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We show that the difficulties encountered by Kakudo, Taguchi, Tanaka, and Yamamoto in the canonical
quantization of gauge fields in the temporal gauge stem only from insufficient care in their handling of
eigenvectors belonging to continuous spectra.

In a recent paper on the quantization of gauge theories, '

Kakudo, Taguchi, Tanaka, and Yamamoto (KTTY) have
questioned the validity of the canonical quantization pro-
cedure in the temporal gauge. In this Comment on their
paper we show that the inconsistency of the commutation
relations found by KTTY is due entirely to forbidden
mathematical manipulations of expressions involving non-
normalizable eigenvectors. Also, in view of growing interest
in the temporal gauge, we set the record straight concerning
the history of this important method of quantization.

%e start with a brief summary of the "contradictions"
found by KTTY. They consider the commutation relations
between the generators of gauge transformations G'(x) and
the vector potential of the gauge field A,b(y),

[G (x),A,'(y)] =i ls.bB, +gf,b,a2r(x)]S(x —y)

Next, they sandwich these relations between two state vec-
tors obeying the subsidiary conditions

G'(x ) iu) = 0

They find that the left-hand side vanishes, whereas the
right-hand side is, in general, different from zero. At this
point they conclude that the subsidiary conditions (2) are
invalid and that "in this way it becomes clear that we have
no knowledge of the treatment of the Gauss's law, one of
the fundamental equations. Therefore further discussions
on the canonical formalism in this gauge seem to be mean-
ingless. "

In our view, further discussions are not only meaningful,
but also enlightening, since they show how one may easily
be led astray by forma1 manipulations of operator expres-
sions in infinite-dimensional spaces.

There is a natural tendency among the great majority of
physicists to disregard warnings voiced by the mathematical-
ly sophisticated minority and to treat operators and vectors
in the Hilbert space as if they were finite-dimensional arrays
subject to the rules of ordinary matrix algebra. While on
the average these rules work well, from time to time
unprepared researchers fall into a trap. After all, functional
analysis is not equivalent to linear algebra.

In order to show where KTTY erred, we do not have to
stick to non-Abelian gauge theories. %e can find the same
"contradiction" in quantum electrodynamics and even in
elementary quantum mechanics. We shall explain the whole
problem in a simple case of two particles, mutually interact-
ing via some forces, described by the Hami1tonian

pl /2ml+P2/2I222+ l ( r 1 r 2)

To set the scene for the appearance of the same difficulty

as the one encountered by KTTY, let us write down the
commutation relations between the operators of the total
momentum of the system and the position of either particle,

lP, ,r"] = —ifh;, 2 = i, 2 (4)

Next, let us consider state vectors describing the two-
particle system in their rest frame, i.e., the vectors obeying
the subsidiary condition

Sandwiching both sides of Etl. (4) between two such state
vectors, describing different internal configurations of the
system, we obtain

0= —if';,.(o.'~a")

This is the quantum-mechanical analog of the relation ob-
tained by KTTY, which led them to question the validity of
the canonical quantization procedure. %here did we go
wrong in the derivation of (6)? Obviously, in treating the
eigenvectors ~a) as if they were normalizable vectors in the
Hilbert space. Of course, they are not. The operator p has
a purely continuous spectrum. Therefore the subsidiary
condition (5) forces all vectors obeying it to have infinite
norm and hence to lie outside of the Hilbert space. Wave
functions corresponding to such generalized eigenvectors
are, however, well defined and are used all the time in
quantum mechanics. For example, the wave function
describing the bound state of the hydrogen atom belongs to
this category. It is a square-integrable function of the rela-
tive coordinates, but since it does not depend on the
center-of-mass coordinates, its norm is infinite in the space
of two-particle states.

We have given such a detailed analysis of these elementa-
ry and well-known facts, because every statement made
above about the two-particle system has its counterpart in
the theory of gauge fields. In order to exhibit fully this
analogy, we give in Table I a list of the corresponding no-
tions and properties.

There exists a natural and elegant mathematical construc-
tion, which is best suited to describe the structure of the
Hilbert space in relation to the operators defining the subsi-
diary condition. This construction employs the decomposi-
tion of the Hilbert space into a direct integral associated
with a continuous-spectrum operator. Each component of
such a decomposition, called fiber, is a Hilbert space by it-
self. Fibers are labeled by the eigenvalues of the operators
used to define the decomposition.

In our quantum-mechanical example the decomposition
of the two-particle Hilbert space is defined by the total
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TABLE I. Correspondence between quantum mechanics and gauge field theory.

Quantum mechanics Gauge field theory

Canonical operators of individual
particles r", p~.

Center-of-mass degrees of freedom.

Hamiltonian does not depend on
center-of-mass coordinates and
so it commutes with total
momentum operator p.

Operator p has continuous spectrum
and its eigenvectors are
not normalizable.

Wave functions obeying subsidiary
condition (5) may be normalized
only if their dependence
on center-of-mass coordinates
is ignored, i.e., when they
are viewed as functions of
relative coordinates alone.

Canonical field operators in
the temporal gauge A, E~.

Gauge degrees of freedom,

Hamiltonian does not depend on
gauge degrees of freedom and so
it commutes with generators of
gauge transformations G~(x ).
Generators 6~ have continuous
spectra and their eigenvectors
are not normalizable.

Wave functionals obeying subsidiary
condition {2) may be
normalized only if their dependence
on gauge degrees of
freedom is ignored, i.e., when
they are viewed as functionals
of physical variables alone.

momentum operator; fibers are labeled by the momentum
vector. Each fiber is the Hilbert space of all state vectors
describing the motion of the system characterized by a given
total momentum. Clearly, such vectors are not normaliz-
able in the original Hilbert space.

In the simplest gauge theory, in sourceless quantum elec-
trodynamics, the decomposition of the Hilbert space is de-
fined by the operator '7 E(x). The spectrum of this
operator is continuous and the eigenvalues are labeled by a
function of x, say, q(x), which can be interpreted as a
background charge density. The physical states form the
fiber corresponding to q ( x ) = 0.

In non-Abelian gauge theories the situation is qualitative-
ly the same, although the noncommutativity of the genera-
tors 6' leads to some technical complications. In general,
the fibers defined by different 6's do not coincide, but
there exists one common fiber —the space of physical state
vectors —which belongs to the zero eigenvalue of each gen-

erator. Wave functionals which describe physical states can
be parametrized in such a way that the gauge degrees of
freedom do not appear and hence become normalizable in
the physical Hilbert space.

Finally, to conclude our Comment we would like to point
out the true origins of the temporal gauge. This gauge is al-
most as old as quantum field theory itself. It was success-
fully introduced in the second classic paper by Heisenberg
and Pauli. For that reason it would be appropriate to call it
the Heisenberg-Pauli gauge (HP gauge). In the quoted pa-
per, not only is the HP gauge introduced and used, but also
the role of the operators defining the subsidiary condition as
the generators of gauge transformations is explicitly stated
and the continuous nature of their spectrum is noted. We
believe that the present-day authors, writing about the
quantization of gauge theories, should properly acknowledge
the contribution to this subject by the founding fathers of
quantum field theory.
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