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We show that the truncation to the massless supermultiplet of the N =8 gauged SO(8) supergravity
theory obtained by spontaneous compactif ication of eleven-dimensional supergravity on the round seven-
sphere yields consistent linearized supersymmetry transformation rules in four dimensions. They coincide
with the linearized transformation rules of the de Wit-Nicolai theory.

Spontaneous compactification of the %=1 supergravity
theory in eleven dimensions' admits as a ground-state solu-
tion the product of anti-de Sitter (AdS) spacetime with the
seven-sphere equipped with its standard SO(8)-invariant
metric. This yields, via the Kaluza-Klein mechanism, a
four-dimensional supergravity theory which has an SO(8)
gauge symmetry and N =8 supersymmetry. The field con-
tent of this theory comprises an N =8 massless supermul-
tiplet, together with an infinite tower of massive supermul-
tiplets. (It has recently been shown that the next-to-lightest
massive supermultiplet actually includes further massless
states, namely, a 294 of scalars. 4) It is natural to enquire
whether the four-dimensional theory can be consistently
truncated to just the massless supermultiplet, and if so
whether the resulting theory is that of de Wit and Nicolai. '
A previous objection to this conjecture was the apparen. t
discrepancy between the relation of the SO(8) gauge cou-
pling constant and cosmological constant calculated on the
one hand in this Kaluza-Klein theory, and on the other
hand in the de Wit-Nicolai theory. This conflict was
resolved with the realization that the presence of the A~~p
field (an antisymmetric tensor gauge field) in the eleven-
dimensional theory modifies the usual formula for the cou-
pling constant derived from a pure gravity theory in higher
dimensions, 6

A remaining objection to the equivalence of these
theories is that if one substitutes the linearized Ansatze for
the fields of the massless supermultiplet into the d =11 su-
persymmetry transformation rules, one appears to obtain in-
consistent equations. In this Rapid Communication we
describe how this is remedied by realizing that the expan-
sion of the d = 11 supersymmetry parameter in spinor har-
monics on S contains additional terms, linear in scalar and
pseudoscalar fields, which had previously been overlooked.

The d =11 supergravity Lagrangian contains a graviton
field e~, a gravitino 'P~, and an antisymmetric tensor
gauge field AM~p. This Lagrangian is invariant under the

N = 1 supersymmetry transformations

he~" ———i eI "e~,
3 —"

SA = —eI l W )

5+M=DM(~)~-- — (I"M" Q" +88M I g")FNPQ~~,
144

(3)

F~~p~ = 3fP1 E~„po (4)

where we split d =-11 indices M, N, . . . as p„v, . . . running
over spacetime with coordinates x~, and m, n, . . . in the ex-
tra dimensions with coordinates y . Tangent-space indices
are similarly split as cx, JS, . . . in spacetime and a, b, . . . in
the extra dimensions. The %=8 gauged SO(8) theory is
obtained by taking the AdSXS solution of the resulting
d == 11 bosonic field equations

The fields of the four-dimensional theory correspond to
fluctuations around the ground state. We therefore write

gMN (x,y) = gMJv (x y) + &Mdiv (x y)

FMNPQ(xy) = FMN'Pg(x y') +fMNPQ(xy)

(6)

(7)

where A, B, . . . are tangent-space indices, M, %, . . . are coor-
dinate indices, I ~ are the d =11 Dirac matrices, and 0) and
F denote the supercovariant formulations of the connection
form cu and field strength F (with components
FMNpg = 4t) [Mc4Npg]). Following the conventions of Ref. 3,
spontaneous compactification occurs by taking the Freund-
Rubin ground-state A nsatz for F~„~ in which all com-
ponents vanish except
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Making the field redefinitions

~MN ~MN +
2 gMN ~q

I (0) q

h„'„(x,y) = h„„(x)

h.„(x,y) = ,'aIJ(—x)~!I,
( ) SIJKL(x) IJKL

(10)

(12)

we can write the Ansa'tze for the bosons of the massless su-
permultiplet as

e(X,y) =e (X)7) (23)

The idea now is to substitute these Ansatze into (1), (2),
and (3), in order to verify that to first order in fields, four-
dimensional supersymmetry transformation rules are obtain-
able; i.e., that the y dependence of the left- and right-hand
sides of each of these equations matches. Starting with (1),
we first convert it into a transformation law for the linear-
ized metric,

ShMn= —2ie" ( +n) (24)

The expansion of the supersymmetry parameter, which we
shall modify later, will for now be taken to be

3m ttf„„p (xy)= ep p (i? 9h, )

1 o. ttfpvpq(xiy) = &pupa~ ~baht24m

1 p Ifp'w(x'y) = ep'p~~ ~rphe)
2m

(13)

(15)

where I M' iS Obtained frOm I A uSing the baCkgrOund viel-
bein. The calculations here are straightforward, and indeed
yield equations in which the y dependence matches. There
are three cases to consider, corresponding to MN= p, v, p, n,
and mn, and so dropping the y dependence these give, after
some algebra,

f (xy) 0 plJKL(x)~IJKL

f (xy) 2~plJKL(x) IJKL

(16)

(17)

where the vector fields 8„', the scalar fields S', and pseu-
doscalar fieldP' are antisymmetric in spinor SO(8) indices
I,J, . . . and S is self-dual and P is anti-self-dual in
ILL. The y-dependent tensors g are defined in terms of
the eight Killing spinors ~I(y) which satisfy

+„'(x,y) = y„'(x)g',
qg'(xy) glJK(x) IJK

(20)

(21)

where the spin- 2 fields X are antisymmetric in IJK and

IJK [I JXj
'gm ='g 'gm (22)

I

2

where we have split d = 11 Dirac matrices I A into d = 4 and
d=7 matrices as Iq=(y S 1, ys S I', ). The definitions
are

IJ —lp J IJKL [IJ KLl
'gm g m'g p 'gmn =pm gn

IJKL [IJ KL] IJKL [IJ KL]
'gmnp = 'g [mn'0 pl p 'gmnpq = 'g [mn'9pql

where we also define qll„=gI' „~. In (11), (16), and
(17) we have changed the normalization conventions from
those of Ref. 3, in order to simplify comparisons with the
theory of de Wit and Nicolai. We have also corrected a sign
error in Eq. (15).

For the fermions, the massless Ansatze are'

ghpy= 2/ep(pPp)

58' = —2ie'y Q
—2ie~y„X

gSIJKL 2
—[I g JKL]+

where in the final equation [ILL)+ denotes the self-dual
projection of ~IJKL). This projection follows from the dual-
ity property of qlJKL defined in (19).

We now convert (2) into a transformation law for FMnpg,
and so after linearization we obtain

gf'npg =6Drg(eI'np%'g)) (26)

gP IJKL 2~ [l~JXL) (27)

We now turn to the fermion transformation law (3). This
is the equation which at first sight appears to give rise to a
mismatch of the y dependence, and hence an inconsistent
result, and so here we shall describe the calculation in
greater detail, although still omitting the quite tedious but
straightforward intermediate steps. Linearizing (3), we ob-
tain

On substituting the Ansatze into (26), one again finds after
some straightforward but tedious algebra that the y depen-
dence matches. There are five cases to consider, corre-
sponding to the various possible combinations of spacetime
and internal indices. All except the cases of 3 or 4 internal
indices reproduce the previously obtained transformation
laws (25). The remaining cases produce the last bosonic
transformation law,

5%'M=DMe —4(2eq DrMvnrs —eq es eM Dp vgD)1 e(0) & (0)N (0) (0)P (0)0 (G)D (0) AB

144 M(f "pgn+88&pro)pgR)f e
' (f i?)&pgn+88 "j ' pg') pro)M NPQR 144 M M PQR& (28)

where vMA is the fluctuation around the background vielbein
eM ' corresponding to the metric fluctuation AMN defined in
(6). It is convenient to impose the gauge condition v =0.
The matrices I M ~ and I ' ~ are the terms linear in
vM" which result from converting from tangent space to
world indices on the Dirac matrices I A

cD and I. D'.

[
We now substitute the Ansatze into (28), and consider

first the case M=m. On general grounds we expect the
variation O'I to involve terms containing 8„', V[„B„~,B~S,
B„P, S, and P. Detailed calculation shows that the term in
B„vanishes, while after a Fierz transformation the y depen-
dence of the term in 7[~8„~ is seen to match with the left-
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hand side of (28). For the scalar and pseudoscalar terms, we require the Fierz transformation

144(81[J KLM[ + [ I 51fI KLMl) I Pq I JKLM+ 61 P I JKLM+ 181 I JKLM
'gm 9 PPt Pg PPt 'g 'g Ptpq '9 'gmnp 9 ) PPtPl

I JKLM pq+ I" p I [JK LM] Ptq —2 I [JK LM] npm'g gpq g m l gnp 'gq g '9 'gmn 'gp g (29)

It is crucial to note that the first two terms on the right-
hand side of (29) are anti-self-dual in JELIM, since they are
associated with the 35~ of three-forms of the pseudoscalar
Ansatz, while the remaining terms are self-dual in JKLM,
since they are associated with the 35 ' of Killing tensors of
the scalar Ansatz. The terms in 5% involving 9„Sand 9„P
are just precisely the self-dual and anti-self-dua1 parts of

I

(29), respectively, and hence the y dependence of these
terms matches with 5%; they occur in the combination
a„(S+ I y, I' ).

Repeating the procedure for the S and P terms in 5%
one runs into an apparent inconsistency. The relevant
terms in the transformation rule are

8XIJKl ( IJK+ [
I IJK) III SJKLM&1( 51 p I [JK LMl nq 21 I JKLM pq 181 n I JKLM)

s,p '9 ppt 9 m'g

1~ p JKLM &I( 81 npq+I JKLM I 21'pq I JKLM)
72 P 5 ppt Q g ptpq Q g pttpq (30)

Using (29), one can now show that the y dependence on each side of (30) does not match. To remedy this, we note that
the Ansatz (23) for q(xy) implies that D [of& = 0, but that the Ansatz can be modified by the addition of S- and P-dependent
terms in such a manner that D [ fq now produces precisely the required extra terms in (30) in order that the y dependence
coincides with that of the Fierz equation (29). The modified Ansatz is

(X ) I + [ SJKLM( 2 JKLM mn+ 3 [JK LM[ pI" nm) + I p JKLM( 3 JKLMI mnp) I( ) I

f

(31)

Note that this does not upset any of the previously derived
linearized transformation rules, since there e always appears
in terms already linear in fields. Summarizing, the transfor-
mation rule for 5%" gives, in terms of I'~~, = 2V'[„8„'],

when acting on e' gives

I D I gIJ J

(33) may be rewritten as

(34)

5~11K 3
y [IJ gsv Kf 2 g (SIJKL+ I pIJKL) pa L

g pv P & YS p,

4III (SIJKL+ I y pIJKL) &L

Finally, substituting the Ansatze for the massless fields,
and the modified Ansatz (31) for q(x,y), into the transfor-
mation rule for 5 Ii'„, one finds that the y dependence
matches on each side of the equation, and

5$' = D„q' 2mB q—
I (1-») ~.lj (1+») J; II-

I' V
2

It.v (33)

where F„„=—,(F„„+'F„„—), and

PQ
JI p, v

= & [tt,vpcr~ ~

The derivative D„ is the anti-de Sitter covariant derivative
D„+my„y5 including terms up to first order in fluctuations.
In Ref. 6, it was shown that the SO(8) gauge coupling con-
stant is given by g2=16mGm . Since in our conventions
4n G = 1, we therefore have g = 2m, and hence we see that
by introducing an SO(8) covariant derivative S'„, which,

I y5 p +IJ y5 F —IJ v J (35)
1 —y5 (1+y5

pv 2 p, v y
f

Here we have defined &„ in the same manner as D„, i.e.,
&„=&„+my„y5.

It is important to check that the redefinition of q(x,y) in
(31) does not change any of the results obtained previously
in this kind of Kaluza-Klein theory. In particular, it should
be emphasized that the criterion for supersymmetry of
the ground state, (5+M) = 0, remains unaltered. The
reason for this is that, in the ground state, (31) reduces to
the previous Ansatz (23) for q, since (S) = (P) = 0.

The important conclusions of this paper are firstly that
the truncation of the theory to include just the massless su-
permultiplet is indeed consistent with the transformation
rules at the linearized level. Secondly, as one would expect,
the transformation rules coincide with those of the de Wit-
Nicolai theory at the linearized level. This may be seen
after some trivial rescalings of the fields. In particular, note
the SO(8) covariant formulation of the derivative in (35),
and the appearance throughout of the combination of fields
(S+I'y5P). The results in this paper will be described in
greater detail in a forthcoming publication. '

%e are very grateful to M. J. I3uff for many useful dis-
cussions.
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