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The phase transition restoring chiral symmetry at finite temperatures is considered in a linear cr model.
For three or more massless flavors, the perturbative e expansion predicts the phase transition is of first or-
der. At high temperatures, the U&(1) symmetry will also be effectively restored.

The phase transitions of chromodynamics are of theoreti-
cal interest in their own right, as well as for their possible
relevance to hadronic matter under extreme conditions of
high temperatures and densities. At present, the nature of
the deconfining transition in purely gluonic theories appears
to be clear, both conceptually' and, at least in part, numeri-
cally. ' The significance of these results for theories with
dynamical quarks is less certain. If the quark contribution
to the free energy is large enough, the presence of the
quarks can smooth out any singularity of a deconfining tran-
sition. Whether or not this occurs for the first-order transi-
tion of SU(3) color can only be answered by further study. 4

In this note, we do not directly consider the deconfining
transition, but rather a phase transition which almost cer-
tainly occurs in hadronic matter at finite temperature —the
restoration of the spontaneously broken chiral symmetry,
associated with massless quarks, to the chromodynamic vac-
uum. We begin in Sec. I by analyzing the chiral phase tran-
sition in a linear a- model, for any number of colors and fla-
vors. Known results from the ~ expansion suggest that the
phase transition is first order if there are three or more
massless flavors. For less than three flavors, the order of
the transition depends on the details of the dynamics.

We argue that besides the exact restoration of the flavor
chiral symmetry, at high temperature there will also be, ap-
proximately, restoration of the flavor-singlet Uq(l) sym-
metry. We suggest that the temperature scale at which the
Uq(l) symmetry is effectively restored need nor be the
same as that of the chiral phase transition. In Sec. II, we
discuss some of the effects possible in hadronic matter if
the Uz(l) symmetry is effectively restored before the chiral
transition.

I. ORDER OF THE CHIRAL PHASE TRANSITION

Consider Nf flavors of massless quarks which couple in
the fundamental representation to a SU(N, ) color gauge
group. Classically, the quark part of the chromodynamic ac-
tion is invariant under a global flavor symmetry of
Gf Ug (1) xSU(N&) xSU(N&). The axial Uq ( I ) sym-
metry, while valid classically, can be violated by quantum-
mechanical effects. If J„' =qy„y5q is the U&(l) current,
where q denotes the quark fields, the conservation of J' is
spoiled by the anomaly5

The anomaly vanishes if there are no dynamical fermions,
Nf =0, or in the limit of infinite colors, N, =~; then the
flavor symmetry is still Gf. Even with the anomaly present,

there remains an axial Zq(Nf) symmetry, 7 8 so the flavor
symmetry of the quantum theory becomes Gy
= Zg (Nf) & SU(Nf) && SU(Nf).

We henceforth assume that at zero temperature the chro-
modynamic vacuum spontaneously breaks G~ (or Gf) to
SU(Nf), and that there is a finite temperature T,q at which
the full chiral symmetry, be it Gf or Gf, is restored to the
vacuum.

We further assume that the chiral-symmetry breaking is
characterized by a quark bilin ear which transforms as
(Nf, Nf ) +(1/V', N~) under G&. As in the linear o. model of
Gell-Mann and Levy, 9 we introduce a (color singlet) com-
plex, %~by-N~ matrix 4 to parametrize the symmetry
breaking, @,J —(q;(1 +y5) q~.). Under G~, 4 transforms as

4 exp(io. ) U+4U (2)

where U+ and U are arbitrary and independent SU(Nf)
matrices, and n generates U&(1) rotations. To discuss the
low-energy excitations corresponding to slow space-time
variations in C, we consider the most general renormaliz-
able Lagrangian for 4 consistent with the symmetries:

L@,=
2

tr(8„4 ) (8„4)—
2 m@ tr4 4

g, (tre C)' — g, tr(4'4)'
3 3

(3)

L~ = c(det4+det4 ) (4)

must be added. ' " The Zq(Nf) symmetry is evident in
terms of J ~.

At zero temperature, mq, & 0, with a vacuum expectation
value (4) =@01 chosen to be SU(Nf) symmetric. If c =0,
this spontaneous symmetry breaking generates X' Gold-
stone bosons: a SU(NI) multiplet like pions, and a flavor
singlet q' When c .%0, since the broken ZA(Nf) symmetry
is discrete, the q' is massive.

As the temperature increases, so does m~2. In mean-field
theory, mq, and Co vanish as T ~ T,h. To improve on
mean-field theory, we note that as fluctuations in the time-
like direction are cut off by finite temperatures, the critical
behavior will be described by an effective theory in three
dimensions. Neglecting all excitations which are effectively
massive about T,h —such as any fermions, mesons not in-
cluded in L@, etc.—only Lq, (and L@) determine the critical
properties.

We first consider the limit of infinite colors, where the
anomaly vanishes and c =0, and then discuss a small

For stability at large 4, g2 & 0, g~+g2/Ny & 0. If the ano-
maly is present, to .L~ the term
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number of colors, where c &0.
The critical behavior of models with Gf symmetry have

not been studied directly in three dimensions, but they have
in 4 —e dimensions. "" To leading order in e, the p func-
tions for g~ and g&, p~ and p2, are

(Ni +4) 2 4NI
pi = ~g&+ g& + gigz+g2

3 3
(5)2'

p2 = cg2+2glg2+ g23

A fixed point g' is infrared stable if the stability matrix
coo= Bp,/Bgi has real and positive eigenvalues for g =g'.
From Eq. (5), it can be shown that for W2& N~~O, the
infrared-stable fixed point has g2 ——0, with O(2Nf) critical
exponents. When Nf & J3, there is no infrared-stable fixed
point for g, , g2 —O(e). This is due critically to the pres-
ence of two coupling constants in L~. For example, when
N& & v3, the O(2N~)-like fixed point, with g2' =0, becomes
infrared unstable in the g2 direction.

For a single flavor, since Gi =U(1) =O(2) anyway, this
instability does not arise. The phase transition, if second or-
der, "has O(2) critical exponents.

The limit of zero flavors is measured by "quenched" fer-
mions. It is notable that when Nf=0, the chiral phase
transition, if second order, '~ has O(0) critical exponents.
Since the anomaly always vanishes for N&=0, this result
holds for any number of colors.

For two or more flavors, because there is no infrared-
stable fixed point, the chiral phase transition should be first
order, induced by fluctuations. '6" (Here and below we are
assuming that there is not a nonperturbative infrared stable
fixed point governing the transition. Strictly speaking, all
that has been shown is that the usual Wilson-Fischer fixed
point suggested by mean-field theory does not survive the
critical fluctuations. ) We emphasize that the transition be-
ing of first order is a striking prediction of the e expansion,
and is not expected from mean-field theory. W'hile it is
only possible to prove that the transition is first order for
e (&1,' in many known examples' it appears that the
results found at leading order in ~ remain an excellent guide
to three dimensions, when a=1.

For a small number of colors, at zero temperature the ef-
fects of the anomaly should be large, with c —

g~—g2 —0(1). For instance, this is necessary in hadronic
matter in order that the g' be much more massive than the
vr, E, q octet, Assume for the moment that c were indepen-
dent of temperature, c( T) = c (0) .

With flavor symmetry Gf, the phase transition remains
first order if Nf ~3.'8 For three flavors, as L~ is trilinear
in the matrix elements of 4, it alone drives the transition
first order. When Nf =4, L~ is a relevant operator, but its
presence does not generate an infrared-stable fixed point. '

For Nf & 4, L+ is an irrelevant operator, and so it does not
affect the critical behavior.

For a single massless flavor, as L~ acts like a background
magnetic field for 4, there is no phase transition to speak
of.

The case of two massless flavors is special. If
e(T,h) = c(0), the q' remains massive about T,„. Since
Gf'=O(4), the phase transition can be second order, '~ with
O(4) critical exponents.

We argue, however, that the effects of the anomaly may
be strongly dependent on temperature. The anomaly re-

moves the U&(1) symmetry solely because of nonperturba-
tive effects, such as instantons, which carry topological
charge. ' In weak coupling, 't Hooft~ showed that instantons
generate a 2N~point interaction between massless fermions
with essentially the form of det4 in L~ (anti-instantons
generate det4 ) . Hence we take c ( T) —dt( T), where
dt( T) is the total temperature-dependent instanton density. '9

By necessity, instantons require both electric and magnet-
ic color fields. At high temperatures, fluctuations in the
electric fields are suppressed because of Debye screening,
and consequently, so are instantons. Calculation shows that
as the temperature T ~, dt( T) 0.'o Thus if
c(T) —dt( T), at high temperatures there is inevitably the
effective restoration of the Uq(l) symmetry. The Uq(1) sym-
metry restoration is only approximate, since for any finite
temperature, c(T) —dt(T) &0: there are always some in-
stantons present. Also, and unlike the restoration of the G&
flavor symmetry, the variation of dt( T) with temperature is
relatively smooth (see, e.g. , Fig. 5 of Ref. 20). Even so,
dt( T) decreases monotonically with temperature, decreasing
to values & 10% that at zero temperature when T —O(A),
where A is the renormalization scale parameter of the chro-
m odynamics.

For a single flavor, then, there is no chiral transition if
N, & oo, but the (dynamically generated) quark mass de-
creases smoothly as the vacuum is heated, vanishing as
7 ~ oo.

With two massless flavors, there is the possibility of a
first-order transition even for small N, . This could happen
if the density of instantons were sufficiently small belo~
T,h, so that the g' would be very light, and the critical
behavior not like O(4), but O(2) xO(4).

For three or more flavors, even if c( T) decreases signifi-
cantly below T,h, the chiral transition remains first order.
Note that for three flavors, if c(T,h) « c(0), it is not the
presence of L+ which drives the phase transition first order,
but rather the critical fluctuations of U„(1)x SU(3)
xSU(3).

If instantons themselves are the primary chiral-
syrnmetry-breaking mechanism, ' then it is very difficult to
imagine how c(T,h) could be —c(0). Our arguments only
suggest but do not prove that c(T,h) « c(0). Numerical
simulations are required finally to settle this question. 2~

In hadronic matter the quarks have nonzero bare masses.
The effects of these bare masses can be represented by ad-
ding a background magnetic field —trM4 to L~+L~. As
for any first-order transition, this background field will de-
crease the latent heat of the chiral phase transition. Grant-
ed the success of chiral SU(3) in describing the octet of
pseudoscalar mesons, we suspect that the effect of the
quark bare masses will only be to weaken the first-order
chiral transition, but not to wash it out completely. This
remains a prejudice which will be decided by detailed inves-
tigation.

II. EFFECTS OF APPROXIMATE
Ug (1) RESTORATION

We argued above that it is possible for the U~(1) sym-
metry to be effectively restored before the chiral phase tran-
sition. In this section, we discuss how this possibility will
result in dramatic effects for the spectrum of pseudoscalar
mesons in hadronic matter.

To first order in the quark masses, the elements of the
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(mass)2 matrix for the mp-q-g' system are IOOO

M' p p = ( m„+ md)

( m„—md) 800

( m„+ md +4m, )
3 2f (6)

M p
= 42/3(m„—mg)

M = (m„md — m)J2
2

u

3 m

{Mev)

M = —(m„+md+m, ) +KI I 3 g f 2

The strength of the chiral-symmetry-breaking condensate is
—u= (uu) = (dd) = (ss). By SU(3) symmetry, we have
taken f~=f„. SU(3) symmetry does not relate f, and f,
so we leave their ratio as a free parameter. To represent the
effects of the anomaly, we add a term —K to M2, ; K is

proportional to the coupling c of L~.
For the purposes of discussion, we take the values of the

quark masses to be m„= 6.3 MeV, md = 11 MeV, and
m, =215 MeV. We neglect all electromagnetic mass split-
tings, so for m p we take the average pion mass,

(2m ++m p)/3 =138 MeV. We find that the eigenvalues

of M' can be fit to the observed values of the pseudoscalar
mesons —m p

—= 138 MeV, m„= 549 MeV, and m, = 958
Me V—with

u = (212 MeV) 3, Ep ——(923 MeV) I, f,= 1.95f
where f =93 MeV, and Kp is the value of K at zero tem-
perature. The values of v and Kp are typical of the strong
interactions; e.g. , f„KQ —(293 MeV) .

What is surprising about the values of Eq. (7) is that f ~

turns out to be almost twice as large as f„.24 This is easy to
understand numerically from the values of M: taking u
from Eq. (7), M2» = (567 MeV) I. For large K, the greatest
mixing is between the q and the q'. The effect of g-g' mix-
ing will be to depress the q mass, so because M» is al-
ready close to m„2, the q-q' mixing must be small. We
have no fundamental understanding as to why f, should be

so much larger than f„.
At finite temperatures, all of the parameters u, f„, f,,

and K will vary with temperature. To illustrate the effects
possible, we assume that only K varies. Figure 1 shows the
values of the (neutral) pseudoscalar-meson masses as a
function of K/Kp. For K & 0.5Kp, only m, decreases

much, while for E (0.5Kp, m„starts to decrease as well.
We remark that if K becomes very small, the mass spec-

trum changes dramatically. For instance, when K vanishes,
m p

= 77 MeV, m„= 141 MeV, and m =600 MeV. This

happens because without the effect of the anomaly, the m,
q, and q' mix to form, as mass eigenstates, nearly pure
states of uu, dd, and ss, respectively. ' Since the charged
pseudoscalar mesons are unaffected by the harp-q-q' mixing,
if K =0, m + would remain —138 MeV, and there would
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FIG. 1. The masses of the neutral pseudoscalar mesons as a
function of E/Kp.
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be a phase with massive violations of isospin.
Such a phase appears unlikely, however. From Fig. 1,

m p does not decrease below 130 MeV until K (0.02Kp.
Unless E is very much smaller than Kp at temperatures
below T,h (e.g. , E & 0.01Kp), there will not be any signifi-
cant isospin violation.

Perhaps more representative of what might occur at finite
temperatures ( T,h is a value E 0.1Kp. From Fig. 1, at
this value of E, m p

= 137 MeV, m„= 283 MeV, and

m, =610 MeV. Thus, while pions are insensitive to
changes in E until E ((Ep, the masses of the q, and espe-
cially the q', can decrease significantly as E does.

As the temperature approaches T,h, v —4p decreases,
and the variation of the other parameters in M2, beside that
of E, becomes important. Our discussion to now has been
based on the assumption that c( T,h) & c(0), so K & Kp for
T & T,h. We remark, though, that even if c(T,h) =c(0),
K must decrease as 4p does. This is because for three or
more flavors, L~ does not provide a mass to the q' unless
@Q A 0. Simply on dimensional grounds, K —c@p (for N~

N —2
flavors, this becomes K —c@p ~ ). As C&p v, then,
K —cv. When T T,h, K has to decrease at least as fast
as v does.
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