector current), and the soft-meson technique provided a
new powerful method and achieved reasonable success
for the problem of strangeness-changing weak nonleptonic
processes. However, the very origin of the

~

b, I
~

= —,
' rule

remained unresolved.
With the advent of QCD, recent study dealt with the

underlying quarks and gluons directly. The leading QCD
short-distance correction to the 8'-exchange diagram was
found to be insufficient to enhance the

~

b, I
~

= —,
' contri-

bution and the role of penguin operators, which appear
with quite small coefficients among the effective Hamil-
tonians, has been promoted. A drawback of this quark-
gluon-diagram approach is that one needs a reliable tool to
translate the result obtained at the quark-gluon level into
information about the relevant hadronic matrix elements.
Therefore, the factorization (or vacuum-insertion) approx-
imation, which was introduced a long time ago and was
instrumental in demonstrating the dominance of the had-
ronic matrix elements of the penguin operators over other
amplitudes, must undergo close scrutiny. The hadronic
inatrix elements of the QCD-corrected effective Hamil-
tonians have thus been estimated by using various
models: MIT bag model, relativistic quark model,
harmonic-oscillator model, etc. It is also genera11y

agreed ' that the perturbative QCD short-distance correc-
tion to the 8'-exchange diagram is unable to explain
simultaneously the

~

5 I
~

= —,
' rule and the Cabibbo-

angle-unsuppressed charmed-meson decays. There is even
a claim that nonleptonic physics is essentially determined
by long-distance dynamics.

It has long been recognized that one can impose

~

5 I
~

= —, constraints on the two-body baryon
strangeness-changing weak nonleptonic vertices, by incor-
porating the color-singlet nature of hadrons into the
quark-model wave functions. This result (sometimes
called the Mimura-Minamikawa-Pati-Woo theorem) is in-
dicative of a close link between the possible origin of the

~

5 I
~

= —,
' rule and long-distance physics. However,

though this result is often used as one of the important in-
puts in the current-algebra approach to nonleptonic hype-
ron decays, the satne argument unfortunately fails to
yield the

~

AI
~

= —,
' rule for the two-body boson weak

vertices.
Under these circumstances we attack the problem from

a slightly different angle, paying close attention to the
long-distance dynamics. %'e use current-algebra, PCAC,
and an improved soft-meson extrapolation. However,
most importantly, for the asymptotic two-particle hadron
weak vertices which play a crucial role, we derive an alter-
native to the Mimura-Minamikawa-Pati-Woo theorem
which now works for ground-state bosons as well as for
baryons. The derivation is based on one dynamical an-
satz' called level realization of asymptotic flavor SU(N)
symmetry. The same ansatz has already successfully pro-
duced' in other places a correct value of gz(0), a good
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prediction" for the nucleon anomalous magnetic moments
kz ———k„, the Okubo-Zweig-Iizuka (OZI) rule' for the
asymptotic two-particle hadronic matrix elements, etc.
Hence, we claim that a number of seemingly unrelated
phenomena, i.e., the

~

b, I
~

= —,
'

rule, the well-known
smallness of the isoscalar components of nucleon
anomalous magnetic moments, the selection rules for the
P~pn, f'~m~ decays, etc. , as well as the value of gz(0),
may all have the same theoretical origin. In this picture,
they are the patterns by which hadrons respond to the
constraints imposed upon them by the underlying quarks
and gluons.

In a recent Letter, one of us (S.O.) pointed out' that the
dynamical

~

4 I
~

= —,
' rule can emerge as a result of con-

straints imposed upon certain asymptotic two-particle
weak matrix elements, exactly in the same fashion as the
OZI-type rule emerges, in the same theoretical framework,
among the two-body hadronic matrix elements of the vec-
tor and axial-vector currents and their charges. ' It was
then argued, by using a soft-pion extrapolation, that the
observed

~
6 I

~

= —, rule in the IC-meson decays is the re-

sult of the existence of an exact
~

b, I
~

= —,
' rule for the

asymptotic two-body weak vertices involving ground-state
mesons. In a subsequent Letter, ' we pointed out that the
same method could also be extended to the charm-meson
decays, thereby providing a unified description of the
charm- and strange-meson weak nonleptonic processes.

The purpose of this (called I) and the subsequent (called
II and III) papers is to give, with a substantial technical
improvement, a more complete account of hadronic weak
nonleptonic interactions. The scenario is as follows: In I,
we make a comprehensive study of the asymptotic weak
two-body ground-state hadron matrix elements of the
strangeness-changing Hamiltonian H' ' ' =H(b, C =0, —
b,S = —1) and the strangeness- and charm-changing
Hamiltonian H' ' '—:H(b, C =hS = —1). We show that
the requirement that asymptotic SU(2) and SU(3) symme-
try be realized levelurise among the chiral algebras involv-
ing H' ' ' and H' ' ' does impose severe constraints
upon the asymptotic hadronic matrix elements. Namely,
we see that the

~
4 I

~

= —,
' rule or the octet rule in SU(3)

and also the XV =0 rule ( Vis V spin) or 66* dominance
in SU(4) do emerge (but only asymptotically) for the
ground-state hadron two-body matrix elements of H' '

and H' ' ' and further that the weak matrix elements
satisfy certain SU(6)- or SU(8)-type relations also asymp-
totically. In some particular cases, these selection rules do
emerge hand in hand with the OZI rules for the strong
hadronic asymptotic matrix elements involving the axial-
vector charges, corroborating the claim that these two
seemingly different selection rules indeed share the same

dynamical origin. However, for other less important
two-particle weak hadron vertices involving excited states,
the above asymptotic b, I

~

= —, rule, etc., are violated,
providing us with an explicit source of the violation of the
rules.

In papers II and III, we relate the asymptotic two-body
weak matrix elements obtained in I to the physical ampli-
tudes. We develop a new soft-meson technique especially

suited to the present approach which uses the concept of
asymptotic flavor symmetry. We use q —+0 instead of
(q )&~0 in the infinite-momentuin frame of the parent
particle, which, in effect, produces a hard-meson extrapo-
lation. A part of the usually neglected surface term in the
soft-meson approximation then turns out to give a non-
vanishing contribution. However, we may again use the
concept of levels of hadrons in evaluating the surface
term. Keeping, for the moment, only the ground-state
contribution in the surface term, we relate the rate of
X ~2m. decays to that of the D ~Km decays and obtain
a reasonable numerical result in paper II. Hyperon non-
leptonic interactions are treated in paper III.

II. THEORETICAL FRAMEWORK AND METHOD

We work in the theoretical framework' which deals
directly only with observable hadrons and not with (con-
fined) quarks and gluons. Nevertheless, the underlying
quarks and gluons do control the world of hadrons firmly
in the following two respects: (i) Hadrons are severely
constrained by the presence of the QCD algebras, involv-
ing especially the vector [V~(x)] and axial-vector [Ag(x)]
currents and their charges which enter into the world of
hadrons as observable weak currents. The successful cal-
culation of gz(0) by Alder and Weisberger' was indeed
carried out in this theoretical framework: (ii) Hadrons
have to obey a certain level scheme of (mainly qq and qqq)
constituent model. This may be the simplest abstraction
of long-distance physics of the underlying quark-gluon
dynamics. The qq and qqq level scheme immediately fixes
the flavor multiplicities of hadrons associated with each
level, without using the notion of broken higher symme-
try. Furthermore, the concept of levels can, at present, be
rather flexible and need not be tied to nonrelativistic
model. '

In this theoretical framework, one proceeds as follows.
The various chiral quark algebras which we are going to
use are valid in broken SU(N) flavor symmetry. This pro-
vides a remarkable opportunity to deal with broken SU(N)
flavor symmetry in a nonperturbative way, by introducing
a dynamical ansatz called asymptotic SU(N) flavor sym-
metry. ' It states that in the asymptotic limit the flavor
SU(N) transformation does maintain its linearity [includ-
ing the possibility of SU(N) particle mixing] in the pres-
ence of the SU(N) flavor symmetry breaking and that the
nonlinear terms vanish sufficiently fast in the asymptotic
limit. It has been shown' that this hypothesis can be
inade in the presence of Gell-Mann —Okubo mass split-
tings with SU(N) particle mixings. The use of this
asymptotic ansatz in realizing the algebras involving
SU(N) charge V permits us to derive broken- SU(N)-
symmetry sum rules as asymptotic constraints. The most
useful consequences is that one can parametrize, in broken
symmetry, the asymptotic matrix elements of important
operators (charges, currents, weak Hamiltonians, etc.) in
terms of the usual prescription of exact symmetry plus
general SU(N) mixing. What we are going to derive is not
a strict

~

b, I
~

= —,
' rule but rather an asymptotic
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~
b, I

~

= —,
' rule valid in broken SU(3) symmetry.

Another (nonperturbative) dynamical ansatz made at
the level of hadrons, which has been found to work re-
markably well, is called level realization of asymptotic fla-
vor SU(N) symmetry in the class of chiral algebras involv-
ing the axial-vector charges 3 . For example, one may
consider the algebraic constraints given by the charge-
charge or charge-current chiral SU(2)t I3) SU(2)g-type alge-
bras' '" such as

[A +,A ]=2V3,

[[A3,A +],A ]=233

and

(2)
r

[[V&3(0)(A&3(0)),A +],Q ]=2V~3(0)(3~3(0)) etc. ,

[[JgM(0)(Ag(0)),A +],A ]=2V3(0)(2~3(0)) etc.

(4)

Here JaM(x) and A3v(x) are the electromagnetic and the
weak axial-vector neutral currents, respectively; A +
=A &+iA2, etc.

The ansatz requires that the realization of the asymp-
totic flavor SU(N) symmetry in these algebras should be
leuelmise. %'e sandwich these algebras between the hadron
states, (B~(a,p, A, )

~

and
~
Bst(P, p ', A, ')), belonging to

the same level M with infinite momenta, phoo and
p'~oo. a and P denote the physical SU(N) indices
(m, K,D, . . .) and (A, , A, ') the helicities. The right-hand side
(RHS) of this equation is denoted by C(a, A, ;P, A, '). On the
left-hand side (LHS) we insert a complete set of single
particle hadron intermediate states' among the factors of
the equal-time commutation relations. For sing1e commu-
tators such as Eq. (1), we distinguish, among the set of
complete intermediate states, the fractional contributionf (a, A,;P,A, ') which sums the entire contributions coming
from all the single particles (hadrons) belonging to a par-
ticular leuel L (L =0, 1,2, . . .). Thus, the equation takes
the form,

where f +f'+f + =1, unless all C(a, i,;P, A, ')'s
vanish under the SU(N) rotation of physical indices a and
P. For Eq. (S), we now study the possible variations of the
SU(N) induces a and P which produce meaningful (i.e.,
not trivially zero) values of C's. On the LHS the inter-
mediate states also undergo a corresponding SU(N) rota-
tion. The ansatz states that the (asymptotic) fraction f
of level L, could depend on the choice of the helicity states
(A,,A, ') but not on the SU(N) indices a and )8, i.e., it is in
Variant under the SU(%) rotation in the asymptotic limit
In the case of double commutators such as Eqs. (2)—(4),
there appear two sets of intermediate states so that the f's
will be eharaeterized by two indices, f . As the special
realization pattern of Eq (5), we. can also have
0+0+0+ =0, i.e., all the C's related by SU(N) rota-

tion are zero and on the LHS these are then realized by
having a vanishing contribution from each level
L (L =0, 1,. . .).

The idea of level realization is not as radical as it
sounds. For example, let us consider the level realization
of SU(2) symmetry in the algebras Eqs. (1) and (2) among
the SU(2) boson multiplets with u and d quarks assuming
exact SU(2) symmetry. We then find that the realization
is automatically satisfied. If we extend the procedure
from SU(2) to SU(3) multiplets by introducing s quark,
the realization now implies' that the P~pn. , f' &em.—de-
cays, etc. , are forbidden, if the P and f' mesons were pure
ss states. Actually, if all the qq meson nonets are ideal,
the realization of Eqs. (1) and (2) are automatic, ' which
suggests that the near ideal character of most of the qq
nonets is closely related to the working of the ansatz.
The realization of the algebras Eqs. (1)—(4) among
ground-state baryons produced, ' ' " among others, the
correct value of g~(0), k~ = —k„, etc. , mentioned before.
The task of this and subsequent papers is to study whether
we can accommodate the

~
b I

~

= —, rule and the related
problems in this pattern recognition of dynamical con-
straints in the hadronic world.

III. ALGEBRAIC CONSTRAINTS INUOLUING
NONLEPTONIC WEAK HAMILTONIANS

The nonleptonic Hamiltonian (in the local limit) of the
standard four-quark scheme is described by

Ho ——(G/2~2) J d xj&+'(xj)z '(x):,
with the current j&(x),

j„'+' =cos8cuy Ld +sin8cuy&l s + ( —sin8c)cy„Ld

+cosOgc+pL s

j(—)
(

( )) y (1+ )
~ ( —) ~ (+) f

As far as the transformation property of the quark
fields under SU(4) in flavor space is concerned, the
current may be conveniently denoted by

j '+' cos8 ~++ sin8~Ã++( —sin8 )D++ cos8 F+ .

The charm-conservin~ and strangeness-changing (~=
—1) Hamiltonian Ho' ' and the Cabibbo-angle-favored
strangeness- and charm-changing (AC =M = —1)
Hamiltonian H {}

' ' are given symbolically by

Ho ' ' sin8ccos8c(m. +E——: D+F )—
H {}

' ——cos ec7T+I'

respectively.
We now demand that the effectiue Hamiltonian (in the

local limit) H responsible for the b, C =0,
~

b,S
~

=1 pro-
cess commutes with the generators of the chiral group
SUf (2)g, i.e.,

[H(
~

~
~

=1),V —A~]=0 (a=1,2,3),
where a denotes the isotopic-spin indices and V~ and A~
are the vector and axial-vector charges appearing in Sec.
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II. In the current-algebra approach to nonleptonic weak
interactions, Eq. (8) played a crucial role. ' The bare
Hamiltonian, Eq. (6), of course, satisfies Eq. (8), since the
Glashow-Iliopoulos-Maiani currents contain only the
left-handed components of quarks. However, Eq. (8) al-
lows, more generally, the right-handed components of u

and d quarks to appear in H as long as they form an isoto-
pic spin singlet, while both the right- and left-handed
components of s and c quarks can enter into Eq. (8) freely,
since they are isospin singlet. Equation (8) can be cast
into the following forms for the effectiue Hamiltonian
H' ' ' for the processes with b,C =0 and ES = —1:

l[H" 'A -] A +]=l[H" ' V -l V+]
[[H' ' ',A +],A ]=[[H' ' ', V +],V ] .

(9a)

(9b)

[[H' ',A ] A +]=[[H' ' ', Vx ] V +], (10a)

[[H' ',A +],A ]=[[H' ' ', V +],V ] . (10b)

We emphasize that the validity of Eqs. (9a)—(10b) is in-
dependent of chiral symmetry breaking.

IV. DERIVATION OF
THE ASYMPTOTIC

l
6 I

l
= z RULE AND

THE OZI RULE FOR MESONS

In order to avoid the unnecessary complications caused
by the proliferation of quark flavors, we, in this section,
restrict ourselves within the framework of asymptotic
SU(3) symmetry.

The validity of Eqs. (9a) and (9b) in the world of hadrons,
is instrumental in deriving selection rules in this paper.
Since they involve two axial charges, the parity-conserving
and -violating parts of H, H, and H, satisfy these
equations separately, whereas the single commutator Eq.
(8) connects H to H such as [H,A~]=[H, V~].
Therefore, the algebras Eqs. (9a) and (9b) provide us with
a weaker version of the current-algebra constraint Eq.
(8) and, in fact, they are satisfied by the QCD-corrected
Hamiltonians, even including the penguin operators.
When we discuss possible selection rules associated with
the charm mesons, it is natural to relax Eq. (8) so that the
effective Hamiltonian for the Cabibbo-angle-favored
charm- and strangeness-changing processes H ' com-( —,—)

mutes with the generators of the chiral group SUf(3)g.
Corresponding to Eqs. (9a) and (9b), we have

We now consider the level realization of asymptotic
SU(3) symmetry in the chiral SUf(2)1 SSUf(2)~ type
algebras, Eqs. (9a) and (9b). We insert these algebras be-
tween the ground sta-te mesons, & B(a, p, A, )

l

and

l
B(P,p ', A, ')), with a=++', rl, g', p+', P, co and

P=K+', K'+' . We take both p and p
' along the z axis

(actually, p '= p in the present case) and let p~ 00, in or-
der to cope with broken SU(3) symmetry using the ansatz
of asymptotic SU(3) symmetry. Gn the LHS of these
equations we look at the fractional contribution coming
from the ground-state (0 + and 1 ) mesons.

A. A, =1 sum ~les

To demonstrate the working of the remarkable interplay
mentioned in Sec. I (especially between the weak vertices
and the strong couplings), we start with the sum rules in-
volving the matrix elements of H' ' ' inserted between the
ground-state mesons with helicity + 1, i.e.,
&B(a, p, k, =l) lH' 'lB(P, p', V=1)) with p'=p
—+ao. For simplicity, we write simply H' ' '—:H in Sec.
IV. For the parity-conserving Hamiltonian H the ma-
trix element

[2«)]'"[2«P')]'"
x&B(a,p, k, =l) lH

l
B(P,p, A, '=1))

will take the form proportional to e& (p, A, )e&(p', A),
while it is proportional to e&„fez (p, k) e (p', A, ')p~pz
for the parity-violating Hamiltonian H . e&(p, A, ) is the
polarization four-vector of the vector meson B(a, p). The
latter coupling thus vanishes in the exact-SU(3)-symmetry
limit, i.e., p& —+pz. However, to our approximation the
asymptotic matrix elements of H involving helicity
I,=+1 states remain to be zero even in broken SU(3) sym-
metry. This is the consequence of asymptotic SU(3) sym-
metry and CP invariance. We now insert Eqs. (9a) and
(9b) between the A, =l vector-meson states (p'=p~co),
i e.,: (i) between &p+(p, k.= 1)

l

and lK'+(p', l, =l)); (n)
&p l

and lK' ); (iii) &co
l

and lK ); and (iv) &P l
and

lK ). Then, in the intermediate states on the LHS of
these equations, the contribution of the ground-state
mesons (0 + and 1 mesons) consists solely of the 1

mesons with A, =1. Writing out explicitly this ground-
state contribution for the case (i)—(iv) [assuming exact
SUf(2) symmetry], we obtain for the realization of Eq.
(9a) (H =H in this subs—ection),

—&p+(5) IA.+ l~ 0'&&~ & IH IK"&&K"IA —IK*+(p')&+&p+(p) IA.+ l~, y&&~,y lA. lp+)&p+ lH lK*+(p )&

+ higher-level contributions =v 2&p lH lK )+2&p+ lH lK +),

&p lH lK )&K lA lK +)&K lA + lK' )+ higher-level contributions

=3&p'lH
l
K")+v 2&p+

l
H lK*+) (12)
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I

&'+
&
«'+

I A.+ I

~"'&—
& ~

I A.—I

p+ & &s+
I
H

I

&'+
&

&&'+
I A.+ I

&"'&

~&to IA + Ip &&p IA lto, g&&c0,$ IH IK' &+ higher-level contributions =&to
I
H IX &, (13)

[replace to by P and P by co in Eq. (13)] .

In the same way, the realization of Eq. (9b) for cases (i)—(iv) is

(14)

&s+ IHI)("+&«'+ fA.+ I&"&&I:*'IA.—I&*+&—&s+ IA.+ I~ 4&&~ 41H I&"&&I:"IA.

+ higher-level contributions =v 2&p
I

H
I

II:* &+ &p+
I

H
I

EC*+ &, (15)

(zero, i.e. , no ground-state contribution) +. higher-level contributions =2 & p I
H

I

E'
& +~2 &p+

I
H

I

K'+ &, (16)

—&~
I A.—Is

+
&&s

+ IH I

&*+&«*+
I A.+ I

&*'&+&~
I A.—

I
p+ & &p+

I A.+ I
~ 0 & &~ 0 IH

I

&*'&

~ higher-level contributions =
& co

I [[H, V + ], V ] I

E'
& =0, (17)

[replace to by P and P by co in Eq. (17)] . (18)

g

P =P~oo ~ (19)

since the RHS of Eqs. (17) and (18) are also zero. In this
case the pattern of the level realization of asymptotic
SU(3) syminetry in the algebra Eq. (9b), i.e., Eqs.
(15)—(18), takes the form mentioned in Sec. II,

Q+Q+ ~ ~ ~ Q

In the process, we also discover that, in addition to the
constraints imposed on the weak vertices (which include
the

I
5 I

I

=—,
'

rule), the following constraint on the strong
couplings (the asymptotic axial vector matrix elem-ents)
must also be satisfied simultaneously,

&y(p, k, =l) IA I
p+(p, k, =l) &

&c0(p, A, =1) IA Ip (p, k, =l)&

On the RHS of Eqs. (11)—(18) we have already used exact
SUy(2) symmetry.

The zeros which appear in Eqs. (16), (17), and (18) are
due to conservations of the G parity and the strangeness in
the strong couplings involved. The structure of Eqs.
(15)—(18) are already suggestive of the presence of the

I
6 I

I

= —,
' rule. Namely, the ground-state contribution in

Eq. (16) vanishes (the strong coupling s such as

&p I
A

I
p+ & are G-forbidden), which implies that the

asymptotic fraction of the ground state or the RHS of Eq.
(16) is zero. Namely, the sufficient condition to satisfy
the requirement of the level realization in the algebra (9b)
1s

~2&p (p, k, = 1)
I
H

I

K' (p ', A, = l) &

+&p+(p, a= 1) IH I
re'+(p', X= 1)&=0,

= —tan(8 p
—Op), (22)

g APP1T

where Op is the ideal angle, sin8p ——+(—, )'~ . In the ideal
limit, 8~——Op, in which the P meson takes a pure ss con-
figuration, the presence of the strict quark-line rule

g~~ ——0 is thus assured within the theory. Therefore, the
overall consistency is remarkable and it provides a strong
justification for the claim that both the

I

b. I
I

= —,
' rule

and the quark-line rule have the same dynamical origin.
We now solve Eqs. (11)—(18).

In the limit p~ao, asymptotic SU)(3) symmetry per-
mits the SUt(3) parametrization of the asymptotic axial-
vector matrix elements. If we write (for p ~ ao )

&tp(p) IA
I p &=&s+(p) IA, l~p&—=s,

&4(P) IA + Is &=&s+(p) IA.+14&=D
(23)

we then obtain (from the algebra [V~,Ati]=if tier and
asymptotic SU(3) symmetry)

&
Ic'+( p )

I
A ~ I

K*P
& = &K"(p )

I
A

I

x*+
&

where

=(—,)' (cD +sS), (24)

c:—cosO~ and s =—sin8~ . (25)

We introduce the following abbreviations for the asymp-
totic weak matrix elements under consideration:

&p+ IH fry*+&= ). , &p'IH Irc*p&—=&,

ferent class of chiral algebras, i.e., Eqs. (1)—(4), and it
reduces via PCAC to

= —tan(8 ~
—Op), p~no . (21)

Actually this constraint has also been found ' for the
level realization of asymptotic SU(3) symmetry in dif Then Eqs. (11)—(14) will take the form

(26)
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—( —,
' )' (pS+yD)(cD+sS)+A, (S +D )

=(v 2a+2A. )k, (11')

3(cD+sS) —(S +D )=0 (31)

—,'a(cD+sS) =(3a+ v 2A, )k, (12')

,' p(cD—+sS)'—( —,')'~'AS(cD+sS)+ pS'+yDS =pk,

which is a constraint on the asymptotic axial-vector ma-
trix elements (i.e., strong couplings) and the physical co-P

mixing angle 0 ~, i.e.,

(13')

—', y(cD+sS)~ —( , )'~ AD—(cD+sS)+pDS+yD =yk,
3(cos8„++sin8~P) =S +D (32)

where k is the asymptotic fraction of the ground-state
contributions (k:f ). —

Equations (15)—(18) will also become

—', A, (cD +sS) —( —, )' (pS +yD)(cD +sS)

=(v 2a+A, )k', (15')

0=(l 2a+A, )k',
—( —', )'"X(cD+ss)+pS+ yD =(O.k') =0,
—( —', )'i A(cD +sS)+pS +yD =(0 k') =0

(16')

(17')

(18')

where k' denotes the asymptotic fraction of the ground-
state contribution. Among the set of constraints, Eqs.
(15')—( l8'), the independent ones are

(A, +~2a)k'=0,
( —', )'i k(cD+sS) —(pS+yD) =0 .

(16")

(17")

Since (cD+sS)&02 and a&0, we know from Eq. (12')
k~O. With Eq. (17"),Eqs. (13') and (14') become

', (cD +sS) p—=pk,
', (cD+sS) y—=yk,

(13")

(14")

respectively, which imply (since p&0 and y&0) for the
asymptotic fraction k

k = —,
' (cD +sS) & 0 .

If we insert this value of k into Eq. (12') we obtain

v'2a+A, =O . (28)

V 3a(cD +sS)+(pS +yD) =0, (29)

which is a new nontrivial constraint [it is not an SU(3) re-
lation], imposed on the weak matrix elements involving
neutral vector mesons as well as the strong couplings D
and 8, i.e.,

Equation (28) is the desired
~

b, I
~

= —, rule stated in Eq.
(19). If we use this information, Eq. (28), in Eq. (17"),
we obtain

One of the two possible solutions for the ratio D!Sof Eq.
(32) is the correct one ' given by Eq. (21), which leads
to the strict OZI rule in the ideal limit and prescribes the
degree of the violation of the selection rule correctly. The
level realization of the algebra, Eq. (9a), is achieved with a
universal asymptotic fraction k of the ground-state contri-
bution given by Eq. (27). In the ideal limit of 1

mesons, i.e., 8~=00,

D=O and k=TS2 (33)

Q. A, =0 sum rules

We again consider the level realization of asymptotic
SU(3) symmetry, which yields the sum rules involving the
helicity A, =O states, i.e., (8(a, p, A, =O)

~

H
~
B(p, p ',

A, =O)). We insert the algebras, Eqs. (9a) and (9b), be-
tween the states (8(a)

~

and
~

8 (P) ) where (a,P) runs:

(i) (m+, K+),(n. ,K ),(ri,K ),(ri', K );
(ii) (p+,K'+), (p,K' ),(~,K* ), (P,K' );
( iii) (p+,K+ ),(p,K ),(co,K ),(P,K );
(iv) (m+, K'+), (m. ,K' ),(ri,K ),(g', K' ) .

A comparison between the level realization ansatz and
the truncation assumption may be in order here. The
difference between these two approaches can be best seen
in Eq. (27). The truncation assumption is usually based
on the saturation of algebras by low-lying states; thus the
asymptotic fraction k must be equal to one. Then Eq. (27)
becomes, with Eq. (31), S +D =2(k =1), which yields a
result inconsistent with experiment. Namely, it spoils
the overall consistency of Eq. (27) with both the

~
b, I

~

= —,
' rule, Eq. (19), and the quark-line rule, Eq. (21).

In contrast to the truncation assumption, the level realiza-
tion allows Eq. (27) to be consistent with all other equa-
tions, since the fraction k is now an adjustable parameter
to be fixed. In Appendix A, SU(3) constraint among the
weak matrix elements involving neutral vector-mesons is
derived for illustration.

W3(cos8„++sin8„P)(p ~H ~K* )

+S(co iH iK' )+D(P iH iK ) =0. (30)

If we multiply k (A, = —~2a) on both sides of Eq. (11')
and use Eqs. (27) and (29), we then obtain, since a&0,

In contrast with the case considered in Sec. IV A both 0
and 1 of the ground-state mesons with A. =O can now
participate in the level realization. We explicitly write
down the ground-state-meson contribution to the level
realization of the algebra, Eq. (9a). For the case (i), we ob-
tain (H =H (b,c=O, bS = —1))
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—&~+
I ~„+ Is' & &a' IH IK"'&&K"l~„- IK+ &+ &~+

I
~ + I)o'&&a'l~ —

I

~+ &&~+ IH IK+ &

+ higher-level contributions =W2&m IH I
K &+2{m.+ IH I

K+&, (34)

+ &~'
I ~.+ I s & &s

+ higher-level contributions =3{m IH IK &+@2&m+ IH IK+&, (35)

{vg IH IK &&K IA IK*+}{K'+IA fK &+ higher-level contributions ={riIH I
K &,

&n'
I
H IK'& {K'

I
~ —

I

K*+
&
«'+

I
~ + IK'&+ higher-level cont~b«ious = &n' IH IK'&

Similarly for the algebra, Eq. (9b), we obtain for the case (i),

&~+ IH IK+&&K+ l~ + IK*'&&K"'l~.—IK+& —&~+ l~ + ls'&&)o'IH IK"&&K"l~ —IK+&

+ higher-level contributions = ~2{m
I
H

I
K &+ {m+

I
H

I

K+ &,
—&~'l~ —le+&&p+ IH IK*+&&K'+ l~ + IK'&+&~'l~ —le+&&p+ l~ + l~'&&~'IH IK'&

+ high«-level co«~b«ions = 2&~'IH IK'&+W2&~+ IH IK+&

(no ground-state contribution)+ higher- level contributions = {q I [[H, V +],V ] I
K & =0,

(no ground-state contribution)+ higher-level contributions =
&
q'

I [[H, V +],V ] I
K & =0 .

(39)

Equations (40) and (41) immediately suggest that the realization pattern of the algebra, Eq. (9b), in the present case is the
same as in the case of A, = 1 which is given by Eq. (20) (no ground-state contribution)+0+ ~ =0. Then, the RHS of
Eqs. (38) and (39) immediately imply

v 2&sr (p)
I
H

I
K (p')}+{n+(p)

I
H

I
K+(p')&=0, p'=p~co . (42)

This is nothing but the asymptotic
I

b, I
I

= —, rule for the m-K vertices. Our remaining task is to check whether this is
consistent with the whole set of constraint Eqs. (34)—(41). Again we parametrize the asymptotic axial-vector matrix ele-
ments using asymptotic SU(3) symmetry as follows:

{rf+(p) I&, I
p'(p)&= —~2&K+(p) IA, IK"(p)&=F~O, p~m .

Then Eqs. (34)—(37) become

( —,
' )'"F'&s'IH IK"&+F'&~" IH IK+ & =(v 2&~'IH IK'&+'-&~+ IH IK+ &)I

—'F'&~'IH
I
K'&+( 2

)'"F'&p+ IH IK*+ & =(3&~'IH IK'&+v 2{~+IH IK+ &)I *

.F'{n IH IK'—&= &g IH IK'&I

—,'F'&~ IH IKo&=&~ IHIK'&Z,

(44)

(47)

where / is the asymptotic fraction of the ground-state con-
tribution to the algebra, Eq. (9a). Equations (46) and (47)
then yield

{p+(p,k, =o)
I
H

I
K'+(p ', A, =O) &

={a+(p)IH IK+(p')&, p'=phoo . (50)

2
If we combine Eqs. (49) and (50) with Eqs. (42), we obtain

48

v2{p (p, A, =O) IH IK' (p', A, =o)}
Inserting this value of l into Eqs. (44) and (45), we now
obtain the SU(6)-type constraints on the asymptotic weak
matrix elements:

+ {p (p, A, =O)
I
H

I
K' (p ', X=o) }=0,

P =P~(x) ~ (51)

&p (p, A, =O) IH IK* (p', A, =o)&

={@(p))H IK (p')&, p'=p~oo (49)

which is exactly the statement of the
I
6 I

I

= —,
' rule for

the asymptotic weak vertices &p(~=0)
I
H

I
K*(~=0)&.

The ground-state contributions on the I.HS of Eqs. (34)
and (35) are F ({n'+

I
H I K+}+v2 {p I

H
I

K* &) and
( —,

' )'~ F2( &p+
I
H

I

K'+
& +v 2& mol H

I
K & ), respe-ctively,
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=&~+(p)
l
II

l
x'+(p ', A. =o)&, p '=p~~, (53)

as well as the
l
b, I

l
= —,

' rule for the asymptotic weak
vertices:

v 2&p (p, A, =O) lH lX (p')&

+&p+(p, A, =O) lH lK+(p')&=0, (54)

v 2{sr (p) l
H

l

K' (p ', A, =o) &

+& +(p) lH lX'+(p', X=O)&=O. (55)

The rest of this section is concerned with presenting
further SU(6)-type constraints on asymptotic weak ver-
tices involving the helicity A, =o states. The following
algebra is used for the level realization of asymptotic
SU(3) symmetry (see, however, Ref. 23):

[HPC, W, ]=—,'H' .

By repeating the same procedure of level realization for
cases (i) and (iii) [or equivalently (ii) and (iv)], we obtain,
with the aid of Eqs. (49) and (50), and also of Eqs. (52)
and (53)

&p (p, A, =O) lH lK (p', A, =o)&

=+&~ (p) lH lac* (p', A, =o)&, p'=phoo,

both of which vanish (as is also required by the level-
realization pattern) because of Eqs. (42), (49), and (So).
Therefore, the whole set of constraints derived from Eqs.
(34)—(41), is remarkably consistent with each other and
requires the existence of the

l
b, I

l

= —,
'

rule, Eqs. (42) and
(51), as well as the SU(6)-type constraints, Eqs. (49) and
(50). Another interesting fact is that the fractions, k and l
of the ground states to the algebra Eq. (9a) for the A, = 1

and X=o cases are the same, i.e., k =I. This is because
from the level realization of the algebra Eq. (3), a relation,
F =3(cD+sS), was obtained in Ref. 26. This relation
implies (g + +/mz) =g + consistent with experi-
ment. The pattern found is thus impressive.

The application of the same procedure to case (ii) re-
peats exactly the same information. For cases (iii) [and
(iv)], the level-realization ansatz produces again SU(6)-
type constraints for H =H (b,C =O, ES = —1):

&p (p, l, =o)
l
H

l
K (p') &

= &
n. ( p )

l
H

l

K' ( p ', A, =0) &, p '= p ~ao, (52)

{p+(p,l, =o)
l
H

l
K+(p') &

and
&p+(p, A, =O)

l
H

l
K*+(p ', A, =o) &

=+&~+(p) lH'viz*+(p, ~=o)&, p =p
(58)

respectively. The signs appearing in Eqs. (57) and (58)
correspond to the two possible solutions for the asymptot-
ic axial-vector matrix element I', respectively,

(59)

where l is the universal asymptotic fraction of the
ground-state contribution given by Eq. (48). We will

present the charm counterpart of asymptotic l
b I

l
= —,

'

rule and other constraints on the asymptotic two-body
ground states involving charm mesons in the following
section.

V. DERIVATION GF THE CHARM COUNTERPART
OF TIIE ASVMPTOTIC

l
S I

l
= —,

' RUI.E

We now use the commutator, Eq. (10b), which involves
the Cabibbo-angle-favored charm-lowering Hamiltonian
H' ' ' and the axial-vector charges A& and A, to derive
the charm counterpart of the

l
hI

l

= —,
' rule for the

asymptotic matrix elements of H' ' '. We here address
to the problem of how to extract a reliable information on
the matrix elements involving charm particles in spite of
the presence of large symmetry breaking of SUf(4). The
method used in Ref. 14 is less stringent in this respect. In
deriving the asymptotic

I
b, I

I

=
2 rule in Sec. IV from

Eqs. (9a) and (9b), we needed to deal only with the SUf (3)
parametrization of the asymptotic matrix elements of the
axial-vector charges 3 . However, in the present case, the
realization of Eqs. (10a) and (lob) requires in general the
SUf(4) parametrization of the asymptotic matrix ele-
ments of the axial-vector charges Ax in addition to those
of the axial charges A . The SU~(4) parametrization of
these asymptotic matrix elements will be less accurate
than in the case of SUf(3), even if we take into account
the SUf(4) mixing among the I = I'=0 members of
SUf(4) 16-piet thoroughly. 29 However, we find a way to
relate the asymptotic two-body matrix elements such as
&~+ lH' 'lF+& and &K lH' — 'lD'& without con-
fronting with the SUf(4) parametrization of Ax and A

To see this, we apply the level realization in Eq. (lob)
for the asymptotic states (with A, =o), i.e., (m+, D+), .
(m, D ), (K+,F+), and (q, g' and g„D ). Writing out ex-
plicitly the ground-state-meson contribution to the level
realization of the algebra, Eq. (10b), we obtain
(H =H'- -')

&~+
I
H IF+ & &F+

I ~~+ I

D"
&

&D*'
I ~„- ID+ &

—&~+
I ~~+ I

&"
& &&"

I

H ID"& &D"
I ~.—ID+ &

+ higher-level contributions = & n+
l
H

l
F+

& + & g l
H

l
D &, (60)

—&~'l~.—lc+&&t+ IH IF +&&F'+ l~ + ID'&+&~'l~.—Is+&&s+ l~ + I&'&&&'IH ID'&

+ higher-level contributtons =~2( &
m. +

l
H

l
F+

& + & K
l
H

l
D & ),
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(zero, i.e., no ground-state contribution)+higher-level contributions= (X+
I [[H, V~+), V ) I

F+)=0, (62)

(zero, i.e. , no ground-state contribution)+higher-level contributions= (g, i),g, I [[H;V +],V ] I
F+)=0 . (63)

On the RHS of Eqs. (60)—(63) we have already used exact
SUI(2) symmetry and asymptotic SUf(3) symmetry for
the matrix elements of the charge Vz. It is important to
realize that the zeros which appear on the LHS of Eqs.
(62) and (63) are due to conservation of G parity and the
strangeness in the strong couplings involved. Therefore,
the validity of Eqs. (62) and (63) is independent of the
SUf (4) parametrization of the asymptotic matrix elements
of Ax. . Then, by the same pattern recognized in Sec. IV,
we immediately conclude that the ground-state contribu-
tions on the I.HS of Eqs. (60) and (61) must vanish, i.e.,

(~+ Ia IF+)(F+ lw ID*')

(~+
I
H

I

F*+) + (Ic'
I
H

I

D*') =0,
(p+

I
H

I

F+ ) +(x"
I
H

I

D') =0,
(69)

(p+ lalF*+)+(wc*'IHID*')=0, y =y

l

of asymptotic SUf(4) rotation. In Ref. 14, however, all
the above sum rules were obtained, on the same footing,
using asymptotic SUf(4) symmetry. ] In the same way as
above, we can also derive other asymptotic AV=O in ad-
dition to Eq. (66), i.e.,

and

—(~+ IA + Irc*')(rc" la ID")=o and the counterparts of Eqs. (67) and (68) which we do
not write down. The relations between the A, =O asymp-
totic matrix elements of H and H are obtained
through the realization of the algebra

&p+ Ia IF"&&F'+ I~..ID'&

—(p+ IA + IK IH
I

Do)=0,
[H',w, ]=a"

(65)
corresponding to Eqs. (57) and (58), we get

(70)

and that the RHS of Eqs. (60) and (61) also vanish, i.e.,

&ir+(y') la IF+)y)&+&&'(y') la ID'(p)&

=0, p '=y~ao . (66)

(p+ H IF+(p)&
+

I

H'
I
F+(p) &, p (71)

Equation (66) constitutes the charmed counterpart of the
asymptotic

I
b, I

I

= —, rule, Eq. (42), and plays an impor-

tant role for the Cabibbo-angle-favored D-meson decays.
Equation (66) can then be read as implying the asymptotic
EV =0 rule ' (conservation of the V-spin and Vi ) for the
asymptotic two-body ground-state-meson weak matrix ele-
ments, since (ir+,X ) and (F+, D) or (D,F—) with in-
finite momenta may be regarded as the V-spin doublets.
Equation (66) is exact to the extent of the validity of
asymptotic SUf(3) symmetry under consideration. As for
Eqs. (64) and (65), suffice it to say that they read in the
asymptotic SUf (4) limit

&~+(y') la IF+(y)&+&K*'(y') la ID"(p)&

=0, p'=y~a), (67)

=+(m+ IH IF*+(p)), y~~,
(I~'I a"ID'(p) &

=+&re'Ia'vlD"(y)), y-

(72)

[a'- -', V,]=cote,a"-'. (74)

For the two-particle asymptotic matrix elements, we then
obtained

v 2(~'Ia"-'Isa')+(~+ Ia"-'IK+)
=tane, ((E'la'- -'ID')+(~+ la&- -'IF+)) .

The two possible signs in Eqs. (71)—(73) are due to Eq.
(59). In Ref. 14, we took a more naive point of view using
asymptotic SU(4) symmetry and also the algebra

&p+(p') la IF'+(y)&+«'(p ) Ia ID'(y)&

=0, p '=phoo,

since the strong axial-vector couplings in Eqs. (64) and
(65) are uniquely fixed in this limit. [Equations (67) and
{68)could be less accurate than Eq. {66)because of the use

We thus see that the asymptotic
I
b. I

I
= —,

' rule obtained
in Eq. (42) immediately leads to its charm counterpart Eq.
(66). With Eq. (74), one therefore may relate the two-
particle asymptotic matrix elements of H~ ' and H~

by using asymptotic SU(4) symmetry. We obtained'

«'I a ID'(y) & = —&~+
I
a IF+(»& = —co«c&~+ la I

&+(p) &

&&"Ia ID"(p)& = —&p+ Ia IF'+(y) & = —co«c&p+
I
a

I
&'+(y) & (77)
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«'IH ID"(p) & = —&~+ IH I
~'+(5) & = —cot ~c&~+ IH I

&'+(p) & .
&&'

I
H ID'(p) & = &&"IH ID*'(p) & =+&&'

I
H ID*'(p) & (79)

VI. CONSTRAINTS ON THE TWO-BODY WEAK
MATRIX ELEMENTS INVOLVING HIGHER STATES

VII. DERIVATION OF ASYMPTOTIC
i
6 I

i
=

q

AND OCTET RULE IN THE CASE OF BARYONS

So far, we have studied only the ground-state-meson
matrix elements, (L =0

~

H (L =0). As will be discussed
in the subsequent paper, one needs a knowledge of nondi-
agonal matrix elements of H, in particular the ones in-
volving the L =1 states, i.e., (L =0 ~H

~

L =1), if one
tries to compute the rates of weak processes by using a
new soft-meson technique which involves a much milder
extrapolation than the usual soft-meson approximation.
The constraints on (L =0

~

H
~
L =1) can be obtained by

extending the realization procedure discussed in Secs. IV
and V to include the L =1 as well as L =0 states in the
intermediate states. Since there are four mesons
(1+,0++,1++,2++) in the L =1 states, the derivation
of the constraints become more intricate and a detailed
discussion is beyond the scope of this paper. As demon-
strated in Sec. IV the realization is expected to produce
constraints not only on ihe weak matrix elements but also
on the asymptotic matrix elements of axial-vector charges
involving the L =0 and L =1 states. Another indepen-
dent way to derive the constraints is to insert the algebras,
Eqs. (9) and (10), between the appropriate (L=1

~

and
~

L = 1) states and study the realization at the L =0 level.
Although we have not yet carried out a thorough study,
the following features found by preliminary study may be
noted: (1) As seen from the simple patterns in which the
asymptotic

~

b, I
~

= —,
' rule and 6V =0 rule emerged from

the level realization of the algebras, all the diagonal ma-
trix elements of H, such as (L =0

~
H

~

L =0),
(L =1

~

H
~

L =1), . . ., do satisfy these selection rules
asymptotically. However, for the nondiagonal asymptotic
two-body matrix elements such as (L =0~H ~L =1),
level realization requires that the rules are violated in
some cases. This then gives the explicit sources of the
violation of the

~
EI

~

= —,
' rules, octet rule, and their

charm counterparts. (2) Among the diagonal and nondi-
agonal asymptotic matrix elements of H and the corre-
sponding ones of the axial-vector charge A, we find the
following interesting relation (in a rather symbolic nota-
tion):

(L =0[H'0 '~L=I) (L=O~A ~L =1)
«=0IH -'[L=o) «=0[a. [L =0)(0 — . (80)

Equation (80) gives us an insight into the magnitude of
the nondiagonal matrix elements of H, which will be need-
ed in computing the magnitude of the violation of the

~
b, I

~

= —,
'

rule, etc., for the real processes. The predic-
tion of Eq. (80) is, intuitively speaking, a very plausible
simple result.

Exactly the same procedure can be applied to baryons
and recently two of us (K.T. and S.O.) have derived

~

b, I
~

= —,
' and octet rule for the asymptotic ground-state

baryon two-particle matrix elements of H' ' '. Since the
details are already published ' in Physical Review Letters,
the result will only be briefly summarized in Sec. II of pa-
per III in this series. Here, we only wish to call the atten-
tion of the readers to the analog in the baryon case of the
OZI-type selection rules obtained in Sec. IV for the meson
case. The rules were found ' as the constraints on strong
vertices along with the asympto'tic

~

6 I
~

= —,
' rule for the

weak vertices.
In the case of baryons the analog of the OZI-type rule,

Eq. (21), is the following constraints on the asymptotic
matrix elements of A

d =(—,'k)', f= ——,'(2k)'

g = ——,
' (2k)'", i =+,' ~i,

with

(81)

d=(X iA i A(p)),

f—= (Xo i~ ir+(p)),
g—= (Y )A (

Y (p)),

VIII. A NEW PERSPECTIVE TOWARD
THE (EI (

=-,' RULE

The idea of level realization seems to provide a, power-
ful tool to recognize the pattern of dynamical constraints
in the world of hadrons It e.xplains, on the same footing,
a wide variety of seemingly unrelated important physics as
mentioned in Sec. I and the list may grow.

Because of our insufficient knowledge about quark con-
finement, it is probably a difficult task to assess whether
the present approach is compatible with the enhancement
of penguins at the hadronic level or not, although the
algebras used, Eqs. (9a) and (9b), are compatible with the
presence of penguin operators. In any case, our result
seems to give a different perspective toward the under-

and h—:(X ~A
~
I'+(p)), where p~ao. k denotes the

fractional contribution of the ground-state baryons to the
algebra, Eq. (1). From Eq. (81) and the width of b, —+pm
decay, k can be estimated to be around 0.6. Then Eq. (81)
predicts for the value of gz(0), gz(0) =(—, )v k =1.2. This
demonstrates that the sum rule gz(0) = —,~k, which pro-
duces a correct value of g„(0), is on the same footing as
the OZI-type rule Eq. (21) in the present theoretical
framework.
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standing of the
l
b, I

l
= —,

' rule and its charm counterpart
from that of the traditional approach.

(1) Our point is that the origin of the observed
I

I
=

2 rule, etc., may lie in the presence of much
weaker selection rules, asymptotic

l
5 I

l

= —,
' and b.V=o

rule (i.e., the
l
5 I

l

=—', part, for example, vanishes
asymptotically at the zero-four-momentum-transfer-
squared limit), for presumably the most important two-
particle ground-state hadron matrix elements.

In this connection, our observation, the smallness of the
isoscalar parts of the nucleon anomalous magnetic mo-
ments and also of the isoscalar neutral-current axial-
vector couplings can also be explained" in exactly the
same way, deserves an attention.

(2) The presence of
l
EI

l

= —,
'

part in the original
Hamiltonian shows up explicitly as the violation of
asymptotic

l
b, I

l

= —,
' rule in the presumably less impor-

tant weak two-particle vertices involving higher excited
states. This will provide us with an explicit (not necessari-
ly very small) violation of the

l
b I

l

= T~ rule and also
with a much larger violation of the AV=O rule in ob-
served strange- and charm-meson nonleptonic decays. In
the succeeding paper (II), we discuss the implications
upon the physical processes of the asymptotic selection
rules obtained in this paper by using PCAC and the new
soft-meson techmque which will be developed.
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APPENDIX A:
ASYMPTOTIC SU(3) SYMMETRY CONSTRAINTS

Consider the algebra [H:H(b C =—0,b S= —1) and
H+ denotes the adjoint of H],

[[H+, V~o], V-o] = 2H . —

Insert Eq. (A 1) between the asymptotic states

&p (p, l, = 1)
l

and lX' (p ', 1,'=1)& with p '=phoo.
We then obtain

—2& 'lH+ l&*'& —
I
«"lH+

l
p'& ~&cosa„,&re*'l H+

l y& —~s»ne„, &re*'lH+ l~&I = —2&p'lH
l

I;*'& .

%"ith the aid of the charge-conjugation property

&l'lH laic*'&=«olH+ lE"&,
Eq. (A2) becomes

& p'
I
H

I
I(:"& ~& cosil y&4' I

H
I

l('*'& —~»in~ y&~
I

H
I

&*'&=O .

(A2)

(A3)

(A4)

'Present address, Physics Department, Sophia University, Tok-
yo, 102, Japan.

~M. Cabell-Mann and A. Pais, in Proceedings of the l9$4 Glasgow
Conference on Nuclear and Meson Physics (Pergamon, Lon-
don, 1955), p. 349.

2S. L. Glashow, Nucl. Phys. 22, 579 (1961);S. L. Glashow, J. Il-
liopoulos, and L. Maiani, Phys. Rev. D 2, 1285 (1970); A.
Salam, in Elementary Particle Theory: Relativistic Groups and
Analyticity (Nobel Symposium No. 8), edited by N Svartholm.

(Almqvist, Stockholm, 1968), p. 367; S. Weinberg, Phys. Rev.
.Lett. 19, 264 (1967).

3For the recent comprehensive and critical review, see S. Pakva-
sa, in High Energy Physics —1980, Proceedings of the XXth
International Conference, Madison, Wisconsin, edited by L.
Durand and L. G. Pondrom (AIP, New York, 1981), p. 1164;
and M. Nakagawa and K. Fujii, review issued by Research
Institute for Fundamental Physics, Kyoto University (in
Japanese), 1980. For details, see M. K. Gaillard and B. Lee,

Phys. Rev. Lett. 33, 108 (1974); G. Altarelli and L. Maiani,
Phys. Lett. 528, 351 (1974); H. Fritzsch and P. Minkowski,
ibid. 618, 275 (1976); M. A. Shifman, A. I. Vainstein, and V.
E. Zakharov, Nucl. Phys. 8120, 316 (1977);A. I. Vainstein, V.
I. Zakharov, and M. A. Shifman, Zh. Eksp. Teor. Fiz. 72,
1275 (1977) [Sov. Phys. JETP 45, 670 (1977)].

4S. Oneda and A. Wakasa, Nucl. Phys. 1, 445 (1956); S. Oneda,
J. C. Pati, and B.Sakita, Phys. Rev. 119,482 (1960).

5M. Bonvin and C. Schmid, Nucl. Phys. 8194, 319 (198l).
C. Schmidt, Phys. Lett. 668, 353 (1977); A. Le Yaouanc, O.

Pene, J. C. Raynal, and L. Oliver, Nucl. Phys. 8149, 321
(1979);J. F. Donoghue, J. F. Eugene Golowich, W. A. Ponce,
and B. R. Holstein, Phys. Rev. D 21, 186 (1980); Y. Abe, K.
Fujii, T. Okazaki, H. Arisue, M. Bando, and M. Toya, Prog.
Theor. Phys. 64, 1363 (1980); P. Colic, J. Trampetic, and D.
Tadic, Phys. Rev. D 26, 2286 (1982).

7Ling-Lie Chau Wang, in Experimental Meson Spectros-
copy —1980, proceedings of the 6th International Conference,



29 NEW APPROACH TO NONLEPTONIC WEAK INTERACTIONS. I. 455

Brookhaven National Laboratory, edited by S. U. Chung and
S. J. Lindenbaum (AIP, New York, 1981),p. 403.

SG. Nardulli and G. Preparata, Phys. Lett. 104B, 399 {1981);G.
Nardulli, G. Preparata, and D. Rotondi, Phys. Rev. D 27,
557 (1983).

M. Nakagawa and N. N. Trofimenkoff, Nuovo Cimento 52A,
961 (1967); Nucl. Phys. B5, 93 (1968); K. Miura and T.
Minamikawa, Prog. Theor. Phys. 38, 954 (1967); J. C. Pati
and C. H. Woo, Phys. Rev. D 3, 2920 (1971). For the Bose
quarks, see, for example, K. Fujii and H. Nagai, Prog. Theor.
Phys. 31, 157 (1964); 31, 159 {1964);K. Fujii, Lett. Nuovo
Cimento 58A, 514 (1968); G. H. Lewellyn Smith, Ann. Phys.

{N.Y.) 53, 521 (1969); T. Goto, O. Hara, and S. Ishida, Prog.
Theor. Phys. 43, 849 (1970); R. P. Feynman, K. Kislinger,
and F. Ravndal, Phys. Rev. D 3, 2706 (1971),
S. Oneda and S. Matsuda, Phys. Lett. 378, 105 {1971)and
Phys. Rev. D 5, 2287 (1972). Several reviews have been given
in: S. Oneda and Seisaku Matsuda, in tundamental Interac-
tions in Physics, proceedings of the 1973 Coral Gables Confer-
ence, edited by B. Kursunoglu and A. Perlmutter (Plenum,
New York, 1973), p. 175; S. Oneda, in Proceedings of INS In
ternational Symposium on High Energy Physics, edited by Y.
Hara et aL (University of Tokyo, Tokyo, 1973), p. 538; S.,

Oneda, in Proceedings of the International Symposium on
Mathematical Physics, Mexico City, 1976, edited by A. Bohm
et al. (Instituto de Fisica, Universidad Nacional Autonoma de
Mexico, Mexico City, 1976), p. 585; S. Oneda, in Proceedings
of IXS Intranational Symposium on New Particles and the
Structure of Hadrons, edited by K. Fujikawa et al. {Instituto
for Nuclear Study, Tokyo, 1977), p. 33; S. Oneda, in Group
Theoretical Method in Physics, proceedings of the Austin
Conference, 1978, No. 94 of Lecture Ãotes in Physics, edited
by W. Beiglblock et al. (Springer, Berlin, Heidelberg, New
York, 1978), p. 334.

T. Tanuma, S. Oneda, and Milton D. Slaughter, Phys. Lett.
88B, 343 {1979).
S. Okubo, Phys. Lett. 5, 165 (1963); G. Zweig, CERN Report
No. TH. 401, 1964 (unpublished); J. Iizuka, K. Okada, and O.
Shito, Prog. Theor. Phys. 35, 1061 (1965).
S. Oneda, Phys. Lett. B102, 403 (1981).
T. Tanuma, S. Oneda, and K. Terasaki, Phys. Lett. B110„260
(1982).
This type of formulation of confined quarks and gluons is, in
fact, possible in a nonperturbative approach to quark confine-
ment in the Heisenberg picture. See, for example, T. Kugo
and I. Ojima, Suppl. Prog. Theor. Phys. No. 66 {1979). In
any case, even in the conventional approach, a clear distinc-
tion is drawn between the hadrons and the confined quarks

and gluons.
S. Adler, Phys. Rev. 137, B1022 (1965); W. I. Weisberger,
Phys. Rev. 143, 1302 {1966).
See, for example, D. Han, M. E. Noz, Y. S. Kim, and D. Son,
Phys. Rev. D 25, 461 (1982); D. Han and Y. S. Kim, Am. J.
Phys. 49, 1157 (1981).
In the present formulation of nonperturbative broken SU(3)
symmetry, the Gell-Mann —Okubo mass formula with SU(3)
mixing is actually the condition that there is no 27-piet term
in the total Hamiltonian expressed in terms of the "in" or
"out" hadron fields. See, S. Oneda, H. Umezawa, and
Seisaku Matsuda, Phys. Rev. Lett. 25, 71 (1970).

They are the qq or qqq states with level excitations. Note that
the external states must belong to the same level M.
The deviation from ideal structure may be ascribed to the pres-
ence of SU{2) breaking and also, more importantly, to the
presence of glueballs which have to enter into the picture of
level realization. T. Teshima and S. Oneda, Phys. Rev. D 27,
1551 (1983).

2tR. E. Marshak, Riazuddin, and C. P. Ryan, Theory of Weak
Interactions in Particle Physics (Interscience, New York,
1969); J. J. Sakurai, Currents and Mesons (University of Chi-
cago Press, Chicago, 1969), p. 96. V. De Alfaro, S. Fubini, G.
Furlan, and C. Rossetti, Currents in Particle Physics {North-
Holland, Amsterdam, 1973), p. 213.

~~These are the only two independent algebras in the class of
chiral SU(2)L SU(2)~ algebras under consideration.
However, the penguin operators do not satisfy Eq. {8},when
they are normal ordered in the effective Hamiltonian. For
more details, see, for example, T. Tanuma, Ph.D. Thesis,
University of Maryland, 1983.
In the framework of SU(3) symmetry, the Hamiltonian H' '

becomes sinO~ cosO~(~+K ).
25H. L. Hallock and S. Oneda, Phys. Rev. D 18, 841 {1978}.
2 S. Oneda, J. S. Rno, and M. D. Slaughter, Phys. Rev. D 17,

1389 (1978).
~7We know that D=O and S=l from the rates of P —+pm. and

co~3m decays. See Ref. 26.
2 Clearly the parametrization of the matrix elements of A is

less sensitive to SU(4) breaking than that of A~.
At the SU(4) level, mixing between multiplets belonging to dif-
ferent levels has to be considered in general. See Ref. 10.

3 G. Altarelli, N. Cabibbo, and L. Maiani, Nucl. Phys. B88, 285
{1975);R. L. Kingsley, S. B.Treiman, F. Wilczek, and A. Zee,
Phys. Rev. D 11, 1911 {1975);M. B. Einhorn and C. Quigg,
ibid. 12, 2015 (1975).
K. Terasaki and S. Oneda, Phys. Rev. Lett. 48, 1715 (1982).


