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Many grand unified theories (GUT s) predict non-Abelian monopoles which are sources of non-
Abelian (and Abelian) magnetic flux. In the preceding paper, we discussed in detail the topological
obstructions to the global implementation of the action of the "unbroken symmetry group" H on a
classical test particle in the field of such a monopole. In this paper, the existence of similar topolog-
ical obstructions to the definition of H action on the fields in such a monopole sector, as well as on
the states of a quantum-mechanical test particle in the presence of such fields, are shown in detail.
Some subgroups of H which can be globally realized as groups of automorphisms are identified.
We also discuss the application of our analysis to the SU(5) GUT and show in particular that the
non-Abelian monopoles of that theory break color and electroweak symmetries.

I. INTRODUCTION

In a typical grand unified theory (GUT), ' a gauged
grand unifying group 6 is spontaneously broken by a suit-
able Higgs field to an "unbroken" subgroup H. The
group 6 is simply connected while 0 is not, which leads
to the existence of magnetic monopoles in such models.
A remarkable feature of many of these monopoles, which
distinguishes them from the Dirac monopoles, is that they
are sources not only of Abelian magnetic fluxes but also
of non-Abelian magnetic fluxes. In this paper, we study
thc classical field thcoiy of thcsc non-Abelian monopoles
as wel. l as the quantum mechanics of a test particle in the
field of such monopoles. Gur main conclusions can be
summarized as follows. (1) Although the subgroup H, de-
fined as the little group of the Higgs field at spatial infini-
ty, is perfectly well defined as an abstract group, still it is
impossible to realize all the transformations of H either
on the fields which describe the non-Abelian monopole or
on ihe states of the test particle. Any attempt to do so is
likely to map a finite-energy configuration into an

infinite-energy configuration. (2) The trans formations
which can be implemented consist of several different
subgroups Er, ET-,. . . of H wi'th ve'ry different actions
on the fields or states. (3) In the CPUT scenario
SU(5) ~SU(3)c X U(1), , one of these subgroups is
KT ——SU(2)c XU(1)r XU(1), while in the scenario
SU(5)~SU(3)c XSU(2)wsXU(l), one of these subgroups
is KT ——SU(2)c XU(1)XU(1)XU(1). [Here SU(2)c acts on
the first two quarks (say), U(1)i is generated by the color
hypercharge F~ and the remaining U(1)'s are generated
by elements in the Cartan subalgebra of SU(5)]. In either
case color SU(3) cannot be implemented, while in the
second case the electroweak group also suffers the same
fate.

Preliminary accounts of our investigation have been re-
ported elsewhere. W'e have also already treated the clas-
sical mechanics of a test particle in the field of GUT
monopoles (and the associated differential geometry) in
detail and shown that similar difficulties are encountered
in that system as well. Analogous conclusions have been
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reached by other authors. Al/ these results show an impor-
tant structural result in any field theory which predicts
non Ab-elian monopoles by means of a suitable Higgs
mechanism: In the presence of these monopoles, the sym
metry group of the theory is not the little group of the Higgs
field at spatial infinity, rather it is a different set of
transformati ons.

From a physical point of view, it is important to know
if the effects we describe are associated with any energy
scale. Our discussion suggests that being consequences of
topology they are not correlated with any such scale.
They cannot, however, be perceived in any experiment
which explores only a small portion of the two-sphere sur-
rounding the monopole, that is to say when the solid angle
subtended by the experimental set-up at the monopole is
negligible in comparison with 4m.

The plan of the paper is as follows. In Sec. II, we con-
sider the monopoles produced in the symmetry breakdown
6—+H; An elementary and suggestive discussion is
presented which shows in a clear and simple manner the
origins of the topological obstructions to the realization of
the action of H when the monopole is non-Abelian. A
preliminary identification of the realizable subgroup of H
is also carried out. These calculations are done in the U
gauge which is particularly suited to display such obstruc-
tions. Section III studies the problem with greater gen-
erality with special attention to the characterization of the
subgroups of H which survive as symmetry transforma-
tions. Here we discover a surprising result: there are in
general several subgroups ICr, Xz-, . . . of the abstract
group H which enjoy this property. The action of these
subgroups is in general space dependent, meaning that
each element acts via a particular gauge transformation,
and differs froin naive expectations. Thus, for example,
the same element of the abstract group H may belong to
K~ and X~, and because Lz- and E~ as transformation
groups act differently, this s may have different actions
depending on whether we focus attention on Kr or ECz-.

(We postpone to another work further discussion of these
distinct actions and the infinite-parameter group to which
they lead. ) In Sec. IV, we consider a generic non-Abelian
monopole and show that a general (illegal) transformation
of H maps a monopole configuration of finite energy into
one of infinite energy. Section V examines the quantum
mechanics of a test particle in a background non-Abelian
monopole field. It shows that a generic H transformation
can map a state with finite mean energy into one with in-
finite mean energy, indicating that the full group of H
transformations is physically pathological. Section VI
concludes the paper with some miscellaneous remarks. It
is emphasized in particular that irreducible color (or in
general H) multiplets of quantum test particles consist of
both bosons and fermions in the presence of spherically
symmetric non-Abelian rnonopoles, therefore color
transformations on such a test particle do not commute
with angular momentum and appear inconsistent with su-
perselection rules. (This problem does not arise for multi-
plets with respect to any of Xz, Xz-,. . . .) We interpret
this fact as additional evidence that the concept of color
partially breaks down in the presence of non-Abelian
monopoles.

II. LOSS OF H ACTION
AND THE REALIZABLE SUBGROUP:

ELEMENTARY DISCUSSION

In a conventional grand unified theory, a simply con-
nected unifying group 6 is spontaneously broken by a
Higgs field N to a subgroup H. This subgroup is not as a
rule simply connected, and as a consequence the theory
predicts magnetic monopoles. In this section, we show
that there are topological obstructions to the implementa-
tion of the action of H (defined as the little group of 4& at
spatial infinity) on the fields when the monopole is non-
Abelian. Now it is well known that the topology of the
monopole is coded in the asymptotic behavior of the
Higgs and gauge fields. It is thus adequate for us to ex-
amine the fields at large spatial distances where they can
be approximated by their asymptotic values. It is under-
stood hereafter that the radial variable r is confined to
such large values r )r, . The Higgs and gauge fields for
r )r, are denoted by N(x ) and 8'J ( x ) where x =x lr.

The discussion will be phrased in the U gauge. (For
other gauges, see Ref. 4.) The passage to the U gauge has
been recapitulated in detail in our previous work, here we
shall only summarize the results. Let 6 denote the region
of space where the above-mentioned asymptotic approxi-
mation is valid:

W=fx&R ~r=(x x)'~ )ri} . (2.1)

%'e divide 6 into two coordinate patches W~q where 6&
(Ws) does not contain the negative (positive) z axis:

&=&+U &s

@N,S=R+ +~X,s ~

R+=(r
~

r)r, },
X~s ——fx ~x&(0,0, +1)} .

(2.2)

(2.4)

Here e is the coupling constant. If there is another H-
multiplet field present, it also has a pair of sections g~ s
defined on W&z such that

g~(x) =D[h(P) 'jets(x „xH W~ A Ws, (2.5)

where h ~D(h) defines the appropriate representation of
H. (iii) h($) describes a closed curve in H as P increases
from 0 to 2~. The homotopy class of this curve is charac-
teristic of the topology of the monopole sector. In the

Then in the U gauge, we have the following. (i) All over
6, the field N is a constant:

N(x ) =&0 =independent of x .

The little group of N is a fixed subgroup H of G. (ii) The
gauge field is described by a pair of potentials W~s
which are defined and smooth on W~ z. On 0& A Wz,
they are gauge transforms of each other by a transition
function h (P), P being the azimuthal angle

&~i(x)=h($) ' Wsj(x) ——V'J h(P), x HO~ 8 Ps .
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trivial (no monopole) sector, this curve can be deformed to
a point. Further, in any topological sector, by suitable
gauge transformations, h(P) can be changed to hT(P)
which lies on a one-parameter subgroup of H:

h(P)~hT(P}=e'~, T&Lie algebra Hof H' . (2.6)

(Note however that two different generators T and T'
with quite different spectra can lead to homotopically
equivalent hz- and hT which therefore describe the same
monopole sector. ) Hereafter, we assume that the transi-
tion function has the form hT(P).

If the monopole is Abelian, the curve hT(P) can be as-
sumed to be entirely in a U(1) factor of H. For a non-
Abelian monopole, such a choice of hT is not possible.

We can illustrate these considerations in a simple way
for the GUT breakdown

( e i2n. /3 I e i 2'/—3 } (2.7)

of SU(3)cXU(1), , where I is the 3X3 unit matrix. In
the triplet representation of U(3) [which realizes U(3)
faithfully], a possible choice for the transition function to
describe the elementary monopole is

hT(p) =e'~

000,
1 1T= — Xs+ —= 0 0 0

001

(2.8)

while for the elementary antimonopole, it is e '~ . (By
definition of elementarity, all monopoles in this system
are composites of these elementary systems. ) The com-
ponents of T in the Lie algebras SU(3)c and U(1), are
—A,8/v 3 and —,'. Thus T has a non-Abelian component.
Further, the projection of h T(P) in U(1), , being
exp(iP/3) (0&/ &2m. ), is not closed so that hT(P) cannot
be deformed to lie entirely in U(1), . It follows that this
monopole is non-Abelian.

Let us return to general considerations. The source of
the topological obstructions is in the transition rules (2.4)
and (2.5). Any transformation of the fields must respect
these rules. Now if s is a generic element of H and it acts
rigidly (with no x dependence) on the fields, the latter be-
come

—1WIvs(x)=sW~ss
(2.9)

G =SU(5)~H = [SU(3)cXU(1), ]/Z3—:U(3) .

(Elsewhere, we have omitted writing discrete factors like
Z 3 ~ ) Here Z3 is generated by the element

shr(P)s '=hT(P) . (2.11)

If hT(P) lies entirely in a U(1) factor of H, that is, for
Abelian or Dirac monopoles, (2.11} is fulfilled. But for
non-Abelian rnonopoles, h~ does not have this property
and (2.11) is fulfilled only by the subgroup ICT of H
which commutes with T. In the GUT scenario
SU(5)~SU(3)c XU(1), , if T is as in (2.8), Kz is seen to
be SU(2)c XU(1)~ XU(1), where SU(2)c acts on the

first two quarks and U(1)y is generated by the color hy-

percharge. In the scenario SU(5)~SU(3)c X SU(2)ws
XU(1), the T associated with the elementary monopole in
the 5 representation is

0 0 0 0 0
0 0 0 0 0

T=00 1 0 0
000 —1 000000

(2.12)

Consequently, ICT is SU(2)c XU(1) XU(1) XU(1).

III. LOSS OF H ACTION
AND THE REALIZABLE SUBGROUP:

GENERAL DISCUSSION

with the convention

k~(X,s) =s, X=(0,0, 1) . (3.2)

The action of s on the fields is the gauge transform of
their sections in P& and Ws by k&(x,s) and ks(x, s).

Consistency with the transition rules (2A) and (2.5) puts
a condition on kz ..

ks(x, s) =hT(P)k~(x, s)hr(P) ', x H8'~ A d's . (3.3)

We can assume without loss of generality that X~ [Eq.
(2.2)] is all of the two-sphere except the south pole S.
Then, given k~, Eq. (3.3) defines ks on all of Ps except
the negative z axis. Since k~ should have a well-defined
value as we approach the negative z axis, (3.3) requires
that

In the preceding section, we assumed that the action of
H on the fields was rigid, with no x dependence. In a
gauge theory, however, such rigidity is not necessary so
that we can envisage a more general H action. Thus for
s EH, we can try to construct the x-dependent automor-
phisms

s —+k„(x,s) HH, x H W~, 3 =N,S,
(3.1)

kz ( x,s)kz ( x,s') =k~ ( x,ss')

A;s(x) =D[s]A,s(x»
and fulfill

lim hT(P)k&(x, s)hT(P) '=independent of P,
x ~r(0, 0, —1)

(3.4)

QIv(x) =D[shT(P) 's ']Ps(x) .

This is compatible with (2.4) and (2.5) only if

(2.10)

W& (x)=[sh~(P)s '] ' 8's (x)——V' [shT(P)s '], where the limit is taken along a fixed azimuth. Thus to
realize the action of H, we have to (a) construct the auto-
morphisms (3.1) and (b) verify (3A).

In physical applications, the group H is (locally) a
product of semisimple and U(1) factors. For such groups,
all automorphisms continuously connected to the identity
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are inner. Since the automorphisms k& must be inner be-
cause of (3.2), we can write

g~(x) =D[hz. (P) 'h(8, $) 'hz. (P)]f~(x), x H W~,
(3.11)

gs(x)=D[h(8 P) hz(P)hz"(P) ]ps(x) xHPs .
k~(x,s) =h~(x)sh~(x) ',h~(x) PH,
h~[r(0, 0, 1)]=identity e of H .

Thus in view of (3 4) and since br(0) =e,

[hz(4 @+(0)]s[hr(d+x(d)] '=~+(0)»~(0) '

(3.5)

(3.6)

(3.7)

In the gauge with transition function h~, the group K~
which commutes with h~, can be globally realized with
an x independent action. In view of (3.11), this action be-
comes the following in the hz. gauge:

Q~(x)~D[hr($) 'h(8, $) 'hr(P)shr($)
where hz(P) is the limit of h&(x) as we approach the
negative z axis along the fixed azimuth P. (There is no
loss of generality in assuming that this limit is indepen-
dent of r )If.we rewrite (3.7) in the form

s 'c(P)s =c(P),
c(P)=h~(0) 'hr(P)h~(P),

(3.8)

P~(x ) =D[hr (P) ']&Ps( x ), x E W~ A Ws, (3.10)

then the following are its sections in the gauge with tran-
sition function hz (P):

the fo11owing important result is immediately seen: Alt' the
transformations of H are global/y realizable if the mono
pole is Abelian so that the transition function is homotopic
to a closed curve in the center of H. For (3.8) shows that
the closed curve c(P) is in the center of H. Further the
curve h~(P) can be shrunk to a point through the config-
urations h~(x) by varying the polar angle [see (3.5) and
(3.6)]. Therefore c(P) is homotopic to hr($) and can
equally well be used to describe the monopole in question.
The result follows.

We can also study (3.7) to determine the subgroups of
H which can be realized as symmetry transformations.
For the choice h~(x)= identity, such a subgroup is just
the commutant JCz of T. But there are other solutions as
well obtained by choosing nontrivial h& and they lead to
symmetry transformations with x dependence even in the
U gauge. We postpone the general study of (3.7) to later
work. Here we shall only show that there are in fact these
other solutions.

There is no unique association of the monopole to the
transition function. Two transition functions hz ——e'
and hr ——e'~ will describe the same monopole sector if
e'& e '& is a homotopically trivial closed curve. In
such a case there is a function h(8, $)HH defined on Wz
(and independent of r) such that

h(0, $)=e,
(3.9)

h(m. ,P) =hr($)hr-(P)

8 being the polar angle. If g& s are the sections of a field
in the gauge with transition function hz-,

2 ' 2'A8, , i =1,2, 3 .

Consider the following T and T':

1 0 0
T= —,'(X, +V3X,)= 0 0 0

0 0

2 0
T'= T+A3 ——0 —1 0

0 0 —1

(3.13)

(3.14)

(In this particular example, T and T' happen to commute.
It need not generally be so.) The closed curve
hr(p)=e'~ in U(2) has projections exp[i(A3/2)p] and
exp[i(V 3/2)Rgb] in SU(2) and U(1), neither of which is
closed showing that hz. describes a non-Abelian mono-
pole. The closed curve e'~ e '~ =e'&' ' has the fol-
lowing projections in SU(2) and U(1):

e ' &SU(2),
identit HU(1) .

(3.15)

The U(1) projection is thus a point while the SU(2) projec-
tion, being closed, is also deformable to a point [since
SU(2) is simply connected]. Hence e'~' ' is homotopi-
cally trivial and h z and h ~ describe the same monopole.

The snap h(8, $) of (3.9) is easily constructed:

Xh(8, $)hr(P)]g~(x),
fs(x)~D[h(8, $) 'hr(P)hz-(P) 'shz"(P)

)&hr(P) 'h(8, $)]ps(x), s eKr .

The action of Kz in the hz gauge is thus x dependent.
[Note that Kz- acts on the potentials W~s by gauge
transforming them with the respective elements of H ap-
pearing in (3.12).]

In our previous paper, we gave an example for ICz. and
Kz" in the model SU(5)~[SU(3)c)CU(1), ]/Z3. Here we
shall therefore give another illustration. Consider the
breakdown SU(3)~[SU(2) &&U(1)]/Z2 =—U(2). In the de-
fining 3 representation of SU(3), this U(2) has generators

h(8, $)=

cos —+cosP sin ——i sin —sing
20 . 28 . . 8

2 2 2
0 8—(1 cosP)i sin —co—s—
2 2

0 8—(1 cosP)i si—n —cos—
2 2

cos —+cosPsin —+i sin —sing 0 ESU(2),28 . 28 . . 0
2 2 2

1
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The groups ET and KT are the same, and are
U(1) X U(1) locally. A basis for their Lie algebras is A,3/2,
k8/2. We have now two actions of this subgroup of H in
the AT gauge: viewed as ET, it acts rigidly while viewed
as KT, its action is given by (3.12). This means that the
same element of the group U(2) is being given different
actions on the fields when it lies in U(1) XU(1).

IV. COLOR TRANSFORMATIONS
CREATE INFINITE ENERCx Y

l——ks( x,s )dks( x,s )
e

(4.1)

If ks(x, s) has a P dependence as the negative z axis is ap-
proached, then in this limit the second term in (4.1) in-
duces the singular term

Consider a generic element s HH. Let us realize its ac-
tion on the fields as a gauge transformation using the x-
dependent automorphisms (3.1). It was claimed that such
an action is illegal if ks acquires a P dependence along the
negative z axis. One would like to know the sense in
which the transformed fields are pathological. We show
in this section that the transformed gauge field strength
has a 6-function singularity along the negative z axis so
that the transformed energy is infinite.

The proof of this result is very simple. The potential

W~ after gauge transformation by k~ becomes Wq where

Wsr(x)dxt =ks(x, s)Wst(x)dxiks(x, s)

respectively, such that all the properties of the fields are
faithfully reflected, and then to use them in the standard
expression for energy density and total energy. This
necessarily leads to 5-function terms in F(Ws) and hence
to divergences in final energy. Thus our result expresses a
real physical effect and not just a consequence of a partic-
ular mode of calculation.

Abouelsaood has pointed out that a physical conse-
quence of the preceding result is that there are no dyonic
excitations associated with such transformations. In par-
ticular, there are no color multiplets of dyonic excitations
of the monopole in the symmetry breakdown
SU(5)~SU(3)c XSU(2)wsXU(1)

V. QUANTUM MECHANICS OF A TEST PARTICLE
IN A NON-ABELIAN MONOPOLE FIELD

We shall now discuss the quantum mechanics of a test
particle in a non-Abelian monopole field. For specificity,
we consider the monopole produced in the GUT scenario
6=SU(5)~EX=SU(3)c X SU(2)ws XU(1). For simplicity,
we shall also assume the following. (1) The monopole is
elementary with the standard spherically symmetrical
form. (2) The particle is spinless and nonrelativistic. Nei-
ther of these assumptions is essential to the conclusions,
nor is it difficult to consider other G's and II*'s.

The Schrodinger equation for the test particle is

[ Ws;(x)dx;]„„g=tdP, (4 2) where

in Ws;(x)dx;, t being a Lie-algebra-valued constant. The
integral of Ws; dx; along an infinitesimal closed loop K
around the negative z axis is thus

Ws;(x)dx; =2~t . (4.3)

By Stokes's theorem, the transformed field strength
F~~ ( Ws ) must have a 5-function term [F1 ( Ws )]„.„s with
support on the negative z axis:

~2

2&l

m J- ——iD~,

DJ ——dJ +ieD [ WJ ( x )],
i eD[ W (x )]= — f(r)e ktxkD[7 t],

(5.1)

[Ftj( Ws )]„„g tetj3m8( —z )5——(x)5(y) . (4.4)

Thus the transformed energy density TrF~J( Ws) /4 is in-
finite along the negative z axis and the transformed ener-

gy is infinite.
In connection with the above calculation, one may raise

the following objection. Since the new field strengths
F(W&) and F(Ws) are obtained from the old field
strengths F(W&) and F(Ws) by gauge transformations,
and since energy density is gauge invariant, the new ener-

gy density as well as the new total energy must be exactly
equal to the corresponding old quantities, hence the result
must be incorrect. However, this argument is invalid for
the following reason. While at every point off the nega-
tive z axis, F(Ws) is related to F(Ws) by a gauge
transformation, along the negative z axis where the gauge
transformation is ill defined, they are not so related. It is
indeed true that off the negative z axis the old and new
energy densities are exactly equal. But the only valid way
of computing the new total energy is to find expressions
for F(W~) and F(Ws) valid over all of 8'& and Ws,

and where ID(l)] denotes the representation of the Lie
algebra SU(5)=IlI of SU(5) according to which
transforms, and r; is defined in the 5 representation as

00 0 00
00 0 00
0 0

OI
0 0 0
00 0 00

(5.2)
o.; =Pauli matrices .

The infinities we shall later find reside in the angular
features of A and g and are in no way dependent on the
distance of the test particle from the monopole center.
We shall therefore as usual simplify the discussion by re-
placing f ( r) by its asymptotic value:

(5.3)

Thus we are confining our attention to the region P.
Note that since we are using a single globally defined
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Let J ' '(p) and mV(p) be the restrictions of J and i—D
on states of the form F( x )

~ p, k ) . (Note that
[D, J.x]=0.) That is, let

potential, we are not working in the U gauge. As is well
known, ' the transition to the U gauge is achieved by
separate (r independent) gauge transformations g~s(x ) in
W~ s which rotate w.x to ~3. Further, the transition func-

igv3tion in the U gauge is just e '. Thus we have JF(x)
i p, k) = J ' '(p)F(x)

i p, k),
—iDF(x)

~
p, k) =mV(p)F(x)

~ p, k) .
(5.12)

g~ s(x ) r xg~ s(x ) =7r3,

g~(x ) =gs(x )e, rx 'E P~ A Ws (5 4) Then in view of (5.10) and (5.11),

J ' '(p) =m(x XV(p))+px,T 7 3 ~ (5.13a)

(5.13b)
For purposes of simplicity, we shall only examine the
consequences of rigid (x independent) transformations
s E.H in this U gauge, we shall also of course assume that
they do not commute with ~3. They correspond in the
present gauge to the following transformations:

[ V~(p), &j(p)]= —«Jk

$~(x ) =g~(x )sg~(x ), x E P~

ss(x)=gs(x)sgs(x) ', x P ds .
(5.5)

J ' '(p).x =p (5.14)

That is, on such states J becomes the angular momentum
J ' '(p) and iDl—m becomes the velocity operator V(p)
of the Dirac charge-monopole system for the value of
eg=p. (Here e is the electric and g the magnetic charge
of the charge-monopole system. ) Further

J;=—i(xX V);+ , D(r;) . —

(b) The helicity

(5 6)

(5.7)

They do not commute with r.x. Further, there is a diffi-
culty in implementing the transformations s~s in the
present gauge: they do not agree on W~ A 6, since
[$13]&0 and there is no room now to transform the
fields (which are all globally defined) with a pair of func-
tions sos. In order to define these transformations, we
therefore take Xz in d'~ to be all of the two-sphere except
(0,0,—1), this defines s&(x) on all of W~ except the nega-
tive z axis. The limit of sz(x) on this axis is not well de-
fined. Still we shall transform the fields by sz(x) ignor-
ing this singularity and examine the consequences. (Of
course, such conceptual difficulties arise because these
transformations are not smoothly defined for all x in any
gauge. )

The Hamiltonian A admits the following constants of
motion.

(a) The angular momentum J, where

by virtue of (5.13a).
The eigenfunctions of [J' '(p)] and J3 '(p) are known

to be the monopole harmonics D~

[J' '(p)]'D' „(8,$)=j(j+1)D' „(8,$),

J~q '(p)DJ ~(8,$) =mDJ „(8,$) .
(5.15)

f,, (r)D ——„(8,$) ~p, k) .

Since

(5.16)

+ 2 IJ —[—,'D(r;)x;] I,
2mr

f1 „D~ „fulfills

(5.17)

The discussion shows that the eigenfunction QE of ~
for energy E can be taken to have the form

Note that =EfJ q(r)DJ p(8,$) . (5.18)

J .x =
2 D(r;)x; . (5.8) Here [J' '(p)] is given by

Thus we can diagonalize A along with J, J3, and
D(r;)xi. Let

~ p, k) denote the eigenstates of D(r;)x; in
the SU(5) representation space:

1 8
sin 8 BP

,'D(r;)x;
i p, k) =p

i
p—,k) .

Here k is a degeneracy index.
Now J can be written as

J = —i( x XD)+ ,' D(r; )x(x, —

where D is given in (5.1) and fulfills

[Di,Dq]=i ejg, i [ , D(r~)x~] . —

(5.9)

(5.10)

(5.11)

2l p 8 2p
1+cos8 BP 1+cos8+ (5.19)

It is remarkable that in the wave function 1{tE, the
space-time and internal symmetry properties are tied to-
gether as shown by the correlation between the second in-
dex of the D function and the index p in the state

i p, k ).
Any transformation s~(x) which does not commute with
7"x will spoil this correlation and transform QE into a
state for which the mean value of energy is infinite. (This



2942 A. P. BALACHANDRAN et al. 29

infinity is not due to the fact that the wave function is not
normalizable, as we shall see below. ) For let

(5.20)

be a state where the index correlation mentioned above is
absent. (Such states are necessarily created from gE by
transformations of H which do not commute with F.x.)
Then

2

+ ~
[J' '(p) —p'] f',„(~)D', „(8,$) ~p, k&

2m 2mr

(5.21)

where we used (5.18). In the expectation value (P',~g'), the first term contributes finitely to the angular integral while
the contribution of the second term is, in view of (5.19),

1 2m 8 2 2 — 2

2&ip' , I d cos8 I dP[f' „(~)D,'„, „(8,&)]* —2~ + —(p' —p') [f',„(~)D' „(&,P)] .

(5.22)

This is infinite unless DJ &(0,$)=0 for 8=m. But
D~~ z does not vanish at the south pole if m&p. (Fur-
ther, all values of m in the range —j (m (+j must cer-
tainly be allowed in order to maintai. n rotational invari-
ance. ) We can thus conclude that a transformation in H
which does not commute with ~3 in the U gauge
transforms finite-energy states into states with infinite
mean values for energy.

It should be evident that the conclusion is not affected
if QE is replaced by a normalizable wave packet

I dE a(E)QE ~ (5.23)

VI. CONCLUDING REMARKS

In this paper, we have considered gauge theories based
on a gauged symmetry group G which is spontaneously
broken by a Higgs field to a subgroup H. The precise def-
inition of H is that it is the little group of the Higgs field
at spatial infinity. This fact naturally leads one to expect
that H is also the unbroken symmetry group of transfor

The background Yang-Mills potential 8'. is not invari-
ant under s&(x) in the present gauge, so that we would
not of course expect s~(x) (or all rigid H transformations
in the U gauge) to be a symmetry of the test particle
Hamiltonian. But we would also not expect a rigid H
transformation to produce states with infinite mean ener-
gies. Our result can be loosely interpreted in terms of an
infinite potential barrier which inhibits such transforma-
tions.

In quantum mechanics with its emphasis on the
Hilbert-space structure, continuity requirements are not so
strict as in a classical field theory. It is therefore not ob-
vious that a transformation s&(x) cannot be implemented
on the states without bad consequences even if it is not
well defined along the negative z axis. Since these s~(x)
map states of finite energy into states with infinite mean
energies, this possibility, and hence the possibility of im-
plementing rigid H transformations in the U gauge which
do not commute with 1", are now ruled out.

I

mations of these theories. However, in the presence of
non-Abelian monopoles, we have seen that this is not the
case: the group of automorphisms is instead a local (x-
dependent) group which is not isomorphic to H. The
group H is thus topologically broken, and in its stead we
have a novel group of automorphisms. [We may remark
here that even in electrodynamics the group of automor-
phisms on the algebra of observables is a local group: it is
G/Go where G is the set of aO gauge transformations and
Go is the set of gauge transformations which reduce to
identity ai spatial infinity. However, G/Go is "spontane-
ously broken" to U(1) in the sense that only this U(1) is
unitarily implementable. Similarly, in the monopole sec-
tors of GUT's as well, only a subgroup of the group of au-
tomorphisms is expected to be unitarily implementable.
We plan to study this question in a paper under prepara-
tion. ]

While the demonstration of these results has been car-
ried out using topological reasoning, there is an alternative
and intuitively compelling argument to see that H cannot
be the symmetry group in non-Abelian monopole sectors.
Locally, in any region of space far from the monopole
which does not also enclose the monopole, it is possible to
realize all the transformations in H. (For such a region
can always be enclosed in one coordinate patch 6& or
@z.) Thus locally test particles in a monopole field can
be classified into irreducible H multiplets and we can in-
quire about the angular momentum properties of such
multiplets. The remarkable fact then emerges that in the
presence of spherically symmetric non-Abelian mono-
poles, irreducible H multiplets may contain both integer-
and half-integer-spin particles. For instance, in the model
6=SU(5)~H =SU(3)c X U(1), , the 5 multiplet
(dq, d~, d3,e,v, )L, splits under H into a triplet
(d &,dz, d3 )L and two singlets el,v,L, . As we saw in Sec.
V, the potential of the spherically symmetric monopole
couples only to d3L and eL, their angular momenta are
thereby changed by the addition of an extra —, unit, while
the angular momenta of the remaining particles are not
affected. Thus in the color 3 multiplet, d ~ zL, act like fer-
mions while d 3L acts as a boson and H does not commute
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with angular momentum in the presence of a non-Abelian
monopole, suggesting that the concept of H as a symme-
try group may be invalid.

It is easy to see that an FI singlet composed of H non-
singlet test particles will not emerge as an FI singlet on
scattering by a classical non-Abelian monopole field.
Thus in the model of the preceding paragraph, if we
scatter an M singlet formed of three of the 3 multiplets
from the spherically symmetric monopole field, the con-
.stituents d&L and d2L are not scattered at all while d3I is
scattered. This scrambles the phase relations between the
constituents of the singlet so that the outgoing wave func-
tion is not going to be a singlet. Since color-confining
forces are color. singlets, they cannot bind the emerging
constituents into a singlet. Thus the free existence of a
colored monopole implies the existence of other colored
objects.

The effect we have just now discussed will not of course
constitute a problem for color confinement if color were a
well-defined symmetry for monopoles. For, the fields
which describe the classical non-Abelian monopole {in
particular, the gauge potential) are not color invariant
even locally, so neither is the corresponding quantum
state. If color were a well-defined symmetry, we could
then project out the color-singlet component of this quan-
tum state and call that the physically correct quantum

monopole state. The effect described in the preceding
paragraph would then disappear. However color is not a
well-defined symmetry for monopoles so that there seems
to be no way to construct a color-singlet monopole state
globally by such a method.

If non-Abelian monopoles do not exist as free particles
in the standard GUT's, if they are confined and only
Abelian monopoles are observable, then the conclusion
that color and electroweak symmetries are broken in these
GUT's by non-Abelian monopoles can be avoided. The
dynamical reasons for such confinement however remain
to be explored.

In this paper, we have examined the topological prob-
lems arising in the identification of the group of automor-
phisms in the presence of monopoles. The deeper ques-
tion of the unitary implementation of this group of auto-
morphisms will be treated elsewhere.
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