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We present a field-theoretical gauge model which presumably describes the long-distance behavior
of quantum chromodynamics (QCD). This theory, modified QCD, possesses local gauge invariance
and exhibits a k gluon propagator at the tree level, which leads to quark confinement at this level.
Quantization is done using the path-integral formalism in the covariant gauge. Developing pertur-
bation theory, we encounter two difficulties: ultraviolet (UV) divergences and infrared (IR) diver-

gences. IR divergences are seriously bad, whereas UV divergences have simple structures and ap-
pear only in the one-loop level. We concentrate our attention on the latter and find the complete
counterterms using the background-field method extended to these cases. This model turns out to be
renormalizable at the expense of introducing a new free parameter.

I. INTRODUCTIQN

Since the idea of quark confinement was introduced,
many theorists have made efforts to prove this conjecture
within the framework of quantum chromodynamics
(QCD). Until now, several mechanisms that may be re-
sponsible for confinement have been proposed. ' On the
other hand, some tried to solve the Schwinger-Dyson
equations for this purpose. Recently, West proposed a
proof of confinement which relies on general field-
theoretical arguments. However, all these approaches do
not give us satisfactory explanations to this problem.

In contrast with these efforts, there have been field-
theoretical approaches ' which are based on the k bare
propagators. In Ref. 4, a dipole —vector-gluon model was
proposed. In Ref. 5, Kiskis considered a scalar field
theory involving higher derivatives. At this stage, it
might be helpful to recall that one of the criteria for con-
finement is a k behavior of the gluon propagator at
small k, as shown in connection with the Wilson loop by
West. In this paper, we generalize this idea and present a
field-theoretical model, by modifying QCD, where colored
quarks interact with gluons as in QCD except that the
bare gluon propagator is of the form k . This model
also possesses local SU(3), gauge invariance.

Since our Lagrangian contains terms with second-order
spacetime derivatives, the usual canonical quantization
procedure cannot be applied. For these kinds of theories,
Kiskis presented a quantization procedure which resem-
bles canonical quantization in many respects. This for-
malism is suitable to see the particle structure of the
theory. However, in deriving various Green's functions,
there is no difference between this method and the path-
integral method. Here, we follow the latter. The corre-
sponding Feynman rules can be obtained following the
Faddeev-Popov trick. We adopt the covariant gauge and
our rules involve ghost fields.

Feynman rules in this method are the same as in QCD
except for the gluon propagator and the gluon vertices.
By careful studies of power-counting rules, we could find
that in this theory primitive UV divergences appear only
in the one-loop level. Compared with this simple behavior

of UV divergences, our model suffers serious IR diver-
gences. These two kinds of divergences are the main dif-
ficulties encountered in perturbation theory. In this work,
we concentrate on the ultraviolet divergences and will find
the complete divergent terms of the effective action. We
believe that this study is important to understand the
quantum-theoretical structure of our model.

To find UV-divergent terms, we use the background-
field method. The gauge fixing is done in the so-called
background gauge. In this formalism, the gauge invari-
ance is maintained even in the quantum level, and each
term appearing in the one-loop effective action is given by
the logarithm of the Fredholm determinant of the corre-
sponding operator. From this we could find that the
divergent piece of each term has a similar structure to
that in QCD, and the complete UV-divergent term is pro-
portional to the ordinary Yang-Mills action.

This paper is organized as follows. In Sec. II the pre-
sentation of modified QCD is given. In Sec. III the path-
integral quantization of this model is given and the Feyn-
man rules are obtained. In Sec IV we evaluate the one-
loop divergences in the background gauge. The final sec-
tion contains brief discussions on renormalizability.

II. MODIFIED QCD

Generalizing the idea suggested in Refs. 4 and 5—
quark confinement through the k "-type bare
propagators —to gauge theories and modifying QCD, we
propose a model Lagrangian for the long-range phenome-
na in QCD as

YMgcD ——a tr[D„,F~ ][D,Fx ]+/(ig —m)g, (1)

where

Dq t)„igA ~T', [D—~,D—„]= igF„—
and A& and g denote the gluon and quark fields, respec-
tively. Here, the quark field denoted by g carries both
flavors and colors as in QCD and the T"s denote the gen-
erators of the color gauge group in the appropriate repre-
sentations. This model contains three parameters: dimen-
sionless coupling constant g, color-singlet mass matrix m,
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and constant a carrying the dimension of length. Howev-
er, our model can be regarded as a theory with two pa-
rameters by absorbing a into A& and g. In this case
(a =1), the A&'s are dimensionless and g is of mass di-
mension. Hereafter, we shall follow this convention.

Now, we list some interesting features of this model,
modified QCD. First, it is obvious from Eq. (1) that this
model possesses the same local gauge invariance as in
QCD and the gluon propagator is of the form k as we
required. We also note that the first term in Eq. (1), when
continued analytically into imaginary time, is negative de-
finite. Because of this, one can define the Euclidean ver-
sion of quantum field theory determined by the Lagrang-
ian (1).' Finally, we investigate the dynamical properties
of this model. From Eq. (1) we can find that the quarks
interact with the gluons in the same manner as in QCD,
whereas the dynamics in the gluon sector have been modi-
fied. " Consequently, the equation of motion for the
quark field is the same as in QCD, whereas the field equa-
tion for the gluons is modified to be

( Dgq„+—2igF~ )D2F =gJq,

with

III. QUANTIZATION

B„A,"=C,(x), a =1, . . . , dim(G), (3)

where the C, 's denote arbitrary constants.
In this gauge, the path-integral method combined with

the Faddeev-Popov trick says that

Quantization of our model is not simple due to the
presence of higher-order spacetime derivatives and local
gauge invariance in Eq. (1). Because of the former we
cannot follow the conventional procedure of canonical
quantization. In this work, we avoid this difficulty by
adopting the path-integral formalism for quantization. '

The difficulty associated with the latter can also be over-
come using the Faddeev-Popov trick. Here, we choose the
covariant gauge, i.e.,

e "' ' =N fDA&DQDgdet(B D)g5(B A' —C')exp. i fd x[ Y Qco(A, Q, Q)+JqA,"+KQ+QK] . , (4)
x,a

where W denotes the generating functional for the connected Green's functions and K,K denote antiferromagnetic c-
number fields. Since the physical amplitudes do not depend on the choice of gauge, we can insert in Eq. (4) the factor

fDC, exp i fd—x C'8 C'1

where g denotes an arbitrary constant. After integrating for the C' variables, we obtain

e "' ' =N fDA„'DQDfdet(B. D)exp i fd x WMoc~(A, Q, Q) — (8 A')8 (8 A')+J„'A,"+Kg+PK
2$ (6)

Feynman rules for this model can be derived from this
expression. Then it is obvious that our Feynman rules are
the same as in QCD except for the gluon propagator and
the gluon self-interacting vertices. In this model, the
gluon propagator is

r

(l 2)2 k2

This is just what we expected. On the other hand, the
rules for the gluon vertices are different from those in
QCD in that (a) gluons can also interact with each other
via the five- and the six-point vertices and (b) the l-point
gluon vertex contains the factor with (6-l)th power of
momentum ( l =3,4, 5,6). Here we omit the detailed rules
for the gluon vertices. In Sec. IV we investigate the struc-
ture of the UV divergences and evaluate the complete in-
finite term in the background gauge.

IV. ULTRAVIOLET DIVERGENCES

l

ous section. In such perturbative calculations, we en-
counter two types of divergences as in QCD: ultraviolet
and infrared divergences. However, the detailed struc-
tures of these divergences are quite different from those of
QCD, especially in the former. The infrared divergences
of this model are much stronger than those of QCD be-
cause our gluon propagator described in Sec. III is more
singular than that of QCD. On the other hand, the ultra-
violet divergences have a simple structure. In this work,
we concentrate on the latter problem.

First, let us find power-counting rules which tell us the
superficial degree of divergences for a given Feynman
graph. Let I be a one-particle irreducible diagram.
Denoting the numbers of external fermion, gluon, and
ghost lines by Ez, EG, Egh, and the numbers of the corre-
sponding internal lines by Iz, IG, Igh, respectively, we ob-
tain

v V

Ep+2I~ g f~, EG+2IG ————g g;,

A. General theory

Any Careen's functions in MQCD can be evaluated per-
turbatively using the Feynman rules derived in the previ-

v
Esh+2Ish ——g n,s",

where V denotes the total number of vertices in the graph
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I and f;, g;, n;s" denote the numbers of fermion, gluon,
and ghost lines, respectively, in the ith vertex. Then the
superficial degree of divergences D (I ) is

D(I )= gd; +3IF+2I,„4V—+4, (9)

where d; denotes the order of derivative coupling in the
ith vertex. Then making use of Eq. (8), we can reduce Eq.
(9) to

D(I ) =4—, E~ —Esh+—+5i,
with

Note that our expressions for D(I ) and 5; are different
from those of QCD.

With this formula we can find all superficially diver-
gent graphs, i.e., graphs with D(I ) &0. First, let us
evaluate 5 for various vertices in MQCD. From the Feyn-
man rules discussed in the previous section, it is easy to
see that 5=2 i f—or any i-point vertex (i =3,4, 5,6).
Since 5 & —1, diagrams with D (I ) & 0 can appear only in
the one-loop or the two-loop levels. It is also evident that
for every graph having external fermion or ghost lines
D( I ) ~ 0. ' Hence, whenever D (I ) & 0, we have
Ey ——Egh ——O. By a similar reason, we also have EG (4.
Considering all the possible diagrams, we could make the
following conclusions. The one-loop corrections to the
gluon n-point function ( n =2,3,4) are superficially diver-
gent and D(I )=4—n. Besides these, there are a few
two-loop diagrams for which D( I ) =0—the two-loop
corrections to the gluon self-energy. However, since the
gauge invariance reduces the superficial degree of diver-
gence for the gluon self-energy by 2, these two-loop dia-
grams are convergent in practice. By the same reason, the
one-loop corrections to gluon self-energy diverge logarith-
mically in practice. On the other hand, the apparent
linear divergence of the gluon three-point function is also

l

reduced to a logarithmic one due to Lorentz invariance.
In conclusion, all possible divergences are appearing in the
one-loop corrections to the gluon n-point functions
(n =2,3,4) and are logarithmic. In the higher-order cal-
culations, UV divergences are confined within such one-
loop subgraphs. In other words, there is no primitive UV
divergence beyond the one-loop level.

Once we succeed in resolving the one-loop divergence
problem, we need not care about any other ultraviolet
divergences. This problem may be stated by two
questions —(a) What kinds of form do these divergences
have? (b) How should we treat these divergences'? As for
the first question, we give the answer in Sec. IVB. Ac-
cording to the analysis given above, these one-loop diver-
gences seem to be appearing in the effective action
I [A,P,g ], which is the Legendre transform of
W[J,IC,IC], as a fourth-degree polynomial of A„'. The
detailed form of this infinite term may depend on the reg-
ularization prescription. However, the gauge invariance
imposed on the regularization procedure excludes many
possibilities. In Sec. IVB we calculate this infinite term
in the background gauge. In this gauge, the gauge invari-
ance is maintained even in the quantum theory and thus
we expect that these terms are proportional to the ordi-
nary Yang-Mills action. The second question as well as
renormalizability will be investigated in the final section.

B. Calculation of one-loop divergences

For the utmost utilization of gauge invariance, hereaf-
ter we work on the so-called background gauge' defined
by the condition

Dq'(A —A, ) )", =C, (x), (11)

where D„' =Bz—igA„" and A„' denotes a background
gauge field. The merit of this gauge is that, when we
evaluate the generating functional of the proper vertices
I (A, g, g ) and A&

——A&, I is gauge invariant. Following
the steps as in Sec. IV A, we obtain

e' "' ' =&fDA„'DQDgdet'~ (D,~ )det(D, ~.D)exp i fd x WMocD(A, Q, P) — (D,~ Q)D, ~ (D,~.Q)
2

(12)

where Q =A —A, I and we have inserted the identity

1=fDC'(x)exp — fd x CD,&
C det'~ (D,I ) (13)

instead of Eq. (5). On the other hand, according to the background-field method, I [A,P, P] is equal to I (O, g,f ), where
I (Q&,g, g ) denotes the Legendre transform of the generating functional W[J,E,K] defined by

e' ' ' =X D zD D det' D,] det D,]. D,] —ig

@exp ) fd x W'MqcD(A, I+Q, q, y) — (D,] Q)Da (D,I Q)+J Q+Zq+q&'
2$

(14)
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The arguments on the UV divergences given in Sec.
IVA are also valid in this gauge. Since the UV diver-
gences are absent in the graphs having external quark
lines, all the UV divergences appear in I (A, /=/=0).
The one-loop expressions for I (A)=l (A, /=/=0) is
easily found from Eq. (14), viz. ,

I d;„(A)= — lnA J d xF„'g,"", (20)32'. 2 3 .

where A denotes the ultraviolet cutoff and iaaf the number
of flavors.

V. DISCUSSIONS
I'"(A)= —, i—lndetD —iln det(ig —I)

where

+—ln detM,
2

Mp (D ——2igF—) p„+2X Dg~ 4X„D—q

with

(15)

(16)

The divergences evaluated in the preceding section can
be eliminated by adding a counterterm to the bare La-
grangian. According to these calculations, this counter-
term should be

2 2 Pf 2
g 3 f

1
A

32~2 2 3
"

p2 P ~

X~ = —ig [D„F~] . (17)

——,iln detDz iln det—(ig m)+ ——ln det(D 2igF) .—(19)

Note that the first term of this formula differs from ours
by the factor 3. The divergent piece of each term in Eq.
(19) is well known to us. ' Exploiting these formulas, we
find our desired expression for the one-loop divergences,
viz. ~

In Eq. (16), we have chosen g= 1.
We now evaluate the divergent terms contained in the

formal expression (15). First note that, evaluating
lndetM, the second and third terms in Eq. (16) do not
contribute to the ultraviolet divergences. The reason is
that the divergent terms should be of dimension 4, and all
such terms which are gauge invariant and contain X„
must be of the form tr[ D&, X], whereas [Dz,X"]=0
identically. Therefore for our purpose it is sufficient to
consider

ln det(D2 —2igF) =21n det(D —2igF)

instead of lndetM. ' On the other hand, the one-loop ef-
fective action in QCD has the expression

where a new parameter p is introduced. The introduc-
tion of this new parameter is inevitable to reflect the finite
ambiguities inherent in the counterterm. According to
the analyses given in Sec. IVA, no other counterterm is
needed and with this counterterm every Green's function
is free from the ultraviolet divergences even in the
higher-order calculations. As a result, we may conclude
that our model is renormalizable at the expense of intro-
ducing a new free parameter. A decade ago, Coleman and
Weinberg experienced similar situations' when consider-
ing various massless Higgs models, where they had to in-
troduce counterterms with the form of mass terms which
are absent in the Lagrangian. In contrast with our case,
they need not introduce a new free parameter because they
could maintain masslessness by a renormalization conch-
tion. In our case, however, we could not find a similar re-
normalization condition due to the serious infrared diver-
gences of our model.
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