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Quark-gluon-plasma evolution in scaling hydrodynamics
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The relation between the rapidity density of produced particles in ultrarelativistic nuclear col-
lisions and the maximum proper energy density eo is derived. The new scaling hydrodynamic equa-
tions of Bjorken, Kajantie, and McLerran are employed. The results exceed earlier estimates ob-

tained with inside-outside cascade models and provide an independent estimate of eo from collision
data. We also derive a lower bound on eo incorporating viscous heating and the first-order phase
transition between the quark and hadronic phases. We infer that eo&2 GeV/fm can indeed be
reached in the collision of heavy nuclei at cosmic-ray energies.

I. INTRODUCTION

Hydrodynamic calculations' of hadronic processes
have been reexamined recently in the light of the longi-
tudinal growth of the reaction zone at high energies. In
earlier work by Landau and others it was assumed that
when two hadrons scatter a Lorentz-contracted fireball is
formed in the c.m. frame. The energy density is therefore
assumed to be enormous during the initial phase of hydro-
dynamic expansion,

where y, =coshy, is the Lorentz factor and eH-O. S

GeV/fm is the proper energy density in a typical hadron.
For nuclear collisions eH is replaced by the energy density
in nuclei, e„„,-m~pp-0. 15 GeV/fm . The right-hand
side in Eq. (1) follows from assuming complete stopping9
in a Lorentz-contracted volume. If shock waves are pro-
duced~ then 6'L could bc 2 tlrncs as large. To apprccl-
ate the scale, note that el -500 GeV/fm for collisions in-
volving laboratory energies —1 TCV.

Such enormous energy densities are well above all esti-
mates"' for the energy density necessary to produce a
quark-gluon plasma. Such estimates indicate that already
for e) esn-2 GeV/fm, hadronic matter dissolves into an
ideal Stefan-Boltzmann gas of quarks and gluons. In fact,
deconfinement of hadrons (over the reaction volume) may
occur when e is as low as eH -0.5 GeV/fm .

To reach eL the incident hadron must be able to lose all
of its longitudinal momentum over an ever decreasing
linear dimension. However, Landau and Pomeranchuk
noted that the reaction time for hadronic processes must
increase with increasing energy due to time dilation. '

This phenomenon is known as longitudinal growth, and
experimental evidence for this effect has been seen in
hadron-nucleus data. In simplest terms, to form a
secondary hadron of dimensions ~0- I fm requires a prop-
er' t1rnc 70. In a frame where that secondary has rapidity y
the formation time grows as

t(y)=rpcoshy .

In the parton picture ~0 is replaced by the transverse

Compton wavelength ~p-2/mq. Equation (2) means that
the fastest secondaries can be produced only very far
downstream from the reaction zone. This is the basis for
the inside-outside cascade picture of hadronic process-
es 5, 6, 14

We therefore see that (Landau's) longitudinal growth
contradicts the assumptions of Landau hydrodynamics.
To remove this inconsistency, Bjorken, Kajantie, and
McLerran have proposed a new hydrodynamic picture
that incorporates Eq. (2). Remarkably, the final numeri-
cal results turn out to be rather insensitive to the actual
initial conditions. This is largely due to ihe fact that the
breakup condition is always expressed in a Lorentz-
covariant form; namely, when the proper energy density
falls below a critical value ef-I, the hydrodynamic ex-
pansion is terminated and the distribution of momenta is
frozen out. Therefore, the original qualitative successes
of the Landau hydrodynamics are not altered by incor-
porating Eq. (2).

What is altered significantly, though, is the space-time
picture of the reaction. In particular, the proper energy
density in scaling hydrodynamics is always much smaller
than eL as we show in the next section. Nevertheless, we
find that the initial proper energy density can still exceed
the critical values required to reach the quark-plasma
phase. The nonlinear relation connecting the observed ra-
pldlty density dX/dg to Eo 1s dcrivcd 1n Scc. II. In add1-
tion to the ideal (Stefan-Boltzmann) equation of state, we
consider a broader class of (Shuryak) equations of state.
We then note some novel scaling of dX/dy with atomic
number A that follow from ideal hydrodynamic expan-
sion. In Sec. III, we consider entropy production due to
viscous effects. A lower bound on Gp is derived by follow-
ing the path of maximum entropy generation. We show
that the earlier estimates of Eo by Bjorken coincide with
the lower bounds appropriate for maximum entropy ex-
pansion. An upper bound on eo is derived in Sec. IV,
which incorporates a first-order phase transition from the
plasma phase to the hadronic phase. The bag model is
used to obtain qualitative insight. In Sec. V, numerical
examples show that dX/dy depends only very weakly on
the details of the phase transition and that viscosity and
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phase transitions can lower the ideal-hydrodynamics esti-
mate of eo for fixed dX/dy by at most a factor -2.

independent of the equation of state. The initial entropy
density is

II. SCALING HYDRGDYNAMICS

The basic equations of scaling hydrodynamics are

BEATI' =X

where

ciao(y) = [&0(y) +p (ro y) j/~(ro y) .

We now recall the relation between the proper entropy
density o. and the proper density of quanta n for an ul-
trarelativistic (T &&m) gas with zero chemical potential

X'= ep(y)u '5(r —rp) (4) (12)

is the source function in terms of the variables r =t z, —
y = —,ln(t+z/t —z), and u"=x~/r is the collective flow
velocity. The form of X is chosen to incorporate longitu-
dinal growth in a natural way. The partons come on-shell
at proper time rp-1 fm/c and are assumed to evolve
thereafter according to ideal hydrodynamics. Integrating
Eq. (3) around ~=rp noting that T&„(E+——p)u&u pgz-„,
we see that

1 dN
~0(y) =(m, &

T
(6)

where A z is the transverse area of the reaction,
(mi)-0. 3—0.4 GeV is the typical transverse mass of
produced particles, and dN/dy is the rapidity density of
produced particles. For pp collisions at collider energies,
Eq. (6) predicts that ep & eH «eL.

The point of this section is to note that if hydrodynam-
ics, Eq. (3), is valid for the final expansion phase, then
ep(y) is related to the final observed d%/dy and the equa-
tion of state as

ep(y) = k dX
rpA i

6'(1 p,y) =&p(y)

is the initial proper energy density of the fluid element
with collective flow rapidity y. Using the inside-outside
cascade picture, Bjorken estimated that

where /=3. 6, 4.0, and 4.2 for Bose, Boltzmann, and Fer-
mi gases, respectively. For an SU(3) up-down glue plas-
ma, e= 12.2 T, p =e/3, n =4.14 T, and o.= 16.2 T, so
that /=3. 9. For illustration, note that at T =200 MeV,
@=2.6 GeV/fm, and there are n =4.3 quanta per fm .

From Eqs. (10) and (12) we see that o. and hence n de-
crease as 1/~. The hydrodynamic expansion continues
until the energy density falls below a critical value
ef -m . The breakup surface on which e=Ef follows
from the solution of Eq. (3). In general, that surface must
be solved for numerically. However, in the scaling re-
gime, where de/dy can be neglected and the collective
velocity can be well approximated by u& x„/r, Eq. (——3)
simplifies' to

BF +(E+p) =roE05(r ro) . —
O'T

(13)

For p ={"og,

1+e02
&(r) =~0(rp/r) (14)

From Eq. (14) we see that the breakup surface is simply a
fixed proper time ~=~f. The volume element on that sur-
face is just ~fdy d xz, so that

dÃ 2
Xy 'Pf Pl 1f,p', Xy

where k is a constant that we determine below and co is
the speed of sound. The difference between Eqs. (6) and
(7) comes about by taking into account the work done by
the fluid during expansion.

To derive Eq. (7), we recall that Eq. (3) implies that the
entropy current s&

——o.u& obeys '

Combi»ng Eqs (10), (12), and (15), we obtain

dX
Airpcr(rp, y),

dy
(16)

TB„s"=u I"X„,
where T is the 1ocal temperature related to o. via
To.=e+p. Neglecting transverse flow u "B&o.=Bo./B~,
B~u"=1/r, and ui'u& ——1. Therefore, in this case Eq. (8)
reduces to (o =dp/d&)

which depends on the initial entropy density. For a
Stefan-Boltzmann gas, o =4@/3T, Eq. (16) leads to

dX
~0 Vk+0 gA j 'To

(rcpt) = (&o —p)+T d d TCT

d7

=~0(y)&(r —rp) .

The solution of Eq. (9) is clearly

o(r,y) =op(y)roly,

(9)

This shows explicitly that the transverse mass in Eq. (6) is
replaced in hydrodynamics by m, fg-3To. Since To de-
pends on ep via e=KsB T, we see that Eq. (17) is a special
case of Eq. (7) with k =3(/(4'»'") and c,'= —,'.

For a more general equation of state, we consider a
Shuryak resonance gas characterized by a mass spectrum
p(m) ~ m'. The thermodynamic relations are
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2ps=cp &s ~

4 T 1+co
eg =A,m~

Pl~

cr, =k,m (1+co )
Xm 4

o; =g(co')n, ,

1/( 1 +cp )

(18)

g(1+cp )
g'(cp )=(1+co )

g(co )

where g(z) =Xn ' for bosons, cp is the velocity of sound
related to a by cp ——a+4, and A, is an arbitrary con-
stant. Note that Eq. (18) reduces to the Stefan-Boltzmann
form for cp ———,

' and A, =Ksn. When dealing with a reso-
nance gas it is important to note that dN/dy in Eqs. (15)
and (16) is not equal to the final pion multiplicity density.
It is the total number of pions plus heavy resonances per
unit rapidity at the breakup time. To convert dN/dy into
dN /dy we must estimate how many pions will emerge
after all resonances have decayed. The average energy per
resonance at breakup ( Tf -m ) is

E=e,(m„)/n, (m )=m g(cp )/(1+cp )

=m /cp

Estimating the average kinetic energy per resonance to be

( —', —3)Tf-2m

at breakup, we see that the average resonance mass

m =E—2m =m (cp —2) .
The average number of pions with kinetic energies
-(1—2)m resulting from the decay of these resonances
18

n m /2m— 1/2cp—

for cp «1. Consequently, dN /dy =(1/2cp )dN/dy
with uncertainties on the order of a factor of 2. Since
Eqs. (16) and (18) show that

dN/dy ~g '(cp ) ~cp

we find that for cp « 1

dN
'zippo(~o y) (19)

where g„ is independent of cp to lowest order in cp . To
fix g, note that for an ideal pion gas (cp ———,

'
) g =4.

Therefore, the only role of the equation of state is to es-
tablish the relationship between o(rp) and e(ro).

For the Shuryak gas we obtain in this way

3m dN '+'p
eo= e~ (20)

dy

where we used g '(1+cp ) =3 to lowest order in cp ——,

and defined e:—e, (T =m ) =A,m . This completes the
derivation of Eq. (7).

An interesting consequence of Eq. (20) is the depen-
dence of dN/dy on the atomic number A in nuclear col-

lisions. If the initial energy density depends on A as
e~W', then

dN [2/3+5/(1+cp2)]

ccrc

(21)

III. MAXIMUM ENTROPY PRODUCTION
IN VISCOUS EXPANSION

In Sec. II, we solved for the ideal fluid dynamics rela-
tion between ep and dN/dy. The central assumption was
that the total entropy per unit rapidity dS/dy =Airer(r, y)
is a constant of motion. However, there are two obvious
sources of additional entropy: (a) viscous heating and (b)
the phase transition from the quark to the hadronic phase.
Therefore, we rewrite Eq. (19) as

dX dSp dS„dS„
dy dy dy dy

(22)

where Sz is the total entropy produced via viscous heating
and S„ is the total entropy produced in the phase transi-
tion. In this section, we derive an upper bound on S.

Suppose at time ~p we start with a plasma drop in
equilibrium with total energy E in a volume Vp

(ep=E / Vo ) . As the system expands, the state of max-
imum entropy is obtained in a volume V if global thermal
equilibrium is maintained, and no energy is lost from the
system. The maximum increase of entropy on expansion
is therefore

The power 5 depends, of course, on the plasma-production
mechanism. In many models, such as the additive quark
model' or Low-Nussinov model, ' 5= —,

' and consequent-
ly the power in Eq. (21) varies between —,

' and 1. Hydro-
dynamic flow thus tends to lower the 3 dependence of
dN/dy because the entropy density rather than the energy
density determines the multiplicity.

Up to now we have treated ~p as an independent param-
eter 'Tp 1 fm/c. However, for production of structureless
partons longitudinal growth is controlled by the transverse
Compton wavelength rp-2/pi. For a given initial tem-
perature Tp, (pi) —(2—4)Tp, and we could expect that
Tp Tp . Such a dependence of 7 p on Tp would lead via
Eq. (17) to a highly nonlinear relation

{1+cp )/{1—co )

Pp OC

dg

(For cp ———,
' the relation would be quadratic. )

However, the use of rp- Tp ' in Eq. (17) would not be
correct, because in colliding nuclei the relevant ~p cannot
be smaller than the thickness of the parton cloud around
the nuclei. Due to the wee (I/x) partons the limiting
thickness' of any hadronic system at very high energies is
—1 fm/c. Hence, it takes b, t & 1 fm/c for the colliding
nuclei to pass through each other in any frame. Even
though higher-pi partons can be created on a faster time
scale, their production times are distributed over a finite
time interval At. In thermodynamic terms, entropy con-
tinues to be produced at least up to ~-At. Since in Eq.
(16) we used entropy conservation to get from rf to rp, we
see that vp Q Ai —1 fm/c in that relation.
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o.V4S & o.V —opVp ——Sp —1
op Vp

(23)

The system expands until the mean free paths of hadrons
become comparable to the size of the system. At that
point e=ef, T=Tf-140 MeV, and the system disin-
tegrates '.For a Shuryak gas, of /ef =(1+cQ )/'rf, and,
therefore, Eqs. (22) and (24) give the bound

mdf dN
eh'&eo& 'r dp

where

g Tf
mgff — ~ 3m~1+

(25)

and ei,„d is given by Eq. (20). We have thus shown that
Bjorken's estimate, Eq. (6), is a lower bound on eQ and fol-
lows in thermodynamics if the system follows the path of
maximum entropy expansion. That path requires mainte-
nance of global equilibrium at constant total energy. Of
course, Eq. (6) also follows in the extreme nonequilibrium
limit appropriate for the expansion of a noninteracting gas
satisfying the scaling hypothesis.

To understand better the bounds in Eq. (25) we con-
strast hydrodynamic expansion to maximum entropy ex-
pansion. For the scaling initial conditions, Eq. (3), matter
is formed along the hyperbola ~=~p. Hydrodynamics as-
sumes that this matter behaves as a continuous fluid cap-
able of maintaining local thermal equilibrium between
fluid cells with a large rapidity gradient. Consider now a
fluid element with rapidity between y and y+5y. In the
rest frame of that element, the initial voluine is
5VQ A J TQ5y In t'he s.caling regime the volume expands
to 5V =Ait 5y by time t, in that frame. After a time in-

crement ht, the volume expands by hV=Az At 5y. The
amount of work done in the expansion is pb, V to first or-
der in ht. Therefore, energy conservation implies that

e5V =(e+be)(5V+b, V)+p b. V+O(ht ),
which leads to the hydrodynamic equation (13)

+(e+p)=0 .he

(27)

(28)

1+c02
Equation (28) shows that e decreases as (rQ/~) . The
energy density decreases faster than 1/z, as appropriate
for a noninteracting gas, because of work required to push
neighboring fluid cells aside.

Now suppose that instead of a continuous fluid a series
of fireballs are formed along r=rQ. This could arise due
to unusual formation mechanisms or the inability of adja-
cent fluid elements to remain in thermal contact. Since
these fireballs are all receding from one another in any
frame, each expands independent of the other. No work is
performed so that energy is conserved in each fireball. It

where Sp ——o.pVp is the initial entropy. By energy conser-
vation V/VQ=eQ/6' and, hence, Eq. (23) reduces to

6'p
Sp&S&o-—Vp .

is of course possible for each fireball to expand hydro-
dynamically. However, the maximum entropy is generat-
ed if no collective flow velocities develop. This is the
scenario that leads to the lower bound in Eq. (25).

It is important to note that if the path of maximum en-
tropy is followed, then the final entropy
Sf—cTf Vf —(of /ef )(eQVQ), is independent of any phase
transitions during expansion. It depends only on the total
energy of the fireball and the final freeze-out temperature.
Therefore, the lower bound in Eq. (25) is very general in
the scaling limit.

Finally, we note that if the scaling hypothesis is re-
moved, then the initial state could be drastically different
as, for example, Landau's fireball in Eq. (1). The simple
connection of eQ with dN/dy would be lost. It is the as-
sumed frame invariance of the production and expansion
process that leads to the simple bounds in Eq. (25). This
is a fundamental difference between Bjorken and Landau
hydrodynamics.

IV. ISENTROPIC PATH THROUGH
THE PHASE TRANSITIONS

During the expansion phase there may be a first-order
transition between the quark and hadron phases. "' This
could lead to entropy production. However, as noted in
Sec. III, there is an upper bound on the maximum entropy
that can be produced. This gives a lower bound Eq. (25)
on eQ for a fixed dN/dy. In this section we derive an
upper bound on ep, which takes into account a possible
first-order transition.

First we show that there exists an isentropic path
through the transition. For illustration we consider the
bag model' ' equation of state. In the quark phase, we
assume that

e, =KT4+a,

pq ——
3
KT"—B, (29)

For the hadronic phase we use Eq. (18). The critical tem-
perature T, is a solution of pq =p, . For example, for
cQ ———,, T, = [38/(X —A, )]'~ . Define the critical param-
eters erat =E(T, ), orat erg(T, )——, e'Q eq(1, ), crQ crq(T, ). ——
Note that e& —e~ is the latent heat per unit volume. For
e~ & e & e~ the pressure and temperature are independent
of e.

Consider again a fluid element in the rapidity interval y
to y+5y with an initial proper energy density Gp+ E'g. In
the rest frame of that element the fluid expands from the
initial volume 5Vp ——Az~p5y until the energy density is re-
duced to e~. At that point the volume has increased to
5V. The total entropy in that element at that point is
then 5S~ ——o.~5V~ ——o.p5Vp. As the system expands fur-
ther, e decreases while the temperature and pressure
remain constant at T =T„p =p, . The expansion contin-
ues until e is reduced to e~ and 5V=5VH. During this
expansion an amount of work 5$'=p, (5V~ —5VQ) must
be performed to counteract the pressure exerted by neigh-
boring fluid elements. Therefore, energy conservation im-
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plies that e~5V~ ——eH5VH +58' and therefore

(&g+p, )&Vg =(&H+p, )&VH . (30)

4 K 1/4(~ B)3/4 (31)

For an initial energy density in the mixed phase
(CH &6(tg)

o'p=(&p+cp &H)/T (32)

where we used that the pressure p =c0 eH and T=T, are
constant in the mixed phase. In the hadronic phase
E(EH Eq. (18) applies.

Inserting these forms of the entropy density into Eq.
(19) gives

4/3
k

ep B+-— fOr e0) e&T J

where k =3/ /(4K' ) and B =(eg —3cp eH)/4 as fol-
lows from p, =p~. For the mixed phase we obtain

m, dE
~P CP ~H O ~H &&P& g

7 g dy

(33)

The thermodynamic relation a& T, =e~+p, and
oHT, =eH+p, then shows that the total entropy of the
cell remains constant 5S~ ——5SH through the transition.
Clearly this result is independent of any particular func-
tional form of the equation of state.

Therefore, if there are no viscous effects before or after
the transition, then entropy can be conserved at all times,
i.e., there exists an isentropic path through the phase tran-
sition. For this scenario to hold the characteristic time ~,
for the transition must be short in comparison to the time
required to expand from 5Vg to 5VH. If r, is long, then
supercooling of the plasma should occur. Such supercool-
ing could be followed by explosive growth of hadronic
bubbles leading to additional entropy. '

Following the isentropic path starting at e0 & e~ leads to
Eq. (19) with

on the other hand, is
T

dN 2 3 Eg+CO EH ~Q dN

dy g g'A, eH d

Therefore (dN/dy)g-(6 —24)A may be required for
events involving the pure plasma phase. Detailed numeri-
cal results are given in the next section.

(37)

V. RESULTS

To illustrate the insensitivity of the results to the details
of the phase transition, we consider two forms of the
equation of state as shown in Fig. 1 that span a physically
reasonable range of possibilities. "' Curve 1 corresponds
to a strong first-order transition at T, =200 MeV with la-
tent heat b,a=2.6 GeV/fm and parameters K=12.2,
B =0.74 GeV/frn, cp 0 1——6, . and eH, eg ——0.7, 3.3
GeV/fm . Curve 2 corresponds to a weak first-order tran-
sition at T, = 140 MeV with he =0.2 GeV/fm and
K =12.2, B =0.05 GeV/fm, cp ———,, and eH, eg ——0.45,
0.67 GeV/fm3. Notice that the first bag constant is close
to Shuryak's estimate, while the second is close to the
MIT value.

For these two equations of state curves 1 and 2 in Fig. 2
show the relation [Eqs. (20), (33), and (34)] between the in-
itial energy density E'0 and the reduced, total pion rapidity
density A /dN/deal We us.ed the pseudorapidity vari-
able g = —lntan8~, b/2 instead of y to make closer contact
with experiment. As emphasized before, the crucial pa-
rameter setting the absolute scale of e0 is the proper time
wp marking the onset of hydrodynamic flow. We set rp 1——
fm/c in this example. For 'Tp= 2 fm/c the slope of all

curves would increase by a factor -2. For rp ——2 fm/c
the slopes would decrease by a factor -2. This factor is
the intrinsic theoretical uncertainty in the conversion be-
tween dN/dg and ep.

with a critical mass parameter

mc=g~Tc ~ (35)
Bag Model Equation of State

where T, = [3(eg+cp eH )/4K]' . Note that in the
mixed phase, we have again a linear relationship between
ep and dN/dy. Finally, for the hadronic phase we must
use Eq. (20). Equations (20), (33), and (34) give the upper
bound on e0 as obtained by following the isentropic path
through the transition.

We can also invert Eq. (34) to find the minimum ob-
served pion rapidity density corresponding to E'=EH or
e=e~. For central A +8 collisions with A &B,
A~-mr0 A, r0-1.2 fm. Therefore, the minimum mul-
tiplicity density that corresponds to E'0+ E'H is

+ 0 H(I+cp ) eH
(36)

e,

where e, =T, /(171 ppp )-0 03 GeV/fm .. Since we expect
eH -0.3—0.5 GeV/fm, (dN/dy)H -(3—6)A / . The
minimum multiplicity density corresponding to e0& e~,

2 /'

I I I I

120 140 160 180 200 220

T I',MeV, 'i

FKx. l. Energy density versus temperature for two sets of
bag-model parameters as described in text. Curves 1 and 2 cor-
respond to strong and weak first-order transitions between the
hadronic and quark-glue plasma phases.
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0 10 20 30
JACEE

40

In addition to ~0 we must specify the transverse area 2 J

of the reaction zone. Assuming central collisions between
nuclei 3 and B with A &B, we again take Az ——~ro A

ro ——1.18 fm. The reduced rapidity density A ~ dN/drj,
therefore, removes the trivial geometric enhancement of
dX/dg for heavier nuclei and measures the rapidity den-
sity per unit area. For peripheral collisions the corre-
sponding eo value is a lower bound.

The most remarkable feature seen in Fig. 2 is that
curves 1 and 2 are so close to each other. The solid dot
marking the point e=t ~ for both curves shows that in
spite of the large difference between the two equations of
state the relation between eo and dN/dg is controlled
mainly by plasma branch for e & e~ given by Eq. (29). To
a good approximation the curves are shifted vertically
from one another by the difference of the bag constants
for each.

Also shown in Fig. 2 is the curve corresponding to evo-
lution along the path of maximum entropy production,
Eq. (25). We took m, ff=0.4 GeV in accord with Eq. (26).
As noted before, with this effective mass that curve also
coincides with Bjorken s estimate, Eq. (6). Viscous effects
and entropy nonconserving processes associated with the
phase transition can therefore lower the estimate of eo for
a fixed d%/dg by at most a factor -2. Most likely, the
entropy generation in the final state expansion will in fact
be much smaller than the maximum value, and the true eo
would be closer to curves 1 and 2.

FIG. 2. The energy density e0 at the onset of scaling hydro-
dynamics versus total pion pseudorapidity density reduced by

, where A is the atomic number of the smaller nucleus in
central nuclear collisions. Dashed curves 1 and 2 correspond to
scaling hydrodynamic expansion with the equations of state
shown in Fig. 1. The solid dots locate e=e~ for each. The solid
curve corresponds to expansion along the path of maximum en-

tropy production. It also coincides with Bjorken s relation with
Pl ff —0.4 GeV. The average reduced density in pp collider
events (Ref. 19) and in the Si+ Ag JACEE event (Ref. 21) are
also shown.

Finally, we have indicated in Fig. 2 the observed re-
duced rapidity density in typical pp reactions at collider
energies. ' We assume that unobserved neutral pions ac-
count for ——,

' of the total rapidity density. We see from
Fig. 2 that typical pp events lead to very low initial energy
densities, eo-0. 5 GeV/fm . However, in about 5% of the
events, ' dN/dy —18 is reached corresponding to
eo-1.5—3 GeV/fm . For nuclear collisions, only limited
cosmic-ray data are available. The most spectacular re-
action observed so far is the JACEE event ' Si+ Ag at
-4 TeV/nucleon. The charged-particle multiplicity in
the central region is dN, h/dg=200. Taking A =28 for
this reaction, the reduced total pion density is then -32.
Simple model estimates indicate that such high multipli-
cities are to be expected in central Si+ Ag collisions.
Multiplicity densities in central U+ U collisions are thus
expected to reach reduced densities -60, assuming 3'
scaling. Reading off the conservative maximum-entropic
curve, heavy nuclear collisions would then lead to initial
energy densities eo&3 GeV/fm —well into the plasma
phase. If scaling hydrodynamics applies, then energy den-
sities as high as eo-10 GeV/fm could be reached in cen-
tral U+ U collisions at JACEE energies. This value
represents an optimistic upper bound achievable in nuclear
collisions.

These estimates for the energy densities achievable in
nuclear collisions are subject, however, to several caveats.
First, they are only applicable to the central rapidity re-
gion where the baryon density is low. In the fragmenta-
tion regions, the relation between entropy density and pion
multiplicity is more complicated because only a fraction
of the total entropy is carried by mesonic degrees of free-
dom. That fraction is also a sensitive function of the tem-
perature and varies during the expansion phase. Since
each fragmentation region extends over a rapidity interval
hy~=ln(4R/ro) &3, the total rapidity gap necessary to
form a central region is 2hyz-6. Therefore, Fig. 2 can
be applied only for reactions above several hundred GeV
per nucleon.

Second, we have assumed via Eq. (4) that the energy
deposition in the central region occurs instantaneously at
proper time ~0. However, as noted before, there exists a
finite time interval ' hr- I fm/c, asymptotically for the
nuclei to pass through one another. This has the effect of
replacing eo5(r —ro) in Eq. (4) by eo/ATO(kr

~

T 1p
~

). —
The solution of Eq. (3) with such a source was found in
Ref. 8 [see Eq. (53)]. The maximum energy density for
b,r- 1 fm/c was found to be reduced by —30%%uo from
what it would be if 6~=0. This finite time dilution factor
therefore has the effect of lowering the slopes of curves 1

and 2 by -30%. Nevertheless, the resulting isentropic
curves still lie significantly above Bjorken's estimate. This
shows, in particular, the importance of choosing the
source function in hydrodynamical calculation self-
consistently. Up to now, scaling hydrodynamic source
terms were estimated using Bjorken's formula Eq. (6),
relating eo linearly with the final rapidity density. How-
ever, as stressed here, dN/dy is linearly related only to the
entropy density. ' A higher initial value of eo must be
chosen, as shown in Fig. 2, to allow for work done on ex-
pansion. Such a self-consistent calculation would result,
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according to our analysis, in approximately a factor of 2
higher eo in the central region than computed in Ref. 8.
Self-consistency in the fragmentation regions would also
be important, especially since the scaling relationship, Eq.
(2), between longitudinal coordinate and rapidity breaks
down and even the linear relation between p and a no
longer holds.

A third caveat concerns the applicability of ideal (non-
viscous) hydrodynamics. A necessary condition for the
validity of such an approach is that gradients of field
quantities such as e(x) be small compared to characteristic
collision rates. In the scaling regime the rapid longitudi-
nal expansion causes e to change significantly on a time
scale 5t-( )tine/B r) '~r. The collision rate in the plas-
ma is, on the other hand, controlled by the local tempera-
ture'7 y ca a2T(~), where a is an effective parton coupling
constant. If local equilibrium is maintained, then
T(~)=To(ro/~)' . Viscous effects can be neglected only
if y5t-a Toro& 1. Therefore, ideal hydrodynamics can
be applied only if the initial energy density eo ~ To is suf-
ficiently large. Any estimate of that critical energy densi-
ty is, however, very uncertain at present and requires fur-
ther development of a transport theory of quark-glue plas-
mas. 2 It is likely to be on the order of e& —1 CxeV/fm .

Finally, we note that we have neglected transverse

motion. In the central region, this is justified because the
entropy per unit rapidity is still conserved, and we need
only to interpret Aq as the initial transverse area of the
plasma. The only effect of transverse flow is then to
redistribute the transverse momenta of pions. In the
fragmentation regions, transverse expansion converts en-
tropy from mesonic to baryon degrees of freedom, thereby
lowering the pion multiplicity. For small 3 reactions,
transverse expansion can have, on the other hand, an in-
direct influence even in the central regions. If the trans-
verse dimension R becomes comparable to the parton
mean free paths, then ideal hydrodynamic flow cannot be
justified. Therefore, the isentropic curves in Fig. 2 are
more relevant for heavy nuclear collisions than for
hadron-hadron or hadron-nucleus collisions.
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