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Pion density in nuclei and deep-inelastic lepton scattering
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Recent data indicate that quark densities in a high-3 nucleus differ significantly from those mea-
sured in the free-nucleon case. We examine whether this effect can be explained in terms of deep-
inelastic scattering from mesons responsible for nuclear binding. Although features of the data are
reproduced qualitatively, we are unable to approach a quantitative description of the magnitude of
the experimental effect at small x unless we postulate an enhanced pion density of about 0.4 extra
pions per nucleon (roughly three times that provided by conventional nuclear models), and/or make
assumptions about the small-x behavior of the meson structure function which are inconsistent with
available data. These conclusions are insensitive to the manner in which we impose momentum
conservation. The slope of the ratio of structure functions vs x is reproduced easily in the range
0.05 &x & 0.5. We speculate that a quantitative fit to the data requires an "intrinsic" enhancement
of the nucleon structure function due to the nuclear medium as well as scattering from the mesons
associated with binding.

I. INTRODUCTION

The inelastic structure function E2(x, Q ) for deep-
inelastic muon scattering from an iron nucleus is observed
to differ markedly from the structure function for deuteri-
um. ' Here Q is the usual square of the invariant four-
momentum transfer and x =Q /2Mv, where v is the lab-
oratory energy transfer. There are potentially important
implications of this result for both theories of nuclear
structure and phenomenological models of high-energy in-
clusive scattering. %'hen interpreted in terms of the
quark-parton model, the deep-inelastic data imply that the
nucleon's sea quark and antiquark densities are enhanced
in a nucleus, whereas the momentum carried by valence
quarks is degraded. This result was not generally expect-
ed. It raises the possibility that nuclear medium signifi-
cantly alters the behavior of the pointlike constituents of
the nucleons.

An alternative explanation is suggested by the conven-
tional picture of nuclei as systems of nucleons and
mesons. Deep-inelastic lepton scattering may occur either
from constituents of the nucleons or from constituents of
the mesons. The mesons are associated with the ex-
change mechanisms responsible for nuclear binding. In
this paper we examine whether a quantitative interpreta-
tion of the data can be obtained in terms of this conven-
tional meson-nucleon picture.

In Fig. 1, we provide a rough sketch of the physical
process through which the virtual photon of deep-inelastic
scattering interacts with an exchanged meson within a nu-
cleus. We assume throughout that we are dealing with an
"isoscalar" nucleus, viz. , a nucleus with equal numbers of
neutrons and protons. The solid horizontal lines in Fig. 1
represent either nucleons or nucleon isobar s [e.g.,
b, (1238)]. There are three main ingredients in the ap-
proach we study. First, we assume that nuclei are bound

systems of nucleons and mesons. Second, we assume that
the deep-inelastic structure functions of these nucleons
and mesons are unaffected by the nuclear medium; in our
calculations we employ structure functions measured on
isolated nucleons and pions. Third, we retain the usual as-
sumption that nucleons contribute incoherently to the
structure function of the nucleus, and we add the same in-
coherence assumption for the mesons. It follows that we
can write the nuclear structure function as a sum of con-
volutions of isolated-hadron structure functions with
meson and nucleon momentum distributions derived from
specific nuclear models. Thus, our final prediction for the
nuclear structure function per nucleon is cast in the form

Fg+. $. virtual photon carrying four-vector momentum Q in-

teracts with one of the meson exchanges (dashed lines) in a nu-

cleus. The thick horizontal lines represent nucleons or nucleon
isobars in the nucleus. Thin solid lines suggest the deep-inelastic
breakup of the meson.
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F",(x,Q')= J f (y)F~ —,Q' dy

+ f„tv(z)Fz —,Q dz .

In Eq. (1.1), F2 (x,Q ) and F2(x, Q ) are structure func-
tions measured on unbound nucleons and rnesons, respec-
tively, at some specified value of Q . Our goal, addressed
in Secs. III and IV, is to derive expressions for the magni-
tudes and momentum dependences of f (y) and f~(z)
which represent the densities of rnesons and nucleons car-
rying fractional longitudinal momenta y and z. Precise
definitions for y and z are provided below. The integral
(n~) = Jyf (y)dy is the incan number of excess mesons

per nucleon associated with nuclear binding, and
(y ) =fyf (y)dy is the fraction per nucleon of the
momentum of the nucleus carried by the excess mesons.

In Sec. II we present the free-nucleon and -meson struc-
ture functions which we use in our numerical work. We
also discuss salient qualitative features of the data, includ-
ing the magnitude and slope of the ratio R (x) of the nu-
clear structure function to that for deuterium. These re-
marks suffice to show that a quantitative description of
R (x) at x =0.05 requires values of ( n ) in excess of
(n )=0.2. We conclude Sec. II with the presentation of
a "toy model" which illustrates the roles of the two terms
on the right-hand side of Eq. (1.1).

In Sec. III, we demonstrate formally that the structure
function of a compound system, whose constituents con-
tribute incoherently, may be expressed directly in terms of
the structure functions of the constituents and the wave
function of the compound systein. For large Q, this
analysis yields an equation of the form of Eq. (1.1) in
which f (y), Fq (x) and f~(z), Fi (x) are momentum den-
sities and structure functions of the constituent pions and
(bare) nucleons. To apply this result in the manner out-
lined above, we must include the pion clouds (if any) of in-
dividual nucleons as part of the nucleon structure and
identify f (y) with the excess density of pions.

To derive this excess density f (y) we begin in Sec. IV
by defining a momentum-dependent meson-density opera-
tor and then we evaluate its expectation value using nu-
clear many-body wave functions. We expect the bulk of
the relevant meson effects in deep-inelastic scattering to be
associated with long-range one-pion and intermediate-
range attractive two-pion exchange. A substantial frac-
tion of the two-pion attraction can be incorporated by in-
cluding 5 isobar states and the one-pion exchanges associ-
ated with Xh~ and 6Am vertices. We consider therefore
a nuclear Hamiltonian which includes 1VXm, Nhm, and
Eh'. vertices. From this, we derive an effective meson-
exchange potential. The excess pion density is then ob-
tained by calculating the linear response of the potential
energy to a change in the pion's energy. The approxima-
tions used in deriving the potential are also used con-
sistently in deriving the associated pion densities. In Sec.
IV, we also discuss models for fz(z), the nucleon momen-
tum distribution in a nucleus.

Our conclusions, summarized in Sec. V, are that some

qualitative features of the data are reproduced. However,
we find that the magnitude of the experimental effect at
very small x ( (0.1) cannot be obtained unless we postu-
late an enhanced pion density of about (n ) =0.4 extra
pions per nucleon. This value is roughly three times that
which is calculated from the conventional nuclear models
which we study and is considered excessive. Furthermore,
even with this large value of (n ), we are unable to fit the
full x dependence of the ratio of structure functions. This
discrepancy becomes serious for modest values of
x (x=-0.2 to 0.3). These difficulties are insensitive to
changes in both (n ) and the average value (y), and to
the manner in which we enforce momentum balance be-
tween the nucleon and meson constituents of the nucleus.
Consequently, we believe that the data contradict our
(second) assumption that the deep-inelastic structure func-
tions of nucleons are unaffected by the nuclear medium.
We speculate that there are two perhaps equally important
contributions to the enhancement of F2(x) at relatively
small x. One is related to scattering from the mesons in
the nucleus. The second is an "intrinsic" distortion of the
nucleon structure function associated with the nuclear
medium.

II. PHENOMENOLOGY

A(F+pr )
3' =

«+pL, 4
for pions, and a similar quantity for nucleons,

A(E+p. )~
Z =

«+pL, 4

(2.1)

(2.2)

The data' of interest are shown in Fig. 2. They are
presented as a ratio R (x) of the structure functions, per
nucleon, observed in deep-inelastic scattering from iron
and deuterium targets. Since Fe and D each contain ap-
proximately equal numbers of neutrons and protons, and,
thus, equal numbers of up and down quarks, the effect
shown in Fig. 2 is not associated with a difference in the x
dependences of up- and down-quark densities u(x) and
d (x). Traditional interpretations of the quark-parton
inodel led to the expectation that R(x) would be very
nearly unity and show no significant dependence on x for
x &0.05. ' ' It is unclear, a priori, whether the effect
shown in Fig. 2 is due principally to the numerator (Fe) or
the denominator (D). Since our computations in Sec. IV
indicate that the number of excess mesons per nucleon is
negligible in D, our approach to the physics presupposes
that the effect in R (x) is associated with the heavy Fe nu-
cleus. However, since we are unable to provide a satisfac-
tory quantitative explanation of the data, we can only pos-
tulate that the numerator is the principle agent.

We shall assume here that a nucleus consists of on-
mass-shell nucleons and pions, the pions being associated
with the meson exchange forces responsible for nuclear
binding. We implicitly ignore both the pionic self-energy
and the pionic density associated with the mesonic cloud
of isolated nucleons, and thus we deal only with excess
mesons associated with binding. We define a light-front
momentum fraction per nucleon,
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~P dg+ Z ~ ZdZ=1 (2.5)
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The variables y and z range over the interval 0 to A, but, in
practice, f (y) has its main support for y & 1, and f&(z)
has its main support in the neighborhood of z = 1.

In terms of the picture presented here, the structure
function Fz (x) extracted from data obtained on a nuclear
target receives contributions from two sources. The
deep-inelastic virtual photon interacts either with a pion
or with a nucleon in the nucleus. Equation (1.1) is derived
in Sec. III for large Q under the assumptions that the nu-
cleus is a bound system of A nucleons and an indefinite
number of pions, and that the nucleons and pions contri-
bute incoherently to the structure function of the nucleus.
We note that the integral fFz (x)dx is not necessarily left
invariant. Employing Eq. (2.5) one may show that

fFz (x)dx = fFz (x)dx

only if

fFz (x)dx =fFz (x)dx
I
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or if

&y &
= fyf. (y»)dy =o

The predicted ratio R (x)=Fz (x)/Fz (x) takes on a par-
ticularly simple form at exactly x =0. From Eqs. (1.1),
(2.3), and (2.4), we deduce

F (0) Fz(0)
R (0):— ~ =1+(n (2.6)F (0) F (0)

0.8
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FIG. 2. (a) Data from the CERN European Muon Colla-
boration for R(x}=F2{Pe)/F2{D), from Ref. 1. The shaded
band indicates the range of probable systematic uncertainties.
(b) Compilation of data on R {x)for Al and for Fe, taken from
Bodek et al. (Ref. 1).

Here E and pL, are the energy and longitudinal momentum
components of four-vector momenta; A is the number of
nucleons. The subscript A is used to denote the entire nu-
cleus. Functions f~(z) and f (y) are defined to specify
the number densities, per nucleon, of nucleons and excess
mesons in the nucleus with momentum fractions z and y,
respectively. The mean number of excess pions per nu-
cleon is

&n. &= ff.(y)dy . (2.3)

The mean number of nucleons, per nucleon, is obviously
unity. Thus, the function f&(z) satisfies the normalization
integral

ff~(z)dz= 1 . (2 4)

Conservation of momentum requires that

Correspondingly, if a straight-line fit to the data in Fig. 2
is extended naively to x =0, we would deduce an immedi-
ate bound on (n &, as long as Fz(0)/Fz (0) is assumed to
be known.

There are difficulties associated with a straightforward
application of Eq. (2.6). In the quark-parton model, Fz(x)
receives contributions from both valence and ocean com-
ponents of the quark and antiquark densities. The valence
components are usually parametrized so that their contri-
bution to Fz(x) vanishes at x =0. The ratio Ez(x)/Fz (x)
at precisely x =0 is therefore determined entirely by the
ocean components whose values at x =0 are not known to
great precision. However, for x ~0.05, the valence com-
ponents are comparable to the ocean components, and the
value of Fz (x)/Fz (x) extrapolated to x =0 from, say, the
region 0.05 &x & 0.3 over which the experimental R (x) is
roughly linear, is controlled by both the valence and the
ocean components of Fz(x) and Fz (x). Later in this sec-
tion we present explicit parametrizations for Fz (x) and
Fz(x) from which we deduce that the ratio Ez (x)/Fz(x)
extrapolated to x =0 lies in the range of 1.3 to 2.0. Con-
sequently, (n & must be greater than R (0)—1 by approx-
imately this factor.

Second, in addition to effects associated with the ocean
at very small x, another reason for avoiding the very-
small-x region in the data is the possibility that important
shadowing effects, ' ' not included in our description,
may control the precise x =0 behavior of R (x). A sugges-
tive method for avoiding these two difficulties is to



PION DENSITY IN NUCLEI AND DEEP-INELASTIC LEPTON. . .

rewrite Eq. (2.6) as

extrap Ef(x)
(n ) = [R(x)—1] . ,x~o E2 (x)

(2.7)

tons and neutrons. Thus, the up, down, and strange quark
and antiquark densities in each effectively isoscalar nu-
cleon are expressed in terms of valence V~(x) and ocean
S~(x) components as

where the extrapolation procedure in Eq. (2.7) is under-
stood to imply a fit to the data for x & 0.05, whose results
are then extended to x =0 in a straightforward way. This
method would work well in our case if our theoretical
R (x) behaved very smoothly over the range x =0 to, say,
x =0.2. However, as discussed in Sec. II C, the derivative
M/tax of our theoretical R(x) changes rather rapidly
with x in the region x &0.05. Our Eq. (2.6), is, of course,
still correct, but, owing to the rapid variation of t)R IBx,
the appropriate value of (n ) cannot be deduced from the
extrapolation to x =0 of a simple linear fit to the data.
Instead, one obtains a lower bound on (n„) from the
method indicated in Eq. (2.7).

The fit shown in Fig. 2 to the CERN European Muon
Collaboration (EMC) data yields an extrapolated central
value Rp, (0)= l. 18. There is large spread associated with
systematic uncertainties such that

R p~ (0)= l. 18+0.09 . (2.8)

From fits to their data in the range 0.2&x &0.6 (with
4&Q &20 GeV ), the Rochester-SLAC-MIT collabora-
tion quotes intercepts at x =0 of

Ri(0) = 1.10+0.02,

Rp, (0)= l. 15+0.04 .

(2.9)

(2.10)

Probable systematic errors associated with overall normal-
ization uncertainties are not included in Eqs. (2.9) and
(2.10). Taken at face value, Eqs. (2.7), (2.9), and (2.10) im-
ply that

(n (Al))
(n (Fe)) 3

but the probable errors do not exclude unity.

A. Digression: Pion and nucleon structure functions

Eq(x, g ) =x ref [qf(x, g )+qf(x, g )]
f

(2.12)

Here ef denotes the fractional charge of the quark of Aa-
vor, f and qf (qf) are the quark (antiquark) probability dis-
tributions. For the nucleon's quark and antiquark densi-
ties we use the explicit parametrizations derived by the
CERN-Dortmund-Heidelberg-Saclay (CDHS) collabora-
tion from fits to deep-inelastic vH2 and vH2 data.

Our isoscalar nucleus contains equal numbers of pro-

In this subsection we specify the pion and nucleon
structure functions E2 (x, Q ) and E2 (x, Q ) used
throughout our analysis. As was suggested in the last
paragraph, quantitative conclusions regarding ( n ) de-
pend in some detail on what is known and not known
about E2(x) and E2 (x).

In the quark-parton model, E2(x, Q ) may be expressed
as a sum over contributions from the different quark and
antiquark flavors:

u~(x) =d~(x) = V~(x)+S~(x),

u~(x) =d~(x) =s~(x) =s~(x) =S~(x) .

(2.13)

(2.14)

The Q dependence has been suppressed in Eqs. (2.13) and
(2.14); Eq. (2.14) expresses our assumption of SU(3) sym-
metry for the ocean. We ignore the charm ocean. For
V&(x), we adopt

V~(x) = —,[u~(x)+2'(x)], (2.15)

u (x)=u (x)=d (x)=d (x)

= —, V (x)+S (x), (2.18)

s (x)=s (x)=S (x) . (2.19)

where uz(x) and dz(x) are the up and down valence com-
ponents of the pmton structure function, as determined by
the CDHS group. Because the total number of valence
quarks in a nucleon is three, we have

IV~(x)dx =-,' . (2.16)

For S~(x) we use the expression for uz(x) determined in
the CDHS analysis. The ocean and valence components
together carry 45%%uo of the nucleon's momentum at
Q =25 GeV .

In terms of Eqs. (2.13) and (2.14), we obtain

E2(x,g )=x[—, V~(x, g )+—3S~(x,g )] . (2.17)

Since the pion quark densities, discussed below, are deter-
mined only at Q =25 GeV, we choose for reasons of con-
sistency to evaluate the CDHS nucleon quark densities
also at

i Q i
=25 GeV . The EMC data in Fig. 2 are

specified at an average g =50 GeV, with (Q ) increas-
ing with x. Since no appreciable dependence on Q is ob-
served in the data, we believe our choice of Q =25 GeV
for our calculations does not bias our conclusions. To dis-
cuss Q dependence at fixed x, we would need a set of
pion structure functions whose evolution with Q is
known to roughly the same degree of precision as that of
the CDHS nucleon structure functions.

There are no measurements of deep-inelastic lepton
scattering from pion targets, except possibly for the data
discussed in this paper. However, if the Drell-Yan model
is assumed to apply, structure functions may be extracted
from data on massive lepton pair production m.X—+@*X.
A detailed analysis of this type was performed by the
CERN NA3 collaboration, ' resulting in a determination
of the effective valence and ocean components of the pion
quark and antiquark densities at a mean Q =25 GeV .
We shall use these NA3 functions in our analysis. "

Because we are describing isoscalar nuclei, our pions are
also "isoscalar" mesons containing equal numbers of up,
down, anti-up, and anti-down quarks. Decomposing
qf '(x) into valence V (x) and ocean S (x) components,
we write
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Since the number of valence quarks plus valence anti-
quarks in a pion is two, our normalization is

1f V (x)dx=1 . (2.20)

We assume the ocean in the pion to be SU(3) symmetric.
We obtain

I

NUCLEON

F2——xV(x)

{o)

F2 '(x)=x[ —,
' V (x)+ —', S (x)], (2.21)

identical in form to Eq. (2.17).
The specific NA3 parametrizations' '" of V (x) and

S~(x) which we use are O. l

I (a+P+1)
1 P

I (a)I (P+1)
with a =0.41 and P=0.95, and

(2.22)

xS (x)= (p+l)(1 —xP,
6

(2.23)

F2 (x)~~exp( —A,zx ) (x & 0.4) (2.24)

F2(x)~ exp( —A~) (x &0.2) .

with p =8.4, and A, =0.183. Together the valence and
sea quarks carry 53%%uo of the pion's momentum; the ocean
alone carries 18.3%.

The functions F2(x) and F2 (x) are shown in Fig. 3.
The ocean contributes more than half of F2 (x) for
x & 0.06 after which its importance dies away very rapidly
as x grows. For F2 (x), the ocean dominates until x=0.13
after which the valence component takes over rapidly with
increasing x. The larger magnitude of V~(x) relative to
V (x) at modest values of x (x &0.3) is understood easily
in terms of Eqs. (2.16) and (2.20), plus the application of
constituent counting rules which suggest that
V~(x)-(I —x) as x~1, and V (x)-(1—x) as x~1.
Comparing Figs. 2 and 3, we note that the region of x
over which R (x) appears to be decreasing monotonically
(0.05&x &0.55) is a region in which the valence-quark
component of F2 (x) is rapidly gaining, strength relative to
the ocean component. This is the basis of the claim that
the data in Fig. 2 show that the momentum carried by
valence quarks is reduced in a heavy nucleus from that ob-
served in free nucleons.

For small x, we may fit the structure functions in Fig. 3
to exponential forms:

00l—
0

l. O

0.0l
0 0.2

I

0.4

PlO N

F~ (x)—XV(x)

\

I

0.4
X

0.6

1

0.6

We determine

A~ —0.45, A,~—3 to 4,

A =0.42, A,„=4 to 5 .

FIG. 3. (a) The structure function F2(x) for an isoscalar nu-

cleon is shown as a solid line; the broad dashed curve denotes

the valence distribution xV(x), and the short dashed curve

represents the ocean xS{x). These curves are adapted from the

CDHS nucleon structure functions (Ref. 8). (b) As in {a),but for
the pion. These curves are derived from the CERN NA3
analysis (Ref. 10).

B. Empirical bounds on (n )

Given values of F2 (x) and F2 (x) we can return to Eqs.
(2.7)—(2.10) and try to establish bounds on (n ), the ef-
fective number of excess pions per nucleon. We define a
function

F (x)
X (x)= [R (x)—1] .

Fz (x)
(2.26)

If we use for R (x) the fit to the central values of the EMC
data, ' R (x) =1.18—0.52x, and fit X (x) to a linear form
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for 0.05 &x & 0.3, we obtain upon extrapolating to x =0,

(n (Fe)) &0.20 . (2.27)

xV (x)= ~ vx (1—x),
along with

(2.28)

The lower bound is uncomfortably large, being roughly
1.5 times that obtained from the nuclear models discussed
in Sec. IV. To achieve a smaller value of (n ), one must
try to increase Fz(0) relative to Eq(0). In the parton
model, this would require increasing the momentum car-
ried by the ocean constituents of the pion. In our
parametrization, this momentum fraction is already a rel-
atively large 18.3%, and the quarks plus antiquarks to-
gether carry 53% of the pion's momentum. In our view,
any further increase in the momentum fraction carried by
ocean constituents of the pion cannot be motivated on in-
dependent grounds. Indeed, modest variations of the pion
quark and antiquark densities tend to reduce the value of
Fz(0) extrapolated to x =0. For example, ignoring the
massive-lepton-pair production data, one may be tempted
to employ the constituent counting rules rigidly and write

x
2

+f f (z)
x X

B
3'

BF
BF2 (x) dy f (y)

X

BR R (0)—J f~(z)dz
Bx ~~o 0 z

(2.30}

We are interested in extracting some qualitative insight
from Eq. (2.30) about the behavior of M/Bx at small x.
The second integrand poses no technical difficulties since
f~(z) vanishes for small z. Because f~(y) is expected to
peak for small values of y, the first integrands in Eqs. (1.1)
and (2.30) will receive substantial contributions from a
broad range of the argument (x/y) of I'z and its deriva-
tive. For this reason, the values of R (x) and M(x)/Bx in
the interesting interval 0.05 &x &0.5 cannot be obtained
readily from values of R and M/Bx at exactly x =0.
Nevertheless, some important insight into the behavior of
our function R(x) is obtained by examining the x =0
value of M/Bx. Using Eqs. (2.24) and (2.25), we find

xS (x)= (p+1)(1—xY, p=7. (2.29)

In this case, the valence quarks carry 40% of the pion's
momentum, an increase from the previous 35%. Choos-
ing A,

' =0.1, we would find that 50% of the pion's
momentum is carried out by the quarks and antiquarks,
leaving the remaining traditional 50% in the gluon field.
In contrast to Fig. 3(b), the function Fz (x) derived from
Eqs. (2.28) and (2.29) shows no spike at small x. Fitting
to the exponential form expressed in Eq. (2.25), we deduce
A' =0.22 and A, '=0.8. From this alternative structure
function we would extract (n (Fe) ) & 0.38 from the data,
about twice the value of Eq. (2.27).

We summarize this subsection by remarking that the
lower bound on the value of (n ) extracted from the data
is highly sensitive to the value of the ratio Fq (x)/F2(x)
extrapolated to x=0. The phenornenological bounds on
this ratio are fairly broad, with unity being a rough lower
limit and 2.0 being a rough upper bound. A quantitative
fit to the central values of the EMC data in Fig. 2 requires
(n (Fe) ) of at least 0.2; the value of 0.4 is not excluded.
If we choose to fit only to the lower portion of the prob-
able systematic error band shown in Fig. 2, we find
(n (Fe)) &0.1.

C. Slope of R(x) at small x

The data' in Fig. 2 show that the ratio
R (x) =+& (x)/Fz (x) decreases roughly linearly at small x.
The slope M /Bx is less sensitive to normalization uncer-
tainties than is the intercept R (0). In this subsection we
derive an expression for M /Bx from our model and show
that its value at small x is very sensitive to the logarithmic
derivatives of Fz (x) and Ez(x) at small x, as well as to
(n ).

From Eq. (1.1), we obtain

F2(0) ~ dy
O'FQ(0) Jo f11 y (2.31}

Equation (2.31) shows that the slope of R (x) near x =0
is influenced strongly by the logarithmic derivatives A,~
and A,~ of F2 (x) and Fz(x) at small X. While both or ei-
ther may be quite small at some special value of Q, the
(QCD) evolution of structure functions with Q tends to
increase these derivatives as Q grows. From this point of
view it is perhaps surprising that, in the data, the slope of
R (x) shows little variation with Q .

Some cancellation no doubt occurs between the two
terms in the square brackets on the right-hand side of Eq.
(2.31). Assuming exact cancellation, and approximating

f (dy/y)f (y) crudely by (n ) /(y ), we obtain the esti-
mate

= —0.52+0.04+0.21 (EMC),(Fe)
Bx

(Fe) =—0.45+0.08 (SI.AC),BR

(Al) =—0.30+0.06 (SI.AC) .
BR

(2.33)

These experimental slopes are about a factor of 4 to 10
smaller than we would expect near x =0. The only way

A, (n
[R(0)—1] .

Bx o (y)
We have invoked Eq. (2.6) in obtaining Eq. (2.32). Physi-
cal arguments associated with the relatively small values
of m /m~ or of mz /m~, where mr ——(m~ +pr ), sug-
gest that (y)=(0.2 to 0.4)(n ). Thus, we estimate that
BR /Bx near x =0 should be in the neighborhood of —k
or of —A, /2. Data indicate that
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D. Toy model

From the detailed nuclear models studied in Secs. III
and IV, we shall derive explicit functional forms for the
functions f (y) and f~(z) which represent the probabilities
to find mesons and nucleons carrying fractional longitudi-
nal momenta y and z. In this subsection we preempt some
of those results by postulating a simple ad hoc form for
f (y), and imposing momentum balance in the simplest
manner possible to derive f~(z) from f (y).

We choose to parametrize f (y) as

I (a+b+2)
1(a+1)I (b+1)y " (2.34)

0&y & 1. The parameters a and b may be varied so as to

we can accommodate such small slopes is to reduce A,

considerably and /or to arrange for substantial cancellation
between the two terms in Eq. (2.31). Reducing A,„requires
reducing the pion ocean contribution in E2(x) at small x
and, perhaps, arranging a careful compensation between
the valence and ocean contributions in Fig. 3. While this
could conceivably be done at one value of Q, the evolu-
tion of structure functions with Q would perhaps lead to
rapid changes of M/Bx with Q, not observed in the
data. Moreover, any reduction of the pion ocean contribu-
tion to achieve a smaller k, would force a compensating
increase in (n ) in order to maintain an acceptable value
of the intercept R (0).

We repeat that the large value derived here for BR/Bx
is appropriate only very near x =0. Our numerical work
discussed in Sec. IID and in Sec. IV shows that the
theoretical slope decreases as x enters the interesting range
0.05&x &0.5 in which there are data. Our theoretical
R (x) is not at all well represented by the simple linear
form R (x)=R (0)(1—cx). Nevertheless, the lesson of the
analysis of this subsection is that our theoretical R (x) will
decrease very rapidly as x is increased away from x =0.
If we adjust our theoretical R (x) to yield the value
R,„z,(0) obtained from the simple linear extrapolation
described in Sec. IIB, then our values for R (x) in the
range 0.05 & x & 0.3 will necessarily fall considerably
below the data. Boosting our theoretical R (0) sufficiently
may allow our function R (x) to pass through the data in
the region x=0.1. However, barring a large increase of
Fq (0), which we consider unacceptable, increasing (n ) is
the only mechanism we have for increasing R (0). A fit to
both the intercept and the slope of R(x) seems impossible to
achieve in the context of known constraints on E2(x) and
the relatively small Ualues of (n ) suggested by nuclear
models. We note in passing that the successful description
of the data achieved by Ericson and Thomas may be as-
sociated with their assumption that F2(x) is a constant
(k =0) for x &0.3. We do not believe this assumption is
a fair representation of the information available on
F2 (x), discussed in Sec. II A.

In summary, the value of the slope of R (x) in the in-
teresting region 0.05&x &0.4 is inAuenced strongly by
three effects: (i) the value of (n ), (ii) the values of F2(x)
and F2 (x), and (iii) momentum balance between the
mesons and nucleons in the nucleus.

alter they dependence off (y). We note that

&y &
=—f,yf. (y)dy = (2.35)

For conceptual simplicity we find it convenient to asso-
ciate the pions with nucleons, on a one to one basis. We
picture the nucleus as a collection of nucleon and of
nucleon-pion subsystems. We neglect any difference in
the effective masses of the nucleon and nucleon-pion sub-
systems as well as the Fermi motion of these subsystems
relative to one another. Thus, in a nucleus of large longi-
tudinal momentum I', each subsystem carries longitudinal
momentum I'/A. This approximation should be adequate
so long as x is not too near its maximum (i.e., x & 0.6). In
pA ~p'X, the exchanged virtual photon may interact with
a "free" nucleon in the nucleus, with probability
(1—(n )), or with either the pion or the nucleon of the
nucleon-pion system. The nucleon in the subsystem car-
ries longitudinal momentum fraction (1—y), with proba-
bility f (y). Thus, we derive immediately

f~(z)=(1 —(n ))6(z —1)+f (1—z),
and, in our toy model, Eq. (1.1) becomes

(2.36)

hR (x)= f dy f„(y)F2 (x /y) F2 (x) . (2.38)

Both R (x) and AR (x) show the sharp decrease for
x & 0.05 discussed in Sec. II C. In the region
0.05 &x &0.5, the slope of our calculated R (x) is in fine
agreement with the slope of the experimental R (x). How-
ever, the theoretical curve is everywhere about 0.05 units
belo~ the data.

A comparison of the two curves in Fig. 4(a) indicates
that the nucleon contributions are important even in the
region of small x. This effect arises from momentum bal-
ance between the mesons and the nucleons, and it is not an

Fz(x) =(1—(n ) )Fq (x)
1

+ f dy f (y)F2(x/y)

+ f dz f (1—z)F2 (x/z) . (2.37)

We note that in this approach any enhancement of F2 (x)
at small x associated with the enhanced pion cloud will be
compensated to some degree by a depletion of F2(x) at
larger x. This effect, also observed in the data, arises here
from momentum conservation. The structure function
F2(x) probes the momentum distribution of the constitu-
ents; momentum carried by the extra pions is removed
from nucleons.

We have investigated the results obtained for R (x) for a
fairly broad range of the parameters a and b in Eq. (2.34).
Selecting (n )=0.22, consistent with the bound in Eq.
(2.27), and using the structure functions defined in Sec.
II 8, we obtain the results shown in Fig. 4(a). These re-
sults were obtained with the choices a =1 and b =3,
which provide (y ) = (n ) /3. Very similar results are ob-
tained with the parameter set (a,b) =(2,5) which preserves
&y).

In Fig. 4(a), we show the total result R (x) and the con-
tribution from the pion term alone,



29 PION DENSITY IN NUCLEI AND DEEP-INELASTIC LEPTON. . .

1 4

1.2—

1.0

0.8—

1.2

1.0

0.8

1,0

(cj

I

0.2

0.2

I

04
X

I

0.6

04
X

0.6

FUl L R (x)
———a, R~ (x)

0.8

0.8

artifact of the simplistic method chosen in this subsection
for achieving that balance. Essentially identical results
below x =0.4 are obtained if we use the more sophisticat-
ed method discussed in Sec. IV. It is therefore inappropri-
ate to compare only b,R (x) with the data. Even at small
x, such a comparison neglects important (negative) effects
associated with the degradation of the momentum of the
nucleons.

In an attempt to achieve better agreement with the data
we tried varying (y) over the interval (n )/6 to (n )/2,
to little avail. Retaining (y) =(n )/3, and boosting
(n ) to 0.4, we obtain the results shown in Fig. 4(b). The
agreement with the data below x =0.1 is achieved at the
price of substantial disagreement for x &0.3. The slope
of our theoretical R(x) no longer parallels that of the
data. The value (n ) =0.4 is also more than a factor of 3
greater than predicted in nuclear models, as described in
Sec. IV.

Finally, recalling our analysis of M /Bx in Sec. II C, we
considered altering the pion structure function Fq(x) to
one with a smaller logarithmic derivative A, at x =0.
Changing to the naive parton model form specified in
Eqs. (2.28) and (2.29) (whose A, =0.8), and retaining
(n ) =0.4, we obtain the results shown in Fig. 4(c). The
agreement with the data is respectable for x ~0.2; the
discrepancy at larger x is a direct consequence of the very
large value of (n ) required to fit data in the small x re-
gion.

The conclusions of this subsection are reinforced by the
analysis carried out with nuclear models for f (y) in Sec.
IV. The magnitude of the central values of the data on
R (x) at small x cannot be reproduced within the context
of the approach studied in this paper unless we select ad
hoc values of (n ) as large as 0.4. Such large values of
(n ) are incompatible with nuclear models and result in
inevitable serious discrepancies with the data on R (x) at
intermediate values of x (0.2 &x & 0.5). These con-
clusions are insensitive to the methods we have explored
to enforce momentum balance between the meson and nu-
cleon constituents of the nucleus. If we redefine our goal
to be that of reproducing only the slope of R (x) in the re-
gion 0.05~x ~0.5, we can achieve a good match to the
data if we use the structure functions of Sec. IIB and
values of (n ) compatible with nuclear models.

0.8 III. CALCULATION OF STRUCTURE FUNCTIONS
OF COMPOUND SYSTEMS

I

0.2
I

0.4
X

I

0.6 0.8

FIG. 4. Comparison of our theoretical R {x)=F2 (x)/F2 with
the EMC data of Ref. 1. The solid curve shows the full result of
the "toy model" described in Sec. IID, whereas the dashed
curve represents hR {x), the contribution to R {x)of scattering
from the constituents of the mesons. In (a), we set (n ) =0.22,
(y) =(n )/3, and we use the CDHS nucleon structure func-
tions and the NA3 pion structure functions, both evaluated at
(Q2) =2S CxeV; (b) as in (a), except that (n ) =0.4; (c) as in
(a), except that (n ) =0.4, and for the pion, we use the simple
parton model structure functions of Eqs. {2.28) and {2.29).

In this section we calculate the structure functions of
compound systems, whose constituents are themselves not
structureless, in terms of the structure functions of the
constituents and the wave functions of the compound sys-
tern. We establish that this can always be done consistent
with the requirements of Lorentz invariance and the prin-
ciples of quantum mechanics. ' The structure function of
the compound system shall be shown to be a linear func-
tional of the structure functions of the constituents. It
can be obtained for any value of the momentum transfer,
but is especially simple for large Q . In practice nuclear
wave functions are, of course, nonrelativistic. However,
they can be understood as low velocity approximations of
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I'2 =P'" [ ,p„p—./( p'—)+ ,' g„.—](p.Q)/( —p '), (3.1)

relativistic wave functions. The validity of this approxi-
mation is independent of the velocity of the nucleus as a
whole and depends only on the smallness of the velocities
of nucleons relative to their center of mass.

The structure function Ez(x, Q ) is defined in terms of
matrix elements of the target current by

where p is the initial momentum of the target, and

p=p —(p Q)Q/Q'. (3.2)

The tensor F" depends on the matrix elements of the
current density in the target,

I:""=fd p' g g g 5(p' —p —Q) & p
' tr S' ms I 1 (o)

I p ms & & p
' tr S', ms

I j"(o)
I p, ms &'E

, 2S+1a S'ms

(3.3)

where E =(p +M )', and the states
I p, ms& are nor-

malized according to

& ms S p
'

I p, S,ms & =5( p —p)5s, s'5
ms~ms

(3.4)

I
P

I
( P2)1/2 (3.5)

Symbols S, ms stand for spin, and a represents all other
quantum numbers; M is the mass of the target.

The properties of relativistic wave functions represent-
ing the state vector of the target can be formulated con-
veniently in terms of suitably defined functions of the mo-
menta of the particles. Let p&, . . . , p& be the momenta of
%particles of mass m, p; = —m, and define

For nonzero spin the bound-state wave functions
transform under rotations in the same way as nonrelativis-
tic wave functions; densities averaged over spin com-
ponents are again Lorentz invariant. We suppress the spin
variables of the constituent particles in this discussion,
since they introduce no significant problems. The wave
functions 7 do not give a complete description of the nu-
cleus since they do not include a representation of the
center-of-mass motion. Relativity and quantum theory re-
quire that there be a unitary representation U(A) of the
Lorentz transformations A such that current density
operators j"(x) and state vectors

I p, S,ms & satisfy the co-
variance relations

p;.=p; (p;.P)P/P—', ~;= (p; P)/IP—
I

.
U(A)j"(x)U '(A)+A",j"(A 'x),

U(A)
I p, S,ms &

(3.11)

From these definitions it follows that

yp, ,=o, y~, = IP I, ~, =(p,,'+m')'". (3.7)

Let L (P) be the Lorentz boost with the defining property
L (P)P =

t I
P I, O I. Because the time component of the

vector L (P)p;r vanishes, we can define the momenta q; as
functions of p &, . . . , pN by

Io, q;I =L(P)p;r . (3.8)

Since q;.qJ =p;r.p;Jq, scalar functions of the q's are
Lorentz invariant. The three-vectors q are defined in any
frame, but, loosely speaking, are the relative momenta in
the center-of-mass frame.

Bound-state wave functions for a compound system of
spin zero are therefore scalar functions X(q~, . . . , qN).
They satisfy an eigenvalue equation of the general form

= g I p, Sms &D, (R (A,p))(E/E)'~
ms ms

I
ms

(3.12)

P+ ——P n+(P + IP
I

)'~

PT=P —(n P),
P = —(IP I'+P, ')/P

(3.13)

(3.14)

(3.15)

where R ( A,p) =L (p )AL '(p),p =Ap.
For a consistent calculation of structure functions it is

sufficient to achieve covariance of the state vectors under
Lorentz boosts in one direction, namely, the direction of
the momentum transfer Q in the rest frame of the target.
This requirement can be imposed explicitly on the wave

function. Let n be a unit vector in the direction of Q in
the rest frame of p, and define "light-front" components

I'+, I', and PT by

( IP I+V)X=XM,

and have the Hilbert-space norm

I I&I I'= fd'qi . . fd'qN
I
&(qi . . ~ qN )

I

'5 g q

(3.9)
Corresponding components are defined for any four vec-
tor. The desired wave function with manifest light-front
symmetry is then

+p(PIT& ' ~ PNT~P1+~ . ~PN+)

(3.10)
=J'~'X(q), . . . , qN )5(PT —PT)5(P+ —p+ ), (3 16)

Here M is the mass of the bound system, and v is some in-
variant interaction operator.

where J is the appropriate Jacobian.
The light-front momentum fraction x;,

x; =p;+/I'+, (3.17)
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x;=p;+/P+ ——(n. q;+a.;)/i P
i

(3.18)

(obtained by evaluating numerator and denominator in the

is invariant under boosts in the direction n. For PT ——0,
x; is related to the q's by

frame in which P+ ——
~

P
~

). It is therefore a straightfor-
ward change of variables to express the wave function X
as a function of the new variables q;T, . . . , q ivT,

Th«lib«-spa«norm
I IX I I

is then

XII =fd qir' ' ' fd Arr fdx ' '. f«x IX(q&T, . . . , qiiT, xi, . . . , xiv) I'5 gx; —1 5 gq;T
I

(3.19)

For a nucleus with 2 nucleons and a variable number of pions we have wave functions X„(qi, . . . , q~, ki, . . . , k„)
with the normalization

g fd'q, fd'q„fd k, . fd k„~X„(qi, . . . , qg, ki, . . . , k„)~'5 gq;+ski
n J

(3.20)

The corresponding momentum distributions piv(q ) and p (k ) of nucleons and pions are
r

piv( q )= g fd qi fd qz fd ki fd k„5(q q i—)5 g q;+ g kj
~
X„(qi, . . . , qz, ki, . . . , k„)

~

J
(3.21)

r

p~ k =g
&

fd'qi . . fd'q~ fd'ki . fd'k„5(k —k&)5 gq;+ gk,. ~X„(q,, . . . , q„;k,, . . . , k„) ~'. (322)
8 C J

Instead of these densities which are functions of k and q, we need, for our purposes, densities that are functions of the
light-front momentum fractions y and z of the pions and nucleons. So that we may discuss momentum fractions per nu-
cleon, it is convenient to introduce a factor A into the definitions

~ pi+ ~
n qg+(qg +miv )

Zg

P+ (3.23)

p~&+ n. k&+(k&2+m 2)i~
(3.24)

where P is again the total momentum

(3.25)

It follows that

gz;+ gy, =A . (3.26)

Joint probability distributions f„(zi, . . . , z~,yi, . . . , y„) are defined as the squares of the wave functions integrated
over all transverse momenta. Integrating over all but one constituent, we obtain the momentum distributions of the
pions and nucleons,

and

r

f~(y)=g f dz& . fdz~ fdyi fdy„5(y —yi)5 gz;+gy& —3 f„(zi, . . . , zz,yi, . . .—,y„)
n

fN( ) =g fdzi, . . . , fdz~ fdy i, . . . , fdy„5(z —zi )5 gz;+ gyi —3 f„(z&, . . . , zz', y &, . . . ,y„) .

(3.27)

(3.28)

From these definitions and Eq. (3.26) follows the important momentum-balance relation

fdzzf~(z)+ f dy yf (y) =1,
while

fdz fiv(z) =1 and fdy f (y) = (n ) .

(3.29)

(3.30)

If we assume that the pions and nucleons in the nucleus contribute incoherently, then the structure function Fz per
nucleon of the nucleus is a linear functional of the nucleon and pion structure functions F2 and F2,
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x (.Q) 3 PjP 1P f ()( )'
z z(p~. Q) 2 p 2 p

x (p Q) 3 P~'P+3 dy Fq x(p. .Q»
17m ()f.x

P
(3.31)

fx«) =fo5« —1)+f4'f i(»Z)5(z+Z 1)—
=(1—(n ))5(z —1)+f„(1—z) . (3.34)

If we assume that the nucleus is a collection of individual
dressed nucleons with each pion cloud modified by the
medium, and neglect the Fermi motion of the nucleons,
then we recover the toy model of the last section. In that
case Eq. (3.24) becomes

n k+(k +m )'

(k'+m ')'"+(k'+m ')'" (3.35)

and f (y) can be calculated from Eq. (3.35) provided we
have a theory for the modification by the medium of the
pion clouds of single nucleons. In this paper we will not
pursue this avenue further.

where p=p —(p Q)Q/Q . For Q ~~m&, Eq. (3.31)
reduces to

Ez(x)= fdzF2 —f~(z)+ f dy Fz —f (y) . (3.32)
Z

'
y

If A = 1 and n =0, 1 Eqs. (3.27), and (3.28) become

f (y) =fdz f &
(z,y)5(z +y —1) (3.33)

and

momentum densities p ( k ) and p~( q ) are readily accessi-
ble in terms of conventional nuclear theory. The develop-
ments of Sec. III show that f&(z) and f (y) can in princi-
ple be calculated from ordinary nuclear wave functions,
but there are no exact relations between the momentum
densities p~(q ) and p (k ) and the functions fz(z), f (y).
In this paper we obtain approximate forms for f (y) and

f&(z) by relating them to the densities p (k ) and p~(q ).
These approximate relations should be adequate at least
for an initial orientation. The approximation consists of
redefining the momentum fractions z and y by

z =A [n q+(q +m~ )' (4.1)

y =A[n k+(k +m )'~ ]/( [P f
) . (4.2)

The replacement of
~

P
~

by (
~

P
~

) allows us to remove
(

~

P
~
) from the integrand. The densities f&(z) and f (y)

can then be obtained from p&(qr, z) and p (kT,y) by in-

tegrating over the transverse momenta. Equations (4.1)
and (4.2) are designed to maintain the momentum balance
Eq. (3.29).

The nuclear bound-state wave functions X„(q ~, . . . ,
q~,'k~, . . . , k„), n =0, 1, . . . , are eigenfunctions of a
Hamiltonian of the general form

IV. APPROXIMATE CALCULATIONS OF NUCLEON
AND PION MOMENTUM DISTRIBUTIONS H =H~+ fd'k c (k )c (k )co (k )+H', (4.3)

In this section we discuss the approximations we make
in obtaining pz(q ), p (k ), f~(z), and f (y). The

I

where H& acts only on the nucleon coordinates
co =(k +m )' and the interaction term H',

H'=(2m) ~ ffd k fd p'f d p5(p'+k —p )[(A —m )/(k +A )] /m

Xgc~(p

')iver

krpc~(p )[c p(k )+c p( —k )] /( c2o )'~
P

(4.4)

creates and annihilates pions. The operators
c&(p '),c~(p )c (k ),c (k) are nucleon and pion creation
and annihilation operators; f /4' =0.08; A=7 fm ', o.
and ~& are spin and isospin matrices.

The standard procedure in nuclear theory is to eliminate
the functions X„ for n ~0 from the Schrodinger equation
and the normalization condition (3.20). The nucleon
momentum density p&( q ) is then

p~(q )=fd q& fd q 5(q q, )5—
X gq; ~XO(q&, . . . , q&)~'.

(4.5)

I

It should be adequate for our purposes to approximate the
momentum distribution in a nucleus by that of homogene-
ous nuclear matter at a representative density. ' In that
case p~(q) is constant if

~ q ~

is less than the Fermi
momentum k~. The high-momentum tail,

~ q ~
&k~, of

the momentum distribution contains only about 11% of
the nucleons. ' In calculating f~(z) with Eq. (4.1) we will
neglect the high-momentum tail as a matter of conveni-
ence. We have included the tail in a sample calculation
and verified that its numerical effect on the ratio R (x) is
negligible for x &0.5. For an uncorrelated Fermi gas the
function f&(z) obtained from Eq. (4.1) is well approximat-
ed by the expression
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f~(z) =~ 4 (m~/kF)'[(k~/m~)z —,' (—uz I /az)~],
(4.6)

p (k)= —
& Ic (k)c(k)

I &, (4.7)

where
I & is the state vector represented by the wave func-

tions X„. Since we wish to identify F2 (x) with the mea-
sured structure function of an isolated nucleon, including
the effects of its pion cloud, we must extract the excess
density p,„(k) due to meson exchange from the total
pion density p~(k ). We use conventional methods of nu-
clear potential calculations for separating the effects of
the pion clouds of single nucleons from medium-
dependent effects. ' ' The pionic self-energy of the nu-
cleons is absorbed in the nucleon mass while the medium-
dependent energy i.s the expectation value of the pion-
exchange potentials. The same procedure is applicable to
other quantities since the ground-state expectation value
of any operator can be formally obtained as the linear
response of the energy to a perturbation of the Hamiltoni-
an. With

H(g)=HJv+ Jd k' c(tk')c(k')

X [co (k ')+g5(k —k ')]+H', (4.8)

we have obviously

1 d& IH(g) I &

A dg
(4.9)

This remark points to the way in which we can extract ex-
cess pion densities. The interaction H' is responsible both
for the pion self-energy of isolated nucleons and the pion
exchange that provides the long- and medium-range at-
traction between nucleons. The self-energy is, of course,
eliminated from calculations of nuclear binding energies.
Using Eq. (4.9) we can eliminate the pion clouds of isolat-
ed nucleons and thus find a formula for the excess pion
momentum distribution associated with one-pion ex-
change (OPE), ' '

p, (k ) = —
& I

co~ 'VopE(k )
I & (4.10)

For consistency it is important that the potential used in
the above pion-d. ensity operator be the same as that used
to calculate the wave functions. In order to include in a
convenient manner at least a substantial fraction of the
two-pion exchange effects we include 5 isobar states of
the nucleons and use a Hamiltonian which includes NAm
and hb, rr vertices. ' We see from Eq. (4.10) that the ex-
cess pion density is opposite in sign to the contribution

kF + N ) kF &a™N&(kF +mQ ) +kF

a=& II'
I
&/am~.

Outside this range, f~(z) vanishes. We have used
kF ——1.08, 1.13, and 1.23 fm ', respectively, for Al, Fe,
and Pb.

The pion momentum distribution p ( k ) is related to the
expectation value of the pion number operator by

O. I 0

0.08-
1

'
I

' I '
I

"-. ~Pb

~ 0.06

0.02

-0.02--
0

k (fm')

FKJ. 5. The densities 4~k'„,„(k ) vs k for Pb, Fe, Al, and
D. These are normalized such that d k p,„(k ) = n

& I VopE(k ) I & to the potential energy. In nuclear sys-

tems & I
Vopp(k )

I
& is positive for small

I
k I, s«he

medium decreases the pion density, i.e., the excess pion
density is negative for small

I
k

I
. This can be understood

as a result of Pauli blocking on the nucleon's pion cloud.
For larger

I
k I, & I VopE(k )

I
& is negative, providing the

nuclear binding, and the excess pion density is consequent-
ly positive.

In this manner we have obtained p,„(k ) for deuterium
and for homogeneous nuclear matter of different densities.
For aluminum, iron, and lead we have averaged nuclear-
matter results over the appropriate nucleon densities. '

The results are shown in Fig. 5. The pion momentum dis-
tributions for aluminum, iron, and lead are very similar to
those obtained for homogeneous nuclear matter at
kF ——1.08, 1.13, and 1.23 fm ', respectively. We find that
&n„& =0.025, 0.119, 0.126, and 0.142 for D, Al, Fe, and
Pb, respectively. We note that &n~& increases rapidly
with A for small values of 2, then tends to level off.'
Qualitatively, this implies that both the slope of R (x) and
its extrapolated intercept at x =0 should also increase rap-
idly for low values of 2 but then show little change with 3
for A ~ Al.

The corresponding light-front momentum distribution
f (y) for iron, obtained from the use of Eq. (4.2), is denot-
ed in Fig. 6 by a solid line. In Fig. 7(a) we present the ra-
tio R (x) calculated from Eq. (1.1) using this pion distribu-
tion and the pion structure function shown in Fig. 3(b).
The average slope of R (x) follows that of the data, but the
magnitude of R (x) is too small, particularly at small x.
We find that changing to the simple parton model struc-
ture functions of Eqs. (2.28) and (2.29) makes no signifi-
cant difference, except for x & 0.05. In view of the uncer-
tainty involved in the approximations (4.2) we have inves-
tigated the effect of scale transformations on y that alter
&y & without changing the number of pions per nucleon.
The number of pions per nucleon can be changed indepen-
dently. We find that the slope of the ratio R(x) can be
reproduced quite accurately; but not the magnitude. As
&y & is decreased, the theoretical R (x) diminishes at small
x (x =0.05 to 0.15) and increases at larger x (x =0.5). In-
creasing &n & with &y & fixed, raises R(x) at small x and
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FIG. 6. The functions f (y) for Fe obtained from p (k)
shown in Fig. 5 by the methods described in Sec. IV. For the
solid curve, (n ) =0.126 and (y ) =0.065; for the dotted curve,
(n ) =0.252 aud (y ) =0.047.

depresses it near x=0.5. The distribution shown by a
dashed line in Fig. 6 is obtained by doubling the pion
number and decreasing (y) from 0.065 to 0.047. The ra-
tio R (x) obtained from this pion distribution is shown in
Fig. 7(b). In this case, the slope of the data is reproduced
very well. Again, use of the simple pion structure func-
tions of Eqs. (2.28) and (2.29) causes significant changes
only for x ~0.05.

We began this investigation in order to establish wheth-

er the observed behavior vs x of the nuclear structure
functions can be explained simply in a conventional nu-

clear model in which the deep-inelastic scattering occurs
either from constituents of the nucleons or from constitu-

I 3' I
/
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FK». 7. Comparison of data and our mode1 for R (x), for Fe.
(a) The solid curve of Fig. 6 is used for f (y); (n„)=0.126 aud

(y) =0.065. (b) The dotted curve of Fig. 6 is used for f (y);
(n ) =0.252 and (y) =0.047.

ents of the mesons associated with nuclear binding. We
constrained ourselves to the use of structure functions
measured on isolated nucleons and pions and attempted to
fit the nuclear data in terms of convolutions over these
free-nucleon and -meson structure functions. We con-
clude this approach is unable to fit the relatively large ex-
perirnental effect represented by the central values of the
data from the CERN EMC and the SLAC-MIT-
Rochester experiments. We can achieve a quantitative fit
to the data at smaD x only if we postulate an enhanced
pion density (n ) of about 0.4 extra pions per nucleon
and/or make assumptions about the small-x behavior of
the meson structure function which are inconsistent with
available data. A density of 0.4 extra pions per nucleon in
iron is roughly three times that provided by conventional
nuclear models and is excessive. Such large values of
(n ) also result in inevitable serious discrepancies with

the data on the ratio R(x) at intermediate values of
x (0.3 ~x ~0.5). These conclusions are insensitive to the
methods we explored to enforce momentum balance be-
tween the meson and nucleon constituents of the nucleus.
If we redefine our goal to be that of reproducing only the
slope of R (x) in the interesting region 0.05 ~x &0.5, we
find that we can achieve good results with acceptable
structure functions and with values of (n ) compatible
with nuclear models.

In the data presented on R (x), Q and x are correlated
such that the mean Q grows substantially over the ex-
plored interval in x. In our study, we use input meson and
nucleon structure functions whose full x dependence is
specified at one fixed Q, which we take as Q =25 CseV .
We doubt whether our neglect to build the x, Q correla-
tion into our analysis affects our results in a substantial
way, but the question warrants future study.

In Sec. III we present a formal analysis which demon-
strates that the structure function of a compound system,
such as a nucleus, whose constituents contribute in-
coherently, can be expressed as a linear functional of the
structure functions of the constituents. We establish that
this can always be done consistent with the requirements
of Lorentz invariance and quantum mechanics. The re-
sulting Eq. (1.1) is the basis for the remainder of the work
in this paper.

Our failure to reproduce the data forces us to question
the validity of our basic assumptions that structure func-
tions of hadrons are unaffected by the nuclear medium
and that hadrons contribute incoherently to the structure
functions. We conclude that scattering from a proton in a
nucleus is not described properly even at small and inter-
mediate values of x by the free proton structure function.
For whatever reasons, the nuclear medium enhances the
effective nucleon structure function at small values of x.
In order to fit the data, this "intrinsic" enhancement must
be comparable to the enhanceinent of Fz (x) at small x as-
sociated with scattering from the mesons in the nucleus
associated with nuclear binding.
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