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In the relativistic Kepler problem the analytic continuation of the principal quantum number # into /v
describes the scattering states. When »2 ranges from + oo to a? the energy ranges from (m;+m,) to in-
finity. In the remaining gap 0 < v? < a2, the energy becomes complex corresponding to a continuum of
resonances or perhaps pair production. This phenomenon also exists in the classical relativistic problem,
and we suggest that one should look experimentally for the manifestation of this gap, for example when

Z =137.

We have observed in the mass spectrum of the relativistic
Kepler problem, described by a covariant infinite-
component wave equation, a well-defined region where the
energy becomes complex. This region comes after the
discrete and continuous spectrum as a function of the prin-
cipal quantum number and seems to have been heretofore
unnoticed. Then we went back to the classical relativistic
theory of Sommerfeld.! Indeed, exactly the same region ex-
ists also in the classical case. The Sommerfeld energy spec-
trum is given by
o222 ~1/2
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and the region of complex energy is 0 < n4> < a?Z?, when
the quantum numbers are analytically continued to the
scattering region. The Dirac spectrum has the same property
in the region 0 < x?< «?Z?, again when « is analytically
continued. The analytic continuation is best seen in the
case of infinite-component wave equations, so we shall
study these equations in the rest of the paper.

Infinite-component field theory was used extensively in
the sixties and early seventies in attempts at cataloging the
large number of hadronic resonances found by the experi-
mentalist.2 The essential feature of such models is to incor-
porate the mass spectrum from the very beginning by con-
structing Majorana-type wave equations containing convec-
tive probability currents.®> Such equations yield physically
acceptable mass spectra and provide a relativistic formula-
tion of composite models. Realistic wave equations predict-
ing correct electromagnetic form factors for nucleons* and
pionic decays of baryon resonances,’ etc., as well as a rela-
tivistic covariant equation for the H atom containing correc-
tions for proton recoil were constructed. These equations
have the dynamical group structure SO(4,2), incorporating
internal relativistic degrees of freedom, from which the
representations of the Poincaré group are induced. The
theory is covariant and well defined.

In spite of the great number of truths contained in such
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equations, they have the feature that spacelike solutions are
needed to complete the Hilbert space. This is generally seen
as a ‘‘disease’” of infinite-component field theories.®
Nevertheless, Barut and Nagel” have recently given an in-
terpretation of such spacelike states for the equation of the
H atom. Whether similar interpretations can be obtained
for other realistic wave equations depends on the internal
structure of the corresponding composite objects.

The mass spectra of such equations actually contain
several branches, namely timelike, discrete, and continuous
spectra, and the spacelike and lightlike (continuous) solu-
tions. By far the greatest attention has been paid to the
discrete part of the spectrum. In this paper we study a
feature of the timelike continuous (scattering) spectrum for
the H atom, namely, the appearance of a complex-mass
spectrum sector yielding a continuous series of resonances
for e “p* scattering. Complex-mass states may be associat-
ed with nonunitary representations of the Poincaré group.?

The wave equation of interest here has the form®

(J PE+BS +y)y(P))y=0 , )
where J, is the conserved maiter current
J“=a1F,‘+a2P“+a3$P“ . )

The operators I', and S are generators of the dynamical
group SO(4,2). In the rest frame where P,=(M,0,0,0)
such that P,P*=M?> 0, Eq. (1) becomes

(aiT oM + arM*+ a3SM*+ BS +y) [y(M)) =0 . (3)

Performing the ‘‘tilting’’ transformation to remove the non-

compact generator S we obtain

([(a1M)? = (asM?+ )1V T o+ asM?+y } [y (M)) =0 .
4

Taking |¢) to belong to the most degenerate unitary irredu-

cible representation of SO(4,2) such that |¢)=|n) and
Toln) =nln), we obtain the mass spectrum
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With the coefficients chosen as

ar=1, az= Zin , az=Q2my !,
? 6)
B=(mP?—m®)/2m,; y=—e (m>+m»)/2m; ,
Eq. (5) becomes
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where m; and m, are taken as the masses of the electron
and proton, respectively. As has been shown elsewhere,®
M, yields the usual Dirac formula (with spin suppressed)
plus the correction for proton recoil.

In a similar fashion Eq. (3) may be diagonalized for the
noncompact generator S. Since S has a continuous spec-
trum we take |¢)=|v) such that S|v) =v|v), where
—oo < v < oo. This yields the continuous timelike spectrum
-1/2
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Note that Eq. (8) may be obtained from Eq. (7) by analytic
continuation n — iv.

The mass spectra from Egs. (7) and (8) are displayed in
Fig. 1, where it should be noticed that the spectrum for the
region 0 < v2< e is missing. This is because (M, )? be-
comes complex there and we have only included the real
part of the spectrum in Fig. 1.

Before we discuss the significance of this complex spec-
trum, let us first say something about the * ambiguity of
Egs. (7) and (8). From Eq. (8) we have that (M, )?2<0
for e* < v? < v¢?, where

2 2
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This implies that (M, )? in this region becomes spacelike,
which contradicts the original assumption of timelike four-
momentum. Thus we must discard the (M, )? solution.
Now writing (M, )? as
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14
we see that the spectrum is complex for 0 < v2 < e®. With
s= (M, )? we obtain s/>=m — iT", where

m=ReM,* = [+|(M;} )2 +3(m2+mH12  (10)
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FIG. 1. Different branches of the mass spectrum of Eq. (1) as a
function of the square of the principal quantum number. Note the
gap 0 < v2 < e?.

and
1)

Thus we obtain a continuous series of unstable composite
particles, (ep*) resonances, whose decay times in the rest
frame are given by 7= [2I'] "L

Finally we remark that had we retained the (M, )?
branch of the spectrum, we would have obtained
sY2=m +iT', which would have yielded a physically unac-
ceptable exponentially increasing amplitude.

It is interesting to note that a series of discrete resonances
also occurs in the classical relativistic scattering of two
dyons.” This implies that our results here may also have
relevance for the infinite-component wave equation model
of the proton!® whose physical picture can be as a bound
state of two dyons. Such scattering spectra should exist for
that equation as for the H-atom equation. In conclusion, it
may be possible to test experimentally whether such com-
plex resonance energies may be discerned from the real-
energy scattering states.

= —ImM," =[5|(M; )= 5(m2+mD1V? .

One of us (A.0.B.) thanks Gary Dilts for discussions on
the Sommerfeld formula.

1A. Sommerfeld, Atomic Structure and Spectral Lines (Methuen, Lon-
don, 1934), p. 256, Eq. (26).

2See rapporteur’s talk, A. O. Barut, in Proceedings of the Fifteenth In-
ternational Conference on High Energy Physics, Kiev, U.S.S.R., 1970
(Naukova Dumka, Kiev, 1972), pp. 454-495; Y. Nambu, Phys.
Rev. 160, 1171 (1967).

3See A. O. Barut, Dynamical Groups and Generalized Symmetries in
Quantum Theory (University of Canterbury, Christchurch, 1972).

4A. O. Barut, D. Corrigan, and H. Kleinert, Phys. Rev. Lett. 20,

167 (1968).

5A. O. Barut and H. Kleinert, Phys. Rev. Lett. 18, 754 (1967).

6A. O. Barut and W. Rasmussen, J. Phys. B 6, 1695 (1973); 6, 1713
(1973).

7A. O. Barut and J. Nagel, J. Phys. A 10, 1233 (1977).

8D. Zwanziger, Phys. Rev. 131, 2818 (1961).

9A. O. Barut and H. Beker, Nuovo Cimento 19A, 309 (1974).

10A. O. Barut, Phys. Rev. D 3,1747 (1971).



