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Fermions from bosons in 3+ 1 dimensions through anomalous commutators
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A derivation in the canonical formulation of the %'ess-Zumino anomaly is given. This leads
naturally to a construction of half-integer-spin, anticommuting operators starting from spin-zero bo-
sonic ones. This fermionic operator creates a state that is a superposition of all half-integer spins.
This is related to the effective Lagrangian for @CD.

Skyrme' was the first to suggest that the solitons of the
chiral model may be fermions. This idea has recently
been revived by many authors, leading to a synthesis of
many aspects of QCD. But an explicit construction of an-
ticommuting operators from those satisfying canonical
commutation relations (CCR) has not yet been done. This
is one of the aims of this paper. It will be shown that the
Wess-Zumino anomaly of the chiral model modifies the
equal-time current algebra. The creation operators for bo-
sonic states of soliton number 1, therefore, anticommute.

This construction is modeled on that of Coleman and
Mandelstam for the sine-Gordon theory, as interpreted
by Segal.

Consider the problem of quantizing sine-Gordon
theory. The field variable is an angle so that the configu-
ration space can be thought of as the space I of maps
S'~U(1). Thus the configuration space is itself a group,
under pointwise multiplication of these maps. When the
system is quantized one should introduce unitary opera-
tors U(g) in some Hilbert space which will create the
state

~ g (x) ) from the vacuum state
~

1). These must
satisfy

Now, states of a quantum system are represented as rays
of the Hilbert space. Thus (2) only implies that the U's
provide a projective representation of the group I",

U(g1)U(g2) ~(gl g2)U(glg2)

Segal showed that the Mandelstam operators that create
fermionic states are part of a nontrivial projective
representative of I . For, choose

U(g)=exp i I [P'(x)X(x)+&(x)X(x)]dx, (3)

where P(x) and &(x) satisfy the CCR

[$(x),&(x)]=i5(x —y) . (4)

These U's clearly provide a projective representation of I .
If we take the limit X(x)—+2m8(x —xo) we get

+ 00

y(xo) =exp i 2~[ y'(x)e(x —xo)—
+~(x)@x—xo) ]dx

which is Mandelstam's expression for the creation opera-
tor for fermions, up to some constant overall factors.

This suggests the generalization to four dimensions. I
will show that this also gives a new interpretation of the
Wess-Zumino anomaly. Consider a chiral model where
the field variable takes values in a compact Lie group G.
All finite-energy configurations must satisfy

lim g(x)~1 .
l&l

Thus the configuration space I can be thought of as the
space of maps S —+G. This space has many connected
components, labeled by the winding number. In quantum
mechanics, as for the sine-Gordon theory, there must be
unitary operators providing a projective representation of
the group I:

U(g 1)U(g2) ~(gl g2)U(glg2)

Associativity implies that the phase factor ~ satisfies the
"cocycle" condition

~(gl~g2g3)~(g2~g3) ro(glg2~g3)~(gl~g2) .

Quite often the phase factor can be factorized,

if(g ) ) if (g2) —if (g )g2)

so that it can be transformed away. In a classic paper,
Bargmann showed that nontrivial phase factors exist
only if H2(I, U(1)), the secondary cohomology of I, is
nontrivial. For every element of H2(l ), there exists a
corresponding quantization scheme of the chiral model.

Now, I'= IS ~6 I. Thus we can see that

H2(l ) =H5(G) .

The condition for the existence of a nontrivial projective
representation is that H5(G) be nontrivial.

But Witten has shown that this is precisely the condi-
tion for the existence of a Wess-Zumino anomaly. I will
now show that adding the Wess-Zumino term to the ac-
tion is equivalent to choosing a nontrivial projective repre-
sentation for the operators U(g).

To see this, remember that the canonical formalism for
the chiral model can be done entirely in terms of
currents. The equal-time current algebra

[Io (x),Ic~(y)] =if~it&I((x)5 (x —y), (11)
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[Io(x),IP(y)] =if prIr(x)5 (x y—)+id, 5 (x —y),
[I.(x),Ib(y)] =0,
along with the Hamiltonian

0= d'x I, x I, x +I. x I. x

(13)

(14)

which I, =go B,go in (18) is evaluated. I will now find
how F(go

~ g] ) changes under a continuous change of the
base point go along a curve go(x, t):

go(x, o) =go(x),
(22)

g, (x, 1 )=g,'(x) .
give the equations of motion

a„r„=o, (15)

d~I, (x) 8 I~—(x) +if PrI~~Ir =0 .

I& may thus be identified as g 'B~. The Wess-Zumino
(WZ) anomaly modifies the first of these equations:

F[go'
I gi] =e"F(go

I gi)
where

(23)

First one finds how Io and F change under an infini-
tesimal transformation of go. The effect of a finite
transformation along a curve can be found by integrating

(17)

A, being proportional to the number of colors. ' Witten
has shown how to find an action and a path-integral
quantization for this theory. Let us instead look for a
canonical formulation. If we leave the Hamiltonian and
the commutation relations (12) and (13) invariant, but
change (11) to

1

X=N f dr f d'x~.»,~.„r&rbsI,'Z (e, ~x)
i p

] ~go
go

the Y (8&
~

x) of this equation defined by

8 jg+(~)[g /&] jy( g
~

~)~& jg+(/)g+=8 e

(24)

Io ——Io +NPprse, b,I,I/I, , (19)

which satisfies nonanomalous commutators. Thus non-
trivial modifications of the current algebra are given by
closed but not exact five-forms, i.e., by Hq(G).

We can obtain operators that create bosonic states

~
g (x) ) by exponentiating the current algebra,

F(g)=exp i f Io(x)8 (x)dx (20)

where g(x)=e'"
By the Baker-Campbell-Hausdorff theorem'

F(g~)F(g2) =~(g&,g2)F(gig2) (21)

where co is some phase. It is important to remember that
Io, and hence I', will depend implicitly on the point go at

[Io (x),If(y) ]= if~p&I((x )5 (x —y)

+iNe, b, co~prs+~rIbIf (x)5 (x —y),
we get the required equation of motion. This is the first
result of this paper: the WZ anomaly modifies the
current algebra. Such a modification of the current alge-
bra can have experimental consequences. For example, a
scattering process %+K ~~+a m is predicted. All
this is in analogy with the axial anomaly. "'

The modified current algebra 1 can be shown to be a
central extension of the unmodified one, I . For this, let
us ignore the Schwinger term for the moment. The Jacobi
identity implies that the five-form co in (18) is closed. But
if it had been exact, co=de', we would have been able to
define

F [go l g i 1 e"F[go I
Rogl] (25)

with the path go(x, t) representing a rotation. Of special
interest are rotations through 2m around any axis.

Equation (24) can be written in a convenient form if go
and g~ can be deformed smoothly into each other. Let
g(x, t,s) be defined by

g (x r —~ ) =go(x r)

g (x, t, + ~ ) =g~(x),

with g 'Bg/Bs «1 for all s (i.e., an adiabatic deforma-
tion). Then

where x is some quantity transforming in the adjoint
representation,

[x,xP]=0 .

Thus we find that under smooth changes of go, F
changes by a phase. Thus the projective representative of
I provided by I' changes "trivially" when go is varied
smoothly. '

We are now in a position to ask how F(go
~ g~ ) changes

under a rotation. Since it is constructed out of spin-zero
fields, naively one would expect it to be "invariant, "

F[g i ]~F[Rog, ],
where Rog~ is the rotated configuration. But under a ro-
tation the base point go also changes so that in the pres-
ence of the anomaly

X=N f+"ds f dr f d' ~.x„,pg-' g
'a ' P y

i ~g
&abc

'5
-i ~g -i ~g

ex' Ox'
(27)
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Now consider a rotation through 2m of I' when g is a
one-soliton configuration. WitteIl has evaluated the
above integral and has shown that e' =( —1) . Thus if
X, the number of colors, is odd, any state with soliton
number 1 changes sign under a 2' rotation, i.e., is of
half-integral spin. An operator that creates only spin —,

'

has to be obtained by projection.
Before doing this, let us show anticommutativity. As

will be shown later, it is sufficient to consider configura-
tions that are far separated: i.e., either g~ or g2 is equal
to one everywhere. Further, let them be such that there is
a rotation around some axis through an angle m that inter-
changes g E and g2. In this case

+(g 1 )F(g2 )+ (g 1 )+ (g 2 ) (28)

where 7& corresponds to a rotation of g &
to g2 and g» to a

rotation of g2 to gz. Thus the combined phase factor is
again given by the integral (27) to be ( —1) . The creation
operators of soliton configurations (satisfying the above
conditions) anticommute.

I have thus obtained the analogs of the operators (3) for
the chiral model. To get those that create local fermions,
we should pick 8 (x) to be corresponding to a "point" sol-
iton. Skyrme' has given an ansatz for a soliton of size p
located at some point x &.

x —xi
g~(x)=exp iiPe, (x —x&)2tan

where e is some rectangular matrix [8)&3 if G =SU(3)]
of rank at least 3. Since we are interested ultimately in
point solitons, we need to consider only configurations (2)
with very small p. These will be "far separated" in the
sense of the last paragraph. Also if g& and g2 are such
configurations concentrated around g& and +2 there is al-
ways R rotatEon that EIltel chaIlges them: R I'otat10Il
through m. around the bisector of the line joining them.

Even after substituting (29) into the expressions for I',
we will not get the creation operator for a spin- —, fermion.
This is because I' creates all possible half-integral spins.
Skyrme' has shown how to resolve this. We can partial-
wave analyze I' into a product of operators each creating
a particular spin. To write an explicit expression for this
is not easy. This and related problems will be discussed in
a longer paper.

One can show that the states with spin —, transform
under the

representations of SU(Xf ), when the chiral model is based
on a group 6 =SU(Nf ). [There are (%, —1) boxed in the
first column of the above representation. ]

For, consider some fixed SU(2) subgroup with genera-
tors T. Under a rotation generated by J (angular
momentum) of T through 2m, the evaluation of the Wit-
ten phase factor gives ( —1) '. However, under a rotation
through 2m generated by J +T it is equal to 1. This must
be true of every SU(2) subgroup. By arguments basically
identical to those of VAtten one can then get the represen-
tations of the fermions.

%"hat is obtained after the point limit is taken and the
projection to spin —, is done is the "left-handed" part of
the fermion operator. By starting from the right-handed
isospin current B~g ' (instead of g 'B~ as I did) one
can get the right-handed components. The right and left
components so obtained will commute. Completely an-
ticommuting operators will then have to be obtained by
Jordan-Wigner transformation.

This is only a first step toward constructing fermions
from bosons. Dynamical questions such as (1) do the P's
satisfy a Dirac equation and (2) what are their masses and
couplings to mesons, are all yet to be understood. Some
of these questions will be discussed in forthcoming papers
with Cx. Bhattacharya.

One of the interesting facts to be noted is that the
Wess-Zumino anomaly does not exist when the number of
flavors is less than 3. Thus the above construction would
not work in the case of two flavors. The analogous prob-
lem there involves quaternionic projective representations
of the group I and is therefore much more involved.
Thus the case of three of more flavors is simpler to under-
stand than that of two flavors.

ACKNG%"LEDG MENTS

This work grew out of discussions with A. P. Balachan-
dran, G. Bhattacharya, and L. Michel. I would also like
to thank V. Rubakov for discussions and reading the
manuscript. This work was supported by a Syracuse
University fellowship and by the U.S. Department of En-
ergy under Contract No. DE-ACQ2-76ER03533.

ET. H. R. Skyrme, Proc. R. Soe. London A260, 127 (1961);
Nucl. Phys. 31, 556 (1962).

N. K. Pak and H. Zh. Tze, Ann. Phys. (N.Y.) 117, 164 (1979).
3A. P. Balachandran, V. P. Nair, S. G. Rajeev, and A. Stern,

Phys. Rev. Lett. 49, 1124 (1982); Phys. Rev. 0 27, 1153
(1983)~

4E. Witten, Princeton reports, 1983 (unpublished).
~M. Rho, A. S. Aoldhaber, and G. E. Brown, Phys. Rev. Lett.

747 (1983) A D Jackson and M Rho

(1983).
6J. Wess and B. Zumino, Phys. Lett. 37B, 95 (1971).
7S. Coleman, Phys. Rev. I3 11, 2088 (1975); S. Mandelstam,

ibid. 11, 3026 (1975).
G. Segal, Commun. Math. Phys. 80, 301 (1981);Oxford report,

1981 (unpublished).
9V. Bargmann, Ann. Math. 59, 1 (1954).
~ceo pr~=(2/15m ) tr A, A,pA, ~A, q)t,, This is a closed but not exact

five-form that has been normalized as in Ref. 4. Note that



FERMIONS FROM BOSONS IN 3+1 DIMENSIONS THROUGH. . . 2947

this is nonzero only for groups SU(Xf ), Xf & 3.
~~S. Adler, in Lectures on E/ementary Particles and Quantum

Field Theory, edited by S. Deser, M. Grisaru, and H.
Pendleton (MIT, Cambridge, Mass. , 1970).

~2The %'ess-Zumino term makes no contribution to the stress
tensor. This is analogous to the particle in a magnetic field.
M =

2 mv is independent of 8. But [v;,vj]=ice;~kBk Se. e

also S. Deser and J. Ranols, Phys. Rev. 187, 1935 (1969).
M. Hausner and J. T. Schwarts, Lie Groups, Lie Algebras
(Gordon and Breach, New York, 1968).

Thus if go(x) is of soliton number zero so that it can be con-
tinuously deformed to the identity, the projective representa-
tion we have is trivial.


