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Helicity selection rules in the Born approximation to Compton scattering
of massive spin-1 particles on massless fermions
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The helicity amplitudes for the reaction 6+q —+y+q, where the gluon 6 and photon have virtual
masses, and where the quarks are massless, are studied. A remarkably simple picture is found to
describe the reaction in the Born approximation. Despite the fact that there are three distinct polar-
ization vectors, the transition matrix remains two-dimensional, provided the reaction takes place on
a polarized quark. This simplification is achieved by introducing a nonorthogonal basis for the
massive gluon and photon states. An interesting aspect is that one particular gluon polarization
state cannot produce photons, while a certain massive photon polarization state cannot be produced.
Our results represent a generalization to arbitrary-mass spin-1 particles of the usual helicity conser-
vation known to hold for massless vector particles.

I. INTRODUCTION (2S, +1)

Recently interest has arisen in testing QCD through its
predictions for processes involving polarized particles,
such as the production of lepton pairs using a polarized
beam or target. ' The parton-model calculations of the
corresponding subprocesses involving the fundamental
constituents are usually carried out assuming massless
quarks. It is a well-known fact that massless quarks act-
ing via y" or y"y coupling conserve helicity. An im-
rnediate consequence of this is that the number of ampli-
tudes required is reduced by a factor of 2; a more subtle
result follows from the theorem of Eberhard and Cfood.
To see how this works, we consider the reaction

a+q~b+q,
where we suppose that the initial and final quarks are
joined by a continuous line involving only y" and y"y
couplings in any Feynman diagram. The theorem states
that the rank (number of strictly positive eigenvalues) of
the spin density matrix ps for particle b is less than or
equal to the product of the statistical weights of the other
particles in the reaction. For an unpolarized particle of
spin s, the statistical weight is (2s + 1), whereas for a po-
larized particle, it is the rank of its density matrix. If the
initial quark is in a state of definite helicity, the final
quark has the same helicity, and the product of the statist-
ical weights for the quarks is unity. It then follows that

ry &r~ )

where rI, and r, denote the ranks of the density matrices
for particles a and b, respectively. In particular, if parti-
cle a is in a pure state (i.e., p~ is unitarily equivalent to a
matrix with one eigenvalue of unity and the others zero),
then particle b is also in a pure state. This allows us to
consider the transition amplitude as a mapping of pure
states of particle a onto pure states of particle b. One may
then write the amplitude matrix for the reaction in the
following forxn, using Dirac notation:

where the
I aj ) span the space of states of particle a, and

(a;
I

denotes the dual state, i.e., those states which satisfy

The
I P; ) denote states for particle b, and the quantities S;

are the reaction amplitudes corresponding to the transition
in which state

I
a; ) becomes

I P; ). Thus a complete
specification of the transition matrix is provided by the
(2S, + 1) states a; ) (or their duals), their images

I P; ),
and the corresponding amplitudes S;.

In this paper we show that for the reaction

G+q~y+q
involving massive gluons and photons, the Born approxi-
mation to the transition amplitude on a positive-helicity
quark may be written as

where
I
61') and

I
yl') denote s-channel helicity + 1

states of massive gluon and massive photon, respectively,
and where the states

I
G —1") and

I y —1") denote nega-
tive u-channel helicity states. (We recall that s-channel
helicity for massive particles means that in the rest frame
of the particle, the z direction is antiparallel to the
momentum of the partner of the particle in the s channel.
In the present case, this means the initial quark for parti-
cle a and the final quark for particle b. The u-channel
helicity axes correspond to choosing the z axis antiparallel
to the final-quark momentum in the particle-a rest frame,
and to the initial-quark momentum in the particle-b rest
frame. )

A remarkable aspect of this expression is that only
I

1')
and

I

—1") states appear. It then follows that the gluon
polarization state which is orthogonal to both of these
states cannot produce a photon, nor can the corresponding
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photon state be produced. It should also be remarked that
our expression (3), which looks as if it conserves helicity,
does not. The Dirac bra vectors appearing are the dual
vectors corresponding to the states

i
6—1'),

i
61") and

the state which does not react. Thus, if an incident gluon
is in the state

i
1"), the final photon is necessarily in the

state
i
1'), whereas a gluon in a

~

—1') state produces a
i

—1") photon. The corresponding amplitudes are

(4a)

p3 ——(s+my2, (s —my2)sine, o, (s —my2)cose)

X(2s' ') (Sc)

where 8 is the production angle and where p&
——mt.- and

p3 ——my (although we shall assuine, in the body of the
paper, that mG and m& are positive, our results may be
extended to include spacelike momenta for the gluon or
photon. The details are given in the Appendix). It is use-
ful to introduce the vectors n and n, which in the c.m.
frame have the form

(y —1"
i
S

i
6 —1')=S i ( 6 —1"

i
6 —1') . (4b)

n =(O, l, i, 0) /V2,

n =(0,1, i,—O)/v 2,
(9a)

(9b)

1 +cos+6(6 1' 6 1") = (6 —1"
~

6 —1')=
2

where, in the rest frame of the massive gluon, 7G is the
angle between the momenta of the initial and final quarks.
In the limit of zero gluon mass, 76 ——0, and there is no
distinction between s-channel and u-channel helicity. In
taking the limit IG —+0 we recover earlier results derived
by Gottlieb and the present author in Ref. 3. If one also
allows the photon mass mz to approach zero, the usual
helicity conservation rule is obtained.

In Sec. II we give a derivation of Eq. (3), as well as an
extension to the annihilation process

again with polarized quarks. We remark that our results
apply also if the y is replaced by a Zo or 8 and also if
the gluon is replaced by a photon.

II. DERIVATION OF RESULTS

and which satisfy npnP=0, n,pnp ———1. They corresPond
to gluon polarization vectors of positive and negative s-
channel helicity, respectively.

Using standard y-matrix identities, the quantity 0 of
Eq. (7) may be written as

A( I+y5) 8(1—y5)0=
2

+
2

(10)

and, if the nonorthogonal basis p2, p4, n, and n is intro-
duced, 3 may be written as

A =Ops+ &p4+c1f +dn'

with a similar expression for g. If the initial quark has
positive helicity, (1—yz) annihilates it, and so does ir,
since it corresponds to o.„—io.„acting on a down-spinor.
The quantities p2 and p4 have zero matrix elements, and
one may write, for positive-helicity quarks,

r

1+y5
M =eg u(p4)yi

2
u (p2) c

A. Compton process

The evaluation of the amplitudes for the Born approxi-
mation is straightforward, and results may be found in the
literature. However, we believe that our derivation of Eq.
(3) is sufficiently interesting in itself to merit a detailed
presentation. Let us write the amplitude for the Born ap-
proximation to

6(pi)+0(p2) Y(p3)+e(p4)

in the standard form" (omitting color indices for simplici-
ty)

M =egu(p4)Ou (p2),

where 0 is defined by

ey (pi+p~)& e (p2 pt3)e'yt-0= +

and where e and e~ are the gluon and photon polariza-
tion vectors, s = (p i +p2 ), and u = (p 2

—p 3 ) . In the c.m.
frame, the momenta may be written

and satisfies

U
P —

U
P —U7lP —UUP —0 UUP—2 4 p p

At this point one may simply replace 0 by Eq. (7) and
carry out the trace (12) to obtain c as a function of ey and
e . We can avoid this effort, however, by writing Eq. (12)
in another way, namely,

c =a~~PC epv (14)

One may then easily verify, using either Eq. (12) or (6),
that the following identities hold:

Cp„P ) —0, (15a)

In order to obtain the coefficient c, we introduce U, the
vector dual to n in the p2, p4, n, n basis and find

c = —,
' Tr[Oyt(1 —ys)] . (12)

The dual vector may be written as

pi =(s +mG, O, O, S —mG )/2$

p2 ——{s—mG, O, O, —(s —mG ))/2s'i
Cp U =0,fv (15b)
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@v=0f|M

S ~2C„uz =O

u~4Cp u4=O

(15e)

(15fl

a )PS p
—1 Epai3yP 3 V P 4 IP 3 'P 4 ~

~ p l~paI3yP3V PIIP3 P2

for the left basis. The vector $& satisfies

s sj"=0 s s~~= —1P ' P

(16c)

(16d)

as do u, s, and u. Using these vectors, one may write the
most general expression for C&, such that all of the con-
ditions (15) are satisfied, in the form

Equations 15(a)—15(d) imply that C&„acts effectively on
the right only in the subspace orthogonal to P 1 and v and
on the left in the subspace orthogonal to P3 and v . A
convenient set of basis vectors for these orthogonal sub-
spaces may be introduced, namely,

Sp l&paI3yP1V PIIP1 P2 (16a)

Q p
= l EpaIlyP 1V P 4 IP 1 P4 (16b)

for the right basis, and

(e„i—e~ )Iv 2] we obtain the following results.
Gluon polarization vectors:

s= —es

u =6g

where s and u refer to s- and u-channel helicity.
Photon polarization vectors:

(22a)

(22b)

(23a)

(23b)

1+y5
u (P4)12' ~ (P2) = —2(P2 P4)'" (24)

and we obtain, as our final result for positive-helicity
quarks,

~

yl')(Gl'~
S

The expression $ &S„ thus corresponds to the
~

yl') (G 1'
~

expression of Eq. (3), while the u &u„ term corresponds to
~ y —1")(G —1"

~

. Returning now to Eq. (11), we find,
for positive-helicity quarks,

Cp~=C)s ps~+C )u pu~ . (17) (my —u)(mG —u)
i y —1")(G—1"

i

r

4(P2 P4)(P3'v ) (P2 P3)(P1'P4)
(21a)

C, =—4(P2.P4)(P3 v') (P3.P4)(P1 P2)
s

At this point we have essentially completed our demon-
stration. The key feature is that if either the gluon polari-
zation e =U or if the photon polarization vector e~ =U,
then the amplitude is zero. Noting that the vector s satis-
fies s -p

&

——s.p2 ——s -s =0, along with s.s = —1, we can
conclude that s corresponds to a state of definite s-channel
helicity + 1 or —1. After working out the details, taking
into account the helicity convention of Jacob and Wick
[for $-channel helicity gluons, positive helicity implies
—(e„+ie~ ) IV 2, whereas negative helicity implies

The coefficients Ci and C 1 are readily evaluated by
making special choices for e and ey . For example, if
e =@2 and e~ =@4,one finds

2(P2.P4)(P3.v )
C (18)

(P4 u ')(P2 u)u

whereas if e =@4 and e =@2,one obtains

—2(P2P4)(P3 v )C)=-
(P2'S )(P4'$ )$

These expressions may be further simplified if one intro-
duces the pseudovector N&, via

&,=~, PyP 1P5 $ . (20)

Evaluating the scalar products such as p2.s, one finds

(25)

J:= —2eg(my2mG2 —su)-'" .

If the reaction takes place on a quark with negative helici-
ty, one obtains

i y —1')(G —1'i
S

(my —u)(mG —u)
~

yl")(G 1"
~

. (27)
u

In this case the polarization vector which does not interact
is v, rather than v . In Eq. (17) the vectors s ', s, u ', and
u should be replaced by s '~, s ~, u 't, and u ~, if the quark
has negative helicity.

If the gluon mass is set equal to zero, the results of Ref.
3 are recovered, in the sense that the u-channel and s-
channel gluon helicity states become identical. And, if
both photon and gluon masses are set equal to zero, the
usual helicity-conserving amplitudes are recovered.

B. AnnihijIation process

Results similar to those for the Compton process apply
also in the annihilation process

WP1)+'V(P2) Y(P3)+G(P4) '

In the c.m. frame the momenta are

Pi —— (1,0,0, 1),vs
2
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p2 ——— (1,0,0, —1),Vs
(28b)

~I3 rup —tepapyp4n P 1 /Pl P4 ~

fp w
tp ——t epagyp 4 + P 2 /P 2 P4 ~

a fP yu p='epapyp3yt P'PP2'P3 ~

~13 Xt p
=«papyp'3 n P 1 /P i 'P 3 .

The tensor C& may be written as

C„„=K'(C,t„'t +C„u „'u,),
where

4(p i P2 }(n " P3)X'=
1VpX~

C, =(m '—t)(mg' —t)/4t,

C„=—(my —u)(mG —u)/4u .

(30a}

(30b)

(30c}

(30d)

(31)

(32a)

The transition matrix, instead of being three-dimensional,
remains two-dimensional, just as for the massless spin-1
particles.

If the reaction occurs on a negative-helicity quark, simi-
lar results hold except that e'(1+yq)/2 is replaced by
rl (1—y5)/2, and u, t, u ', t ' should be replaced by u ", t t,
u, t

III. CONCLUSIONS

The results derived here show that, at least in the Born
approximation, there exists a rather simple way to express
the amplitude for the scattering of massive spin-1 parti-
cles on polarized massless fermions. Although we have
treated only the case of timelike spin-1 momentum, our
results can be applied as well to spacelike momentum,
provided the modifications indicated in the Appendix are
taken into account. In our judgement, the most interest-
ing aspect of our results is how the notion of he1icity con-
servation is generalized to arbitrary spin-1 masses. If a
negative s-channel gluon scatters on a positive-helicity
quark, a negative u-channel photon is produced. If the
gluon has positive u-channel helicity, the outgoing photon
has positive s-channel helicity. A gluon whose polariza-
tion state is orthogonal to both a negative s-channel helici-
ty state and a positive u-channel helicity state will not
produce a photon, nor can a photon which has no overlap
with either negative u-channel helicity or positive s-
channel helicity be produced. Despite the simplicity of

p 3
——(s +m y, (s —m y )sin8, 0, (s —m y )cos I9)/2v's

(28c)

The matrix element for the reaction on a positive-helicity
quark (which requires a negative-helicity antiquark) is

(1+y5) y~ GtM =egu(p& )rg'
2

u(p2)e "e "C&, .

If either ez or e is n, the amplitude is zero. We introduce
the vectors u, u ', t, t ' (which should not be confused with
our prior usage in the Compton process):
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APPENDIX

The relations among the s-channel and u-channel helici-
ty states for the massive gluons and photons are as fol-
lows. For the gluon (momentum p~),

~

Gm") = gd' ~ (XG)
~

Gm '),
m'

where 0&76 &m and

(P2'P4 }Pi
1 —cong =

(P 1 'P2 )(P 1 'P4 }

and where the rotation functions are defined by

d' (0)=(jm ~e
' '

~

jm') .

For the photon (momentum p3),

(A 1)

(A2)

(A3)

these results, it is not easy to find examples of reactions
which could illustrate them. One (perhaps overly ima-
ginative) reaction might be

e +e+—+e +Z +e+
using longitudinally polarized electron and positron
beams, with a tag on the final e to fix the virtual-photon
momentum and polarization, the decay of the final Z
permitting a direct measurement of its polarization state.
Qther conceivable applications, such as the Drell-Yan pro-
cess or deep-inelastic lepton scattering, must await the in-
troduction of polarized beams and targets. Even then, un-
known polarized parton distribution functions for polar-
ized hadrons will intervene, making a direct test of our re-
sults problematic. Finally, the parity-conserving decay of
a massive photon into I+I, as in the Drell-Yan process,
does not distinguish between a photon of pure positive
helicity and one which is an arbitrary mixture of positive
and negative helicity. Once again this tends to make
direct tests extremely difficult.

An interesting open question is whether our result is
true only in the Born approximation, or whether it is more
generally true. As a first step in this direction, one may
calculate the one-loop corrections to the Compton process.
The formalism presented here is adequate for handling
this problem. The essential question is whether Eqs. (15b)
and (15d) continue to hold when the one-loop expression
for the operator 0 is used in place of Eq. (7). Another
question is whether the results are valid for the Born ap-
proximation to massive gluon scattering, once the triple-
gluon coupling is included. Work on these questions is in
progress, and we hope to present results in a subsequent
paper.
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~

~m") = g d'. ( —X,)
~

~m'),
m'

where 0 &X& & ~, and

P2 P4 P3
1 —cosX& ——

(P3 P2)(P3 P4)

(A4)

(A5)

If the mass of the gluon is set to zero, XG ~0, and the s-
and u-channel axes coincide.

lacelike gluon momentum. The results we have ob-
tained, assuming explicitly that the gluon momentum p&
and the photon momentum p3 were timelike, may be ex-
tended to the case where either p~ or p3, or both, are
spacelike. The essential point is that the tensor C&, intro-
duced in Eq. (14), satisfies the identities (15a)—(15f), ir-
respective of the signs of mG or mr . From these identi-
ties follows our Eq. (17), which expresses C„ in terms of
s &s, u „'u, and the invariants C~ and C &. These invari-
ants may be expressed in terms of scalar products of
four-vectors, as indicated in Eqs. (18) and (19). At this
point there is no real distinction between timelike and
spacelike momenta, since all the variables we have intro-
duced remain well defined when m~ or m& are negative.
What does change, of course, is the interpretation of s and
u as corresponding to states of definite + 1 or —1 spin
projection along suitably chosen axes in the rest frame of
the massive gluon. If mG &0, there is no gluon rest
frame, and s and u acquire a different characterization. It
can be shown that in any Lorentz frame such that p &

and
p2 lie in the (t,z) plane, with (p2)'&0, s takes on the form
s =(0,1/v 2, —i/v 2,0). Among these frames are all ob-
tained from the c.m. frame by a z boost. Similarly, in that
class of Lorentz frame such that p1 and p4 span the (t,z)
plane, with (P4)'~0, one finds u =(0, 1/3/2, i/V 2,0). In

the standard treatment of deep-inelastic electron scatter-
ing, it is customary to use the terms of positive and nega-
tive helicity to describe the polarization state of the virtual
photon. This standard usage is what we term s-channel
helicity; our use of the term u-channel helicity to describe
the virtual gluon, while not standard, is a natural generali-
zation of the concept of u-channel helicity for timelike
gluons. One cautionary remark concerning the crossing
matrices is necessary. In the case of spacelike p1, Eq. (A2)
implies that XG, the s-u crossing angle, becomes complex,
since one may easily show that

~cosXG
~

&1 (A6)

if p1 is negative. Detailed examination of the kinematics
written in Eqs. (8a), (8b), and (8c) leads to the following
result:

For 0&0&0,

P1 P2'P4
+G =l cosh 1—

(Pl P2)(P1 P4)
(A7)

For 0, &8&+

P1 P2'P4
XG =&+ l cosh

(P1 P2 )(P1 P4 )
(A8)

S +Pl
cos8~ =

s —p&
(A9)

If these modifications are taken into account, the formu-
las presented for the case of timelike gluon momentum are
valid as well as for spacelike momentum.

where 0, is the value of the c.m. scattering angle such that
p& -p4 ——0, namely,
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