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Canonical commutation relations and Gauss's law in the temporal gauge
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An apparent inconsistency of the temporal gauge is shown to be inconsistent.

[Ap(V), DJ~(A)A J(Y') ] = iD'b (A)s (Y —Y')
I

and sandwiches Eq. (3) between physical states:

(e„„l[~;(&),D,"(A)&;(&')] I y„)

(3)

= i(c ph~D'p(A)s(X &') lp—ph& . (4)
l

Since both ~mph) and ~mph) satisfy Eq. (2), the left-hand
side (LHS) of (4) is apparently zero in contrast with the
right-hand side (RHS).

In this note we want to show that in the framework of the
general formulation of the temporal gauge given in Ref. 3
this paradox does not arise.

To start with, let us briefly recall the points of Ref. 3
relevant for this discussion. As is well known the set of
states P~h, which satisfy Eq. (2), consists of the states
which are invariant under the group go of the local, time-
independent gauge transformations (of zero winding
number) which go to the identity of spatial infinity. Their
infinitesimal generators are precisely the Gauss's law opera-
tors, Df (A)Ap(V). Mh is a subspace of the larger space
A (which describes systems in the presence of arbitrary
external sources spanned by the eigenstates of the Hamil-
tonian

H= Jt dY —— + Fopp~~—52 1 a a
2 sw;(v)sw;(v)

In this representation of A, A, (Y) is a multiplicative
operator and

A;(Y) —i
s~;(v)

From time to time there appears in the literature' the
claim that in the temporal gauge 30=0 there is an incon-
sistency between the canonical commutation relations

[w;(v), i'(v') ] = is.,s,s(v —v')

and the Gauss's law

DI' (A)A (X)~p,h) = [S'FBI—gf'~AI'( R)]A (7') ~p h) =0

(2)

The states which obey (2) are those which represent physi-
cal systems. The ~rong argument looks very simple and
goes essentially as follows. One takes the covariant diver-
gence of Eq. (I), This follows from the expansion

K(A2, At', T) = x e " $,(A2)f„'(At)
y

where the P„'sare the eigenstates of the Hamiltonian within
the particular gauge one is considering and the E~'s are the
corresponding eigenvalues.

In the temporal gauge it has been shown in Ref. 3 that
the measure p, (A) is A independent and is precisely given
by the inverse of the (infinite) volume of the group 9'e.4

p, (A) =
„S'h(X)

When restricted to physical states, Eq. (7) then reads

(4ph~yph) =~' SAp, (A)@ph(A)mph(A)

(10)

sA@ph(A)mph(A)
(11)

&h (7)
In Eq. (11) the ratio of two infinite quantities has to be de-
fined by the usual Faddeev-Popov trick. One must then in-
sert the following into (11):

I=a,(A) „ui(v)s[F(A ")] . (12)

This gives

(d ph lymph) J SAp, F(A)C'ph(A)mph(A)

p, (A) —= 6 (A)S[F(A)]
where F(A) = 0 is any spatial-gauge condition. 5

(13a)

(13b)

The scalar product in A is obviously defined by

(e~tp) =g sA(v)e" (A)lp(A)

When restricted to states in Mh, Eq. (7) is always infinite
due to the gauge invariance of 4(A) and Q(A). This sim-
ply means that the physical states are not normalizable in ~
One has to remember, however, that in every spatial gauge
the metric in the space of states is induced by the convolu-
tion property of the Feynman propagation kernel

K(A2, Ai', Ti+ T2) =„sAp(A)K(A2, A; T2)K(A, At, Ti)
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After these preliminaries, let us come back to the consistency of Eqs. (1) and (2).
To this end let us consider the matrix element of the gauge-invariant operator:

r —= D/", W,'(x) +gy "W,'(x)5(x —x') =5.,5,5(V —)f')
&'( ') X]

between two physical states mph(A) and 4&ph(A) E Aph. According to (13) one has to write
1

(@phil'lymph) = JtSA) F(A)c';h(A) DJ",& (x) +gf' A (x)5(X—x') mph(A)
SW'( ')

= S,b8 .5 (Y —Y') J BA~, (A )a»(A )q ph (A ) (15)
l

Because of gauge invariance, of course, both sides of this equation are independent of the particular condition F(A)
chosen.

Using Eq; (2) and functional integration by parts, Eq. (15) can be transformed into

JI SA@ph(A) D"i, Ap(Y)mph(A) =
J~ BApF(A)@ph(A)D'hi(A)5(V —x')mph(A)

"/ BW (V') X(
(16)

If the measure p, F(A) were not present in Eq. (16), we would be back to the contradiction between the Gauss's law and the
canonical commutation relations which we have sketched before.

One should notice that the problem already arises when g =0. In other words, the presence of a nontrivial measure in
(16) is necessary even in free QED.

The validity of Eq. (16) can be explicitly checked in perturbation theory.
Let us show, as an example, how it works at the level of free QED taking F (A) = B,A; and

Aph(A) c ph(A) = telo(A)

where Pn(A) is the free vacuum functional:

(

Qn(A) =Mexp —
2 „dYd)f'A;()f) GaT(X —7')A, (Y')

( )

GT()f )f') 1 d~ e —i p ~ ( x —x )( 2)1/2 5 p'pJ
(27r)' " " p2

t

(17a)

(17b)

To check the validity of Eq. (16) it is convenient to go one step back in order to be able to use the Fourier representation
for 5(8&A, ). We then start with the formula (15), whose LHS in this case becomes

(enlI l&n) =J BAS(5;&&)Pn(A) 5, W;(&) Pn(A)'
BW, (V')

=J SAS((i;A;)y"„(A)(i [A;()f)Q (A) ]' Ba, (V')

We now use the 5 function in order to eliminate in @'„(A)the terms proportional to p;p, /p:

5((1,A, )gn(A) =5(B,A, )exp —
2 &

dY d)f'A, (Y)G(Y —Y')A;(Y')
(

G(y )f') d e
—i P ~ ( x —x )( 2)l/2

(2m )' "
In this way we will explicitly have an exponential damping in the longitudinal part of A.

Integrating by parts and using the Fourier representation of the 5 function, we get

(18)

(19a)

(19b)

(Pn~I ~Pn) = —
J SABA. 5, , exp i J~ X(7)5&2;(g)dg —'J A;(7)—G(7 —P')A&(f')dPdP'

"/ BA (Y')
r

x A&(Y) exp ——~ A;(7) GIr(f 7')A&(P') d7 dP'—
L i

'I

= —Jt SABA. —i'7, 'X(Y') —8, G(V' P)&/(P )d7—A;()f)
X Xg aJ

x exp i
&

A(y)SA;(7)d7 —
2 J 3;(7)[G(p —p')Sg+ G~T(p —7')]A/(7') d)r d)r' (20)
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The second term in the second equality of Eq. (20) is zero
because of the 5 function itself; the first term is a Gaussian
integral which is easily checked to give exactly t),S(V —V')

xI
as expected [see Eq. (15)].

The last thing we want to show is that the introduction of
a metric in the definition of the scalar product does not des-
troy the Hermiticity of physical operators. More precisely
we want to show that if an operator P is Hermitian in the
large space ~

, q)f(A) [d@t(A) ]SA =
~ [4 42(A) ] 4, (A)SA,

4(, 42 6 A

(21)

y2 (A) [4'g t (A) ]p F(A) SA

[+42(A) l fl(A)p F(A)SA, Qt, Q2 & 4 ph . (22)

This theorem is intuitively obvious. In fact, if commutes
with the Gauss's law, 8'pt(A) and 8'$2(A) are gauge in-
variant, if pt(A) and $2(A) are.

By the Faddeev-Popo v procedure the same infinite
volume is extracted from both members of Eq. (21), ending

and gauge invariant (i.e., if it commutes with Gauss's law),
then it is Hermitian also with respect to the scalar product
in @~a as defined in Eq. (13a), i.e.,

(24a)

g+ U+= J „~h(&)(&[e2(A )p F(A

)c Qt(A " )pF(A)SA (24c)

=„t„~h(~)(~[y2(A) p F(A " )])'yt(A) p, „(A)SA

[C'Q (A)]'y (A)p, (A)SA
(24d)

(24e)

where the change of variables A A " has been per-
formed to go from (24b) to (24c). The gauge invariance of
d', pt, and p2 has been used from (24c) to (24d). The last
equality is obtained using again Eq. (12).

In conclusion, when one takes proper care of the defini-
tion of the scalar product in the space of physical states no
contradictions arise within the temporal gauge.

with Eq. (22). More precisely we can always write the fol-
lowing for an 8' Hermitian in P '.

~ y, (A)[ay, (A)]p, (A)SA

=J (8 [ljl2(A)p F(A) ]) 'Qt (A)SA . (23)

We now introduce the identity (12) in the RHS and obtain

J (&[y2(A)pF(A)]] "q t(A)SA

=„f~&h(X) „(8'[$2(A)pF(A)]]ft(A)pF(A )SA
(24b)
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