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Renormalization-group analysis of dynamical symmetry breaking in QCD
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We perform a renormalization-group analysis of the dynamical symmetry breaking in QCD based
on the Nambu —Jona-Lasinio approach. We show how the mass scale that the fermions acquire in

dynamical symmetry breaking can be calculated in terms of the invariant cutoff. We also determine
the high-energy behavior of the quark two-point function.

I. INTRODUCTION

It is a common belief that some quantum field theories
can spontaneously generate a mass even though the under-
lying field-theory Lagrangian to begin with may have no
mass scale associated with it. In the conventiona1 quan-
tum chromodynamics of massless fermions the underlying
Lagrangian possesses a chiral invariance that protects the
ferrnions from having a primordial mass. This chiral in-

variance, however, is believed not to be respected by the
physical ground state and the physical fermions then ac-
quire a mass scale that is associated with this "dynamical
symmetry breaking. " The precise nature of this mecha-
nism has to date only been conjectured but not fully
demonstrated in the theory. '

In this paper we begin a renormalization-group analysis
of the dynamical symmetry breaking in QCD. We shall
show how the mass scale that the fermions acquire in
dynamical symmetry breaking can actually be ca1culated
in terms of the renormalization-group-invariant cutoff of
QCD, A. By the same renormalization-group analysis we
can also determine the high-energy behavior of the two-
point Green's function for the fermions, thus settling an
issue which previous studies based on Schwinger-Dyson
equations could not decide upon.

Our renormalization-group analysis is based on the ap-
proach long ago pioneered by Nambu and Jona-Lasinio,
with however the crucial difference that their suggestion
was in the context of an unrenormalizable theory, while
QCD is fully renormalizable. Their key observation is
that the usual (naive) perturbation theory perturbs around
the massless gluon and massless quark free fields. To any
finite order in the usual perturbation theory, the quark
field remains massless because of the manifest chiral in-
variance of the original Lagrangian.

Much as a ferromagnet ground state is one where all
spins are aligned, the true physical ground state for QCD
may be one where quark-antiquark pairs are "condensed"
together, in which case the usual perturbation series is an
expansion around the wrong Hilbert space. Following
Nambu and Jona-Lasinio, we must expand around the
new (broken) vacuum. That is, we write the total La-

MI'„'(p) =y.p iM+i 5M+—3A,CfM ln
p

1

3

(1.2)

and the Nambu —Jona-Lasinio requirement is that for
p

2 ((~2
I '„'(p) =Z '(y p iM), — (1.3)

where Z is a finite wave-function renormalization. Com-
paring (1.2) and (1.3), we have

M 1—6M=3K,CfM ln
p 2

Finally, for consistency with the original Lagrangian, we
set 5M =M. A (trivial) solution is M =0, the original
perturbation theory, while a nontrivial, nonperturbative
result is obtained provided

M 11+3A,Cf ln ——=0 .
p

2 3
(1.5)

In the original Nambu —Jona-Lasinio paper, the analog
of Eq. (1.5) is the gap equation, expressed in terms of bare
couplings and masses, and a quadratic cutoff. Because
their theory was not renormalizable, no effort was made
to rewrite their condition as a function of renormalized
quantities. Here, with the theory being a renormalizable
one, it is important that we check on the renormalization-
group properties of the one-loop condition (1.3).

There is yet another reason for wanting to perform the

grangian as

L = (Lo MfP)—+ (L;„,+ 5MQQ)

with 6M =M, and take the perturbation expansion around
the new massive quark vacuum. The parameter M is not
arbitrary, but is to be determined self-consistently from
the requirement that the radiative corrections due to the
new interaction Lagrangian in (1.1) vanish.

To one-loop accuracy, the full renormalized two-point
function reads (A, =g, /16', T T~:—CFI),
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renormalization-group analysis. It is clear that if one
chose the renormalization scale p to be such that k is
small, then log(M /p, ) will obviously be large and a sum-
mation over leading logarithms and next-to-leading loga-
rithms will be necessary to give a meaningful result.

To leading-logarithm approximation (we leave the
next-to-leading-logarithm approximation to Sec. III), Eq.
(1.5) becomes

b M 11+—XCf ln
2 p 2 3

where

6Cf /b

=0, (1.6)

$/2
Bp

The nontrivial solution of (1.6) is

e 1/6e —1/b A, P 1/6
C

(1.7}

II. SELF-CONSISTENCY CONDITION

Consider the QCD Lagrangian l.,

A ' ti' 4 GttvG ttv+ ~gf+ ~ghost+ ~counterterm

(2.1)

=L, +L;„, , (2.2)

where besides the gauge-fixing and ghost terms we have
included the usual mass-independent 1/e counterterms.
Lagrangian L does not manifestly contain any mass pa-
rameter and is to be the starting point of our renormal-
ization-group analysis.

The renormalization procedure that we shall use is the
modified 't Hooft minimal-subtraction scheme (MS),

where A, here is the one-loop renormalization-group-
invariant cutoff Wh. en higher-order graphs are included
in the analysis, renormalization-group methods may be
used to sum over the contributions in the leading-
logarithm approximation.

A side remark is necessary here. Condition (1.2) as-
sumes that the 1/e counterterms have been (liberally) in-
voked to make all radiative correction graphs finite, in-
cluding those due to the new self-mass interactions [see
Eq. (1.1}j. It is quite reassuring that the same self-
consistency condition, Eq. (1.6), is present in the M-
dependent 1/e counterterms needed to renormalize the
theory, and these extra counterterms drop out when the
condition (1.5) is satisfied The .same will remain true to
higher-loop renormalization accuracy.

The new technique, based on the Nambu —Jona-Lasinio
approach, is thus fully compatible with the renormaliza-
tion group and provides a tool for direct calculations of
dynamical symmetry breaking. It can, for example, be
used to settle the question of what the high-energy
(p »M ) behavior of the quark propagator should be. It
is no longer a question of conjecture or intuitive argu-
ments in a study of the Schwinger-Dyson equations, but
only a matter of performing the renormalization-group
summations.

with furthermore the convention that

Tr(y„y, ) =45„„ (2.3)

(2.4)

in order that our Lagrangian (2.4) be the original massless
QCD Lagrangian that we started out with.

To illustrate our procedure, let us calculate the two-
point quark Green's function to first order in A, . For con-
venience of presentation, we choose to do this calculation
in the Landau (a=O) gauge. The result is (p &~M )

MI '„'(p)=y.p iM+i 5M—+3k,CfM ln
p 2 3

. (2.5)

In (2.5), the 5M term is the contribution from the new 5M
interaction, considered to be of order A, , while the second
term is the contribution from the radiative correction due
to virtual emission and absorption of gluons. Require-
ment (1.3) thus fixes 5M to be given by

M 15M = —3XCfM ln
p 2 3

(2.6)

The physical meaning of (2.4) is apparent. Ordinarily,
the physical mass is the sum of its intrinsic mass and the
dynamical radiative self-mass. Here the quark has no in-
trinsic mass term to begin with so'the total mass M is sim-
ply equal to the dynamical radiative self-mass.

In order to appreciate better the rearrangement of the
old perturbation theory that has been effected by our new
bookkeeping, we enumerate in Fig. 1 all the graphs that
contribute to the renormalized two-point quark Green's
function, up to two-loop accuracy. In Fig. 1, the new

even for n =4—e dimensions.
As already discussed in the Introduction, Lagrangian L

is invariant under local SU(N) transformations as well as
under global chiral transformations of the fermion fields
The MS scheme is fully compatible with both the local
gauge symmetry and the global chiral invariance. There-
fore the naive perturbation series will order by order only
give massless fermion propagators. For the new perturba-
tion series around the broken vacuum, a question will
arise concerning the new mass-dependent counterterms
that are to be introduced into L [Eq. (2.1)] to make the re-
sulting Green's functions finite. As in all renormalization
procedures, we will for now simply introduce them as
needed and afterward discuss the self-consistency of these
additional counterterms.

A more tricky question at this stage concerns the nature
of the bookkeeping needed to do the new perturbation
theory. A careless application of the perturbation expan-
sion of Eq. (1.1) can easily lead one back to the old naive
vacuum. The correct bookkeeping in order to satisfy our
requirement is to regard 5MQQ in (1.1) as a new interac-
tion that is of order A, . The precise strength of this new
interaction is determined by the requirement that (1.3)
should hold, to a given accuracy in A.. Having so deter-
mined 5M, we finally impose the self-consistency condi-
tion that
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quarks is in the form as given by Eq. (1.3), with Z being
the finite wave-function renormalization, which in the
Landau gauge is given by

(b) MZ=l —A. ( —', Cf 4 CfC2+Cff)ln
p

(2.8)

In arriving at the final form (1.3) we have been fairly h-
beral with all the I/e counterterms needed to cancel the
infinities of the theory. Besides the usual (M-independent)
counterterms, there will be new M-dependent counter-
terms. They are, to order A, ,

~ counterterm

6A Cf M2
Mpg 1+A,Cf 31n

2
—1 +

p

(e) + (",,'CfC2 3 Cff)MA[1+ . l

( —18Cf —22Cf C2+4CJf)M//[1+ ' ] .

(2.9)

As advertised earlier, we already see at the A, level the be-
ginning of the self-consistency condition (1.4) acting to
suppress these additional counterterms. If this continues
to be true in higher orders then we can be sure that we are
really talking about the same fundamental Lagrangian as
the usual massless QCD Lagrangian. To reach this con-
clusion we must do a complete renormalization-group
analysis of the two-point Green's function.

III. RENORMALIZATION-GROUP ANALYSIS

FIG. 1. Diagrams contributing to the quark self-mass, to
two-1oop accuracy.

For this analysis, it is good to first recall the
renormalization-group equations for the old theory (viz. ,
QCD of quarks with mass m). In terms of the usual vari-
able t =(In@), the equation for m„reads to two-loop
renormalization-group accuracy

d m„= —h, Am„—h2A, m„,2 (3.1)

5M/M= A,Cf(3L —1)—A, (3L —1)—( —,
'
Cf —,', bCf)—

—A, (3L —1)(—,
'
Cf +—„CfCg —

9 Cff) (2.7)

and the renormalized two-point Green's function for the

mass insertions due to 5M term are represented by a cross
in a circle. At the one-loop level it has been used to cancel
the finite part of Fig. 1(a). As remarked earlier this serves
to determine 5M to order A,. At the two-loop level, for the
graph Fig. 1(g), only the order-A, piece of 5M is to be used
there so as to be consistent with the new bookkeeping.
When all the finite terms that are of order A, are collected
together, the higher-order piece of 5M can again be deter-
mined from Eq. (1.3) now required to be true to order A, .
The net result for 6M so determined up to order A, is
given by [L =ln(M /p )]

where [f=number of flavors, Cz ——N for SU(N) group]

h ) ——6Cf, (3.2)

h 2
——3Cf +—', CfCi —, Cff, —

and the corresponding equation for A, reads

(3.3)

bAcA— , — ,

dt

The solution to (3.1) is given by

(3.4)

h
&
Ib ' '

h2 Ic—h
&
Ih

&+ed
&+ed,,

(3.5)

where mo is a renormalization-group invariant and A,o,
also a renormalization-group invariant, is defined as
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1 1 c b=———ln 1+ —bt+a .
b cA,

(3.6)
malized Green's function (p ~&M )

r'„"=Z -'(7.q —iM+iX), (3.7)

Here a is an integration constant that will be specified
below.

In our new theory, let us define for the two-point renor-
I

where Z, the finite wave-function renormalization con-
stant, and X are both functions of M, A., and p. From our
previous section, we have the series expansion for X as

X=M[1+ACf(3L —1)+A, (3L —1) ( —,'Cf —+bCf)+A, (3L —1)( ,'Cf )+——",, CfC —', Cff—)+ ] . (3.8)

It is now easy to check that X satisfies the following to all orders in A, , although only to two-loop renormaliza-
renormalization-group equation: tion accuracy, by simply setting

p, —(bA, +cA, ) X= —(hik+hzA, )X . (3.9)
Bp elk,

=0. (3.13)

Equation (3.9) clearly establishes the renormaliz ation
property of X as being identical to that of m„. We may
thus use our series expansion (3.8) to determine the arbi-
trary constant a in (3.6). It is, specifically,

b g2 c b—+—ln ——ln 1+ =0
2 ~2 b cA,

(3.14)

If we recall the two-loop definition of A, the QCD cutoff,
T

a = b/6+ l—nM . (3.10) we obtain finally the result of Eq. (1.7) now true to two-
loop renormalization accuracy

Among the infinity of solutions to (3.9), the only one that
matches the series expansion in (3.8) is M=A, e' (3.15)

' hi/h ' ' h2/c —h&/b

X=M
Ap b+cAp

(3.1 1)

Recall that the self-consistency condition (1.3)
translates into the requirement that

(3.12)

and Eq. (3.11) lets us satisfy the self-consistency condition
I

Note that despite the superficial similarity of Eqs. (1.7)
and (3.15), the A, here is the two-loop QCD cutoff. Even
though the two-point Green's function is a gauge-
dependent quantity, the above result for M is independent
of gauge parameter.

Finally we remark on the nature of the extra mass-
dependent counterterms needed for our theory. In the
light of our new understanding of X, we can really rewrite
the total Lagrangian as

6A,Cg 18Cf +3bCf 269' C2 —32Cff
i''Y'~4 XA—'+ —XA'+ ~ — + XgP+ gauge interactions, etc. ,

E E' 12m
(3.16)

and notice that formally the Lagrangian is identical to an ordinary massive QCD theory, including the mass-dependent
counterterms. Where we differ from the old theory is the implementation of the condition that m„=O. When this con-
dition is satisfied, our Lagrangian becomes that of the massless QCD Lagrangian, the theory that we are ultimately in-
terested in.

IV. HIGH-ENERGY BEHAVIOR

In this section we shall derive the high-energy (p »M ) behavior of the two-point quark Green's function. The same
set of graphs in Fig. 1 evaluated now in the high-energy region yield the series expansion (up to an overall p-dependent
finite wave-function renormalization)

22 2 2
=Z '

~ y.p iM I+A,Cf +31n— +3 +A, ln ( —,Cf + 4bCf)+A, ln ( —z' Cf —"6 CfC2+ '3' Cff)
p p

ln —— ( —,Cf , bC )+A, ln——M

p
2 4 f

2M 1

p 2 3

2—9Cf ln +12Cf +A. O(1)
p

(4.1)
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Here I z satisfies the simple renormalization-group equa-
tion

p —(bA, +cA, ) I ~ ——0.
Bp BA,

(4.2)

Note that because we have separated out the p-dependent
wave-function renormalization, the reduced Green's func-
tion has the form

I g ——y.p —iM (4.3)

and it is really M that we have to study.
The high-energy behavior of M involves a summation

over all higher-order terms in k, subject to two-loop
renormalization-group accuracy. This can be done by use
of the renormalization-group equation for M. Let
e'M(X, M,p,p) be the function obtained from the original
M(A, ,M,p,p) by everywhere substituting A, for A, and M
(—:e 'M) for M. From our series expansion it can easily
be checked that [t = —,

'
ln(p /p )]

dt
M = —(6A.Cf+h2A, )M, (4.4)

where X satisfies

bA, —cA,—
dt

(4.5)

Equation (4.4) can be solved in the by now familiar way,
and we arrive very quickly at the result that for large t

b, lb
c In(b t/c)

2

hz I1—
In(b t/c)

(4.7)

Thus far in our discussion we have suppressed all men-
tion of the effect of the anomalous-dimension term in the
renormalization-group equation for the full two-point
function. As is well known, in the Landau gauge, the
anomalous dimension is of second order in A, and its effect
in the high-energy region is simply to multiply I ~ by a
constant, C, where

C =exp( —A A, /b ) (4.8)

A = —3Cf + —", CfC2 —2Cff . (4.9)

The complete result for the renormalization two-point
quark function therefore reads

I h)/b
c ln(h t/c)I, ~Z C y.p —iM +b2

(4.10)

The integration constant for Eq. (4.5) may again be deter-
mined by the implicit relation

P

—=—+—[ln(p /p, )——,]+—ln I+ . (4.6)
1 1 b 2 2 4 c b

X I 2 cX

V. CONCLUSION

What we have shown in this paper is that the
Nambu —Jona-l. asinio condition is in fact a
renormalization-group invariant. Because of that, we
have the freedom to choose p as we like. For our pur-
poses, to make sense of our new perturbation theory, we
have chosen p large, in the domain where k is small, and
where the logarithms are correspondingly large. We have
used the renormalization-group analysis to sum over these
leading and next-to-leading logarithms. The remaining
terms are indeed small.

One may think that discussions of low-energy chiral
breaking necessarily involves an expansion in A,(M) which
is large. However, renormalization-group invariance of
(1.6) assures us the freedom to work in the small-A,
domain. In this domain, the log(M /p ) will obviously be
large and a summative over leading logarithms and next-
to-leading logarithms will be necessary to give a meaning-
ful result. In this way, the renormalization-group equa-
tions have been used to give meaning to the dynamically
generated quark mass M, within the context of a loop ex-
pansion.

This mass M is the constituent mass of the quark as op-
posed to being the current mass. Because we have not in-
cluded the effects of quantum flavor dynamics, we cannot
at this level differentiate between the up-quark and the
down-quark constituent masses. Our treatment so far also
cannot distinguish between generations. Such questions
properly belong in the context of grand unification and
will be addressed in a future publication.

In our new perturbation theory of QCD, what we have
not yet been able to accomplish at this stage is the calcula-
tion of the expectation value of PP in our (broken) vacu-
um. The technical difficulty concerns the renormaliza-
tion bookkeeping for vacuum graphs which are more
highly divergent than the n-point functions (n )2). This
problem is presently under investigation.

In principle our renormalization-group analysis of the
Nambu —Jona-Lasinio self-consistency condition has ap-
plications for the general tumbling phenomena in gauge
theories. It can take the guesswork out of the tumbling
and provide a calculable scheme for the actual tumbling
scenario that takes place.

Our calculation scheme can also make contact with the
Schwinger-Dyson approach to dynamical symmetry break-
ing. In this latter approach, the high-energy behavior of
the quark two-point function is postulated in order to
solve a truncated Schwinger-Dyson equation. As has been
noted previously, this involves a certain amount of guess-
work, since there are two possible high-energy behaviors
that are allowed and a priori it would be difficult to
choose between the two. By our new calculation scheme,
we have been able to directly compute the high-energy
behavior and find that it is the so-called "irregular" solu-
tion that the broken QCD "chooses. "

This result is in disagreement with that obtained by us-
ing the standard operator-product expansion (OPE) with
coefficient functions calculated in the unbroken theory.
As Gupta and Quinn have shown, ' however, in the exam-
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pie of scalar field theories with unstable vacua, the OPE
for a shifted theory differs from the OPE for an unshifted
theory. In the Nambu —Jona-Lasinio mechanism, we shift
to the massive vacuum. It amounts to putting in an expli-
cit mass term and then taking it out through a new self-
mass interaction term. Because of asymptotic freedom,
the strength of this new self-mass interaction term be-
comes weak at high energies. In the calculation of the
new coefficient functions then, it is as if the theory expli-
citly broke chiral invariance and the high-energy behavior
is correspondingly that of the irregular solution.

Intuitively speaking, our result may be understood as
follows. At low energies, we have observed the chiral-
symmetry breakdown through the nonperturbative M&0
solution. In zero-temperature QCD, the P function is neg-
ative definite, and there is no phase transition in going
from low to high energies. Therefore it is not surprising
that we obtain at high energies the behavior characteristic
of a broken QCD theory.

So far we have not mentioned the role which the
Nambu-Goldstone boson will play in the broken QCD."
Preliminary investigations have shown that the same con-
dition (3.13) is responsible for producing a singularity in
the associated pseudovector vertex between the quark and
an external pseudovector current. In principle, therefore,
we can even hope to calculate the dynamics of mass gen-
eration of broken gauge theories as well.

These and many other interesting and related questions

deserve renewed attention from our new renormalization-
group point of view.

ACKNOWLEDGMENTS

One of us (NPC) would like to thank Professor G.
't Hooft for the warm hospitality at the Institute of
Theoretical Physics, Utrecht, where part of this work was
done. In particular he would like to thank Professor
't Hooft for the stimulation and confidence which a dis-
cussion with an expert can sometimes lend a neophyte.
He would also like to thank Professor J. Gervais and
members of the staff at the Laboratoire de Physique
Theorique Ecole Normale Superieure, Paris, for the warm
hospitality during the spring semester of 1982, and to
thank Professor M. Jacob and members of the Theory
Division of CERN for their warm hospitality during the
summer of 1982. The other (LNC) would like to ac-
knowledge the warm hospitality of Professor C. N. Yang
and members of his Institute of Theoretical Physics at
Stony Brook during the spring semester of 1982. We
thank Professor Chou Kuang-Chao for some stimulating
conversations of dynamical symmetry breaking. One of
us (NPC) would also like to thank Professor K.
Mahanthappa and Dr. Zhou Xian-jian for discussions.
This research has been supported in part (LNC) by the
NSF Grant PHY-78-2197S and in part (NPC) by a grant
from the Eppley Foundation.

iReferences on QCD and dynamical symmetry breaking are so
long that we will simply refer to the general review by W.
Marciano and H. Pagels, Phys. Rep. 36C, 137 (1978), and lec-
tures by G. 't Hooft, in Recent DeUeloprnents in Gauge
Theories, proceedings of the Cargese Summer Institute, 1979,
edited by G. 't Hooft et al. (Plenum, New York, 1980), p. 135;
and in Proceedings of the 1981 International Conference on
High Energy Physics, Lisbon, 1981, edited by J. Dias de Deus
and J. Soffer (European Physical Society, Romania, 1982).

2H. Pagels, Phys. Rev. D 19, 3080 (1979); P. Langacker, Phys.
Rev. Lett. 34, 1592 (1975); M. A. B. Beg and S. S. Shei, Phys.
Rev. D 12, 3092 (1975); K. Lane, ibid. 10, 2605 (1974); R.
Haymaker and J. Ferez-Mercader, Phys. Lett. 1068, 201
(1981);Phys. Rev. D 27, 1353 (1983).

Y. Narnbu and G. Jona-Lasinio, Phys. Rev. 122, 345 (1961);
124, 246 (1961); see also T. Eguchi and H. Sugawara, Phys.
Rev. D 10, 4257 (1974); K. Lane, ibid. 10, 1353 (1974); Ni
Guangjiong, KeXue Tongbao (Sci. Bull. ) 14, 853 {1982);Nucl.
Phys. B211,414 (1983); B219, 547(E) (1983); J. Finger and J.
Mandula, Nucl. Phys. B199, 168 (1982); T. Banks and A.
Casher, ibid. B169, 103 (1980).

4G. 't Hooft and M. Veltman, Nucl. Phys. B44, 189 (1972); G.

't Hooft, ibid. B61, 455 (1973); W. Bardeen, A. Buras, D.
Duke, and T. Muta, Phys. Rev. D 18, 3998 (1978).

~The beta function for effective quark masses has been calculat-
ed to two loops by O. Nachtrnann and W. Wetzel, Nucl. Phys.
B187, 333 (1981).

Ngee Pong Chang, A. Das, and J. Perez-Mercader, Phys. Rev.
D 22, 1414 (1980).

7J. Finger and J. Mandula (Ref. 3); S. Coleman and E. Witten,
Phys. Rev. Lett. 45, 100 (1980); P. DiVecchia, F. Nicodemi,
R. Pettorino, and G. Veneziano, Nucl. Phys. B181, 318
(1981); C. Rosenzweig, J. Schechter, and G. Trahern, Phys,
Rev. D 21, 3388 (1980); K. T. Mahanthappa and J. Randa,
Phys. Lett. 121B, 156 (1983); Phys. Rev. D 27, 2500 (1983).

S. Dimopoulos, S. Raby, and L. Susskind, Nucl. Phys. B169,
373 (1980); G. Veneziano, Phys. Lett. 102B, 139 (1981); M.
Srednicki and L. Susskind, Nucl. Phys. B187, 93 (1981).

H. D. Politzer, Nucl. Phys. B117,397 (1976).
toS. Oupta and H. R. Quinn, Phys. Rev. D 26, 499 (1982); 27,

980 (1983).
'iReview talk by M. A. B. Beg, in Proceedings of the 1981 Inter

national Conference on High Energy Physics, Lisbon, 1981
(Ref. 1).


