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Non-Abelian monopoles break color. I. Classical mechanics
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Monopoles which are sources of non-Abelian magnetic Aux are predicted by many models of
grand unification. It has been argued elsewhere that a generic transformation of the "unbroken"
symmetry group H cannot be globally implemented on such monopoles for reasons of topology. In
this paper, we show that similar topological obstructions are encountered in the mechanics of a test
particle in the field of these monopoles and that the transformations of H cannot all be globally im-

plemented as canonical transformations. For the SU(5) model, if H is SU(3)cXU(1), , a conse-
quence is that color multiplets are not globally defined, while if H is SU(3)~ )& SU(2)~s XU(1)~, the
same is the case for both color and electroweak multiplets. There are, however, several subgroups
KT, K~, . . . of H which can be globally implemented, with the transformation laws of the observ-
ables differing from group to group in a novel way. For H =SU(3)~&&U(1), , a choice for KT is

SU(2)c)&U(l), , while for H =SU(3)~&&SU(2)~s)&U(1)~, a choice is SU(2)c &U(1)&(U(1) &(U(1).
The paper also develops the differential geometry of monopoles in a form convenient for computa-
tions.

I. INTRODUCTION

Dirac' introduced the magnetic monopole into modern
physics. He showed that their study revealed a new rich-
ness in concepts entailing the need to generalize quantum
mechanics to include nonintegrable phases. He further
showed that the existence of monopoles in conjunction
with quantum theory gave a natural reason for electric
charge quantization; conversely the monopole strength it-
self was quantized, the minimum value go satisfying the
relation

1~ogo= 2 &

where eo is the electric charge unit.
Saha pointed out that the conserved total angular

momentum of a charge-monopole system contained a con-
tribution of —,A which was electromagnetic in origin, in
addition to the orbital angular momentum. (This is pro-
vided we choose the elementary pole strength go and ele-
mentary charge eo.) This implies that we can make spi-
norial composites out of spinless constituents. It has also
been demonstrated that such systems obey Fermi statis-
tics in accordance with the familiar spin-statistics rela-
tion.

Monopoles have become much more interesting in con-
temporary physics with the advent of non-Abelian gauge
theories accompanied by spontaneous symmetry break-
down. Such theories, after the breakdown of the symme-
try, exhibit distinct sectors corresponding to topologically
inequivalent asymptotic configurations. Some of them
appear as sources of long-range non-Abelian magnetic
fields very much like the Dirac monopole. However,
these excitations have the property that the monopole has
acquired a nontrivial internal structure: it is a persistent
but soft field configuration with a finite total energy. The
singularity of the point monopole of Dirac no longer ob-
tains.

The transition from the old point monopole of Dirac to
the monopoles of non-Abelian gauge theory thus involves
two independent steps. One is the replacement of the
Abelian U(1) gauge symmetry of electromagnetism by a
non-Abelian symmetry. The other is the introduction of
the notion of topologically nontrivial asymptotic behavior
and the classification of configurations according to dis-
tinct behaviors. All this is of course apart from the remo-
val of the singularity of the point monopole.

Some aspects of the first step mentioned above can be
elucidated by studying the motion of test particles in an
externally given non-Abelian gauge field configuration.
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Here we do noi yet assume that the asymptotic behavior
of the gauge field is topologically nontrivial. For simpli-
city let us consider the test particle to be classical and
nonrelativistic and the external field to be purely magnetic
and static. Following Wong, we may assume the dynam-
ical equations

mxj ———e Tr(IGJk(x))xk,

I+iexJ.[WJ(x),I]=0 .
(1.2)

The test particle carries a non-Abelian charge I, ("iso-
spin") which is a vector in the space 7 of the adjoint rep-
resentation of the gauge group H. We have here used the
generators T, of a suitable faithful matrix representation
of H to express the components 8,~( x ) of the vector po-
tential, G,jk( x ) of the field strength, and I, of the isospin
as matrices in the Lie algebra of H:

W(x, B,x, B;[WJ)= —,mx +i Tr(KB '8)

I (r) =8 (r)KB(r) (1.10)

Under the (static) gauge change (1.7), and consistent with
(1.8) and (1.10), 8(t) must transform as

8'(r) =A(x(r))8(r) .

The Lagrangian then retains its functional form in the
sense that

W( x,B,x,B;[ WI ) =W(x,B', x,B', [ W'J ) . (1.12)

—exJTr[BEB '
WJ ( x )], (1.9)

where [ WJ denotes the collection of W,J's. This leads to
the earlier equations of motion for x and I provided the
latter is identified as

WJ ( x ) = W,J ( x ) T, , Gjk ( x ) =G,JI, ( x ) 1', ,

I =IaTa .

The matrices T, fulfill the Lie relations of H,

[T„TI,]=iC,b, T, ,

(1.3)

(1.4)

This Lagrangian description of classical test-particle
motion in a (topologically trivial) external gauge field in-
duces a corresponding canonical formalism where due
care must be taken of the noncommutative nature of the
group elements 8(t). A canonical momentum W, conju-
gate to 8 can be set up fulfilling the Poisson-bracket (PB)
relations

and may be assumed to also satisfy
[B,W, I

= iT,B, [—W„Wb I =C,b, W, . (1.13)
Tr(T, Tb)=R5,b, R =constant .

The field strength is obtained from the potential by

Gik(x) =BJWk(x) —r)k WJ. (x)+ie [WJ(x), Wk(x)] .

(1.6)

(Note that W, is not a matrix; also that another canonical
momentum generating changes of B on the right can be
defined. This and its relation to the physically relevant
W, are described in Appendix A.) To relate W, to the
Lagrangian variables we consider an infinitesimal varia-
tion

The isospin I,(t) precesses in the external field, subject to
the invariants formed from it remaining independent of
time. We have the freedom to alter the description of the
external field by a (static) gauge transformation: with
A (x ) a matrix in the representation of H generated by the
Ta~

68=0, 6B=ie T,B,
and write the resulting change in W as

6W= e,I,(8,8) . —

(1.14)

(1.15)

WJ'(x)=A(x) Wi(x) ——VJ A(x)
8

(1.7)

Then W, is identified with I, (8,8). For the case of W
given in (1.9) we find for W„and for the momentum p
conjugate to x,

GJ'k(x) =3 (x)GJk(x)A (x)

Then I,(t) transforms according to the adjoint representa-
tion of H, via the value of A(x(t)) where x(t) is the in-
stantaneous position of the particle:

p =m x —e Tr[IW(x)],

Wg ——Tr(IT, ), I =8KB
(1.16)

The latter set of equations, being independent of veloci-
ties, are primary constraints:

I'(t) =3(x(r))I(r)A(x(r)) (1.8)
(1.17)

Both a Lagrangian and a canonical Hamiltonian
description of this dynamics can be developed. The clas-
sical equations of motion suggest the use of x(t) and I(t)
as configuration variables (the latter obeying first-order
equations of motion). It is however known that a La-
grangian description is facilitated by choosing the position
x(t) and a group element 8(t)HH as generalized coordi-
nates. [8(t) may be realized as a matrix in the representa-
tion of Hgenerated by the T', .] Following Ref. 7, we
pick some K in the Lie algebra H of H (i.e., K =K, T,
with real numbers K~), and write the Lagrangian

where I, =-Tr(IT, ). Following Dirac's general rules the
Hamiltonian can be taken in either of the two forms

H= [p+e TrBKB 'W(x)] +i Tr(T,BB ')P,

[p+eW, W, (x)j +U, P, ,
2fPl

where U, are unknown velocities, and the dynamics and
constraints analyzed in the canonical framework.

At any level of analysis of classical test-particle
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motion-equations of motion, Lagrangian or
Hamiltonian —it is clear that a given external field de-
scribes a condition not invariant under the group H. As a
result the isospin I, of the particle changes with time.
Neuertheless, at any level of analysis the action ofH on the
appropriate particle Uariables —I, or 8 or W,—is mean-
ingful and can be properly defined.

The situation changes dramatically when ue take the
second step mentioned ca~lier and consider external gauge
field configurations which are asymptotically topologically
nontrivial, ' as is the case with fields describing a non
Abelian monopole. In such cases we find that topological
obstructions arise in the description of test partic-le motion,
and as a result the isospin of the particle cannot be properly
defined.

To a certain extent, a somewhat similar problem had al-
ready been encountered by Dirac in the context of the
Abelian electromagnetic monopole: the vector potential
describing the point monopole has a string singularity
running from the monopole to infinity. The string can be
moved around with the use of a class of singular gauge
transformations but never eliminated. Because of the
Abelian nature of the monopole, it happens that the clas-
sical equations of motion of a charged particle in this
field are well defined and show no concern for the
string —the monopole field at this level of discussion is
just another field. However, both in the Lagrangian and
the Hamiltonian the string appears as a topological ob-
struction standing in the way of a global description. '

Going back to the case of a non-Abelian monopole,
here the topological obstructions arise already at the level
of the equations of motion of classical test particles, mak-
ing it impossible to define the action of H euen kinemati-
cally on the isospin of the particle. As one can surmise,
there are genuine difficulties also for a quantum-
mechanical test particle, at the level of implementability
of the transformations of a non-Abelian H and hence of
the existence of the corresponding noncommuting dynam-
ical generators. The principal purpose of this paper is
the elucidation and analysis of these conceptual problems
at the level of classical test particles. Such problems at
the field-theoretic and quantum-mechanical levels are dis-
cussed in Refs. 8 and 9.

Since we are concerned here with configurations of
gauge fields, the actual field quantities are not definitive:
they are subject to change under local gauge transforma-
tions. To study such systems the appropriate mathemati-
cal language is that of fiber bundles. On the other hand
for a non-Abelian monopole configuration we have the
added aspect of nontrivial asymptotic topological struc-
ture. In the analysis of test-particle motion in such a con-
figuration, as stated earlier, one expects to encounter ob-
structions in the description of the dynamics in physical
space. Previous experience' tells us that a proper dynam-
ical description overcoming such topological obstructions
is obtained by working in a larger manifold where they
are effectively "unfolded. " To descend to the standard
description we have to project down to local "sections"
with the reemergence of the obstructions. The upshot is
that the nontrivial topological nature of a non-Abelian
monopole configuration is best expressed by and reflected

in a suitably constructed corresponding fiber bundle,
which is then used to give a global description of test-
particle motion. An exposition of the method of con-
struction of the larger manifold and its use is an essential
part of this paper.

As already mentioned, in working with gauge fields
there is the freedom to make local gauge transformations,
resulting in a corresponding freedom in the way the
analysis is carried out, i.e., in the choice of gauge. It is
appropriate at this point to spell out the framework we
will be using. In the description of monopoles in non-
Abelian gauge theory one begins with a connected, simply
connected Lie group 6 as the gauge group of a Lagrang-
ian involving the potential 8 &, field strength 6&, and a
Higgs multiplet P with a potential energy density V(P).
[6 need not of course act effectively on all the fields.
Thus for 6 =SU(2), only SU(2)/Z2 may be faithfully
represented. ] Sufficiently far away from the location of
the monopole P assumes values minimizing V(P). The
set of such values of P constitutes a manifold ~0. If
HCG is the stability group of P at some point of ~0,
and 6 acts transitively on ~0, we can identify ~0 with
the coset space 6/H. In this description all the fields
8;G,P are globally defined smooth space-time functions
devoid of singularities or discontinuities. Both 8& and
6& have values in the Lie algebra 6 of 6. We could
however make use of the gauge freedom to obtain a new
description in which P(x) is (asymptotically) a constant.
This is the so-called U gauge. Then both 8 & and 6& as-
sume values in the Lie algebra H of II, the stability group
of the constant P. As long as we neglect excitations of the
gauge fields we may thus ignore the larger group 6 and
work exclusively with H, taking advantage of the ensuing
economy of computations. For the test-particle dynamics
too, the Higgs field P can be largely ignored. The price
we pay for this simplification is of course that there are
(in general) topological obstructions to a global definition
of W& and 6&„as fields on space time: for a monopole
configuration there is no globally defined gauge transfor-
mation that renders P (asymptotically) constant. By rev-
ersing the steps just described we can of course go back to
6 and thus unfold these obstructions. We shall however
work more or less exclusively with H and its structures.
Thus for us the unfolding of gauge potentials that cannot
be globally defined in space-time must employ H bundles
on which globally defined connections are set up. The lo-
cally defined gauge potentials result from restricting the
connection to local sections in the bundle. It is possible to
set up both Lagrangian and Hamiltonian descriptions of
the test-particle dynamics on the bundle. It mill then turn
out that, in contrast on the one hand to the topologically
trivial case and on the other to the Abelian case, it is not
possible to define an action of the group H on the test parti
cle. Thus the topological nontriviality of non-Abelian
monopole fields has unexpected and striking consequences
already at a kinematic level.

The material of this paper is arranged as follows. In
Sec. II, the details of the passage to the U gauge are
developed. The need for local definitions of gauge poten-
tials tied together by transition rules is made clear. It is
shown that a global description, within the framework of
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the group of H alone, requires the use of suitable princi-
pal fiber bundles with structure group H. A general
method of construction of such bundles, and their detailed
description in some interesting cases, is presented. Section
III explores various descriptions of classical test-particle
motion in a non-Abelian monopole field: equations of
motion, Lagrangian and canonical formalisms. In each
case, the topological obstruction arising in attempting to
define an action of H on particle variables is clearly
brought out. The construction of bundles and connections
in Sec. II is used here to develop a global Lagrangian for
the test-particle motion. In Sec. IV the use of such global
Lagrangians is illustrated in the case of a particularly sim-
ple spherically symmetric monopole field. The orbit
equation in ordinary space in this example turns out to be
identical to that for electric charge motion in a magnetic
monopole field. The only sign of the non-Abelian proper-
ty of the problem is the isospin vector carried by the test
particle. Section V takes up systematically the examina-
tion of the problem exposed in Sec. III, namely, the im-
possibility of global definition of the action of the unbro-
ken symmetry group H. The fact that the action of cer-
tain subgroups KT,KT, . . . of H can be globally defined,
if not that of H itself, emerges. All the discussion up to
this point is classical. In the concluding Sec. VI, the
relevance of our findings for quantum test particles, as
well as for the global action of H on the gauge field itself
in the monopole sector, are briefly pointed out. Applica-
tions to grand unified theories (GUT s) are also indicated.
Appendix A outlines the main points of the canonical for-
malisms when group elements appear as dynamical coor-
dinates. Appendix B describes some useful properties of
the transition functions that appear in the U gauge.

Since the groups KT,KT, . . . have a definite action on
the observables, it should be possible to take the product
of these actions and determine the full group KQ of glo-
bally definable automorphisms. We postpone the study of
KQ to a later paper. This problem is of obvious physical
significance since the representations of KQ may enter the
construction of the quantum states of the system.

II. U-GAUGE AND BUNDLE CONSTRUCTION
FOR MONOPOLE FIELDS

We begin by recalling briefly the transition to the so-
called U gauge in describing monopole solutions in non-
Abelian gauge theory. The gauge potentials 8'z and
field strengths 6& are matrices in 6, the Lie algebra of
some (simply connected) Lie group G. For simplicity we
consider a single scalar Higgs multiplet P bdonging to
some representation D(g) of G. It has tachyonic mass
and a 6-invariant self-coupling potential energy density
V(P) responsible for spontaneous symmetry breakdown.

Let the monopole configuration be centered at the ori-
gin of coordinates. Assume the 8'Q vanish and the 8'~
are time independent. Then the electric components 6QJ
vanish. Denote by ~p the set of all values of P that mini-
mize V(P), and by H the stability group of some point of
~Q With 6 assumed to act transitively on ~Q, we can
identify ~Q with the coset space 6/H. Finiteness of to-
tal energy implies that sufficiently far from the origin the

values of P lie in ~p, in fact there is some radius rp such
that for r & rQ we have to good approximation

(t(x) H~p,

&JP(x) =&~Gp, (x ) =0 .
(2. l)

Here WJ is the gauge-covariant derivative. Let X be a
two-dimensional sphere of large enough radius r~)rp
such that for each direction specified by a unit vector x,
P( x ) has to a good approximation attained an r
independent value in ~p when r &r, . (We sometimes
denote points on X by x.) Let the previously mentioned
subgroup H C:G be the stability group of P at the "north
pole" X of X. At any other x EX, the stability group is
written H-; it arises from H= H~ b—y conjugation with

any g (x ) H 6 that transports P at X to P( x ):

P( x ) =D(g (x ) )P&,

H- =g (x )Hg (x )

(2.2)

(These equations are valid for all r &r, .) Whereas for
each x, g (x ) is not unique, H„- is unique and in fact
varies smoothly as x goes over X. The nontrivial topolo-
gy of the monopole is expressed in the fact that, notwith-
standing the smooth variation of H„- with x, we cannot
choose g(x) to vary smoothly with x all over X. The to-
pological "type" of the monopole consists in the particu-
lar mapping 5 ~~p ——6/H provided by following
P(x) E~p as x runs over X. This is a particular element
of mz(6/H). From (2.1) we see that for r & rp

D(GJk(x))p(x) =0 . (2.3)

In particular this is true for r & r~ where P(x) is r in-
dependent. Thus for such x, GJk(x) lies within the Lie
algebra H„- of H-; but to the extent that P(x) does vary
with x, WJ(x) must involve elements of 6 outside H„-.
More precisely, for r &r&, W„(x) lies in H- while 8'a(x)
and W'~(x) contain terms from 6 outside H„-. It can
then be seen that, by means of a gauge transformation us-
ing at each x in the region r &r& an element from H-,
8' can be transformed to zero in this region. Moreover
as a result of this transformation, neither P(x) nor H„-,
nor the fact that Gjk(x ) lies in H„-, is altered in r & r &.

We assume that this gauge transformation has been car-
ried out, and also that it has been extended in some
smooth way down to r =O.

At this stage both 8'J(x) and Gjk(x) are globally de-
fined. We now express X as the union of two open con-
tractible subsets X~ and X~, the former contains X but
definitely excludes the "south pole" S of X, and converse-
ly for the latter. [These choices of X&,Xs can be imag-
ined to be uniformly extended for all r & r &, it is also often
convenient to take X~ (Xs) to be all of X minus S (Ã).] It
is then possible to make smooth choices of elements
g&(x),g~(x) in 6, over X~ and Xs, respectively, so that
for all r & r

&
we have
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P(x)=D(g~(x))P~, x&X~

=D(gg(x ) }P~, x C Xs . (2.4)

Again because of the nontrivial topology of the monopole,
no single smooth global choice of g(x) exists to achieve
(2.2), but a pair giv(x), gs(x) can be found. We may im-
agine giv(x), gs(x) being smoothly extended with suitable
r dependences into 0&r &ri. Thus giv(x) is an element
of G, defined smoothly for all x such that x points into
Xiv, and correspondingly for gs ( x ). Both g~( x ) and

gz(x) become r independent when r )ri and then obey
(2.4). By convention we assume g~(x) =e, the identity of
6, when x =X and r &r&.

With the help of giv(x), gs(x) so constructed, we carry
out two separate gauge transformations, each over its ap-
propriate angular domain, and thus reduce P(x) to a con-
stant value P~ for all r )ri It wi.ll be assumed that a test
particle in the monopole field does not probe the interior
region 0&r &r&,' and that in the exterior region r )ri it
couples to the gauge fields minimally and not to P. After
the above gauge changes are carried out, what the test
particle "sees" in the exterior region are gauge potentials
W~J(x), Wsj(x) defined, respectively, over X& and Xs as
follows:

scribes as x goes round a closed curve in X& A Xs. This is
consistent with the known fact that rr2(G/H)=ni(H)
when G is simply connected. In the rest of this section we
examine the first aspect mentioned above, namely, that of
describing an H monopole appropriately.

We recall again that both W~ and Ws have no radial
components but only angular ones which, however, have
radial as well as angular dependences. The proper global
way to describe the above situation, namely, the existence
of well-defined Wiv, Wq over Xiv, Xs, respectively, related
through hT(x) in the overlap, is to say that we have a
connection 0 on a principal H-bundle A over 5 =X,
employing hT as transition function. The radial variable
r appears as a parameter in 0; the bundle itself is an r-
independent construct since hr has no r dependence (re-

call r ) r i ). The locally defined potentials W~, W~
emerge on restricting 0, which is a global object, to local
sections over X~,Xs, respectively.

In order to realize the bundle A in an explicit way, per-
mitting easy computations, we take the following results
from Appendix B. (1) We can exploit the freedom in
choices of g~(x),gs(x) permitted by Eqs. (2.4) to assume
without loss of generality that hT(x) depends only on the
azimuth P:

W~q(x)=giv(x) ' WJ(x) ——VJ g~(x), x EX~,
hT(x ) =c (P) EH,
c(0)=c(2m) .

(2.7)

(2.5)

Wsj. (x)=gs(x) ' WJ(x) ——V',. gq(x), xCXs .

Wz~(x)=hT(x) '
Wsl. (x)——VJ hT(x), (2.6)

G~jk(x)=hT(x) 'GsJI, (x)hr(x) .

We shall not need the extensions of these formulas into
the interior region 0&r &r~, for this reason we have,
correctly, used x and not x as argument in hT, g&, and
gs.

The set of quantities W~, Ws, hr taken together de-
scribes the monopole in the U gauge. It is a structure de-
fined totally in the framework of the group H, since there
is no reference any longer to G. Thus we have here an H
monopole and our problem is to describe it appropriately
and then examine test-particle motion in its field. Origi-
nally the topological type of the monopole was indicated
by a particular element of m 2(G/H). In the U gauge, this
type is indicated by a particular element of mi(H), i.e.,
essentially by the kind of closed curve in H that hT(x ) de-

(These definitions of W~ and Ws hold good for all r & 0.)
For r &r, it is clear that the radial components of Wiv
and 8's are zero. It is also clear from the gauge covari-
ance of Eqs. (2.1) that for r &ri both W~(x) and Wg(x)
lie in H. In the overlap of X~ and Xs, the two poten-
tials are connected by a gauge transformation corre-
spondhng to a "transition group element" hT(x ) HH:
r Qrl, x +~X+~s.

hz. (x)=gv(x) 'g&(x)CH,

(2) Every continuous closed curve c (P),0 (P & 2m', in H
is homotopic to a one-parameter subgroup
e'~, 0&/ &2n, TEH, with the generator T obeying

e ' =e =identity in H . (2.8)

(3) By exploiting again the freedom in g~(x ),gs (x ), we
can thus assume that

hT(x) =c (P) =e'~ (2.9)

On A introduce the equivalence relation

(B,u)-(e ' B,ue '), 0&a &2rr,

leading to equivalence classes (B,u ):
(2.11)

Essentially this means that for any element of n.i(H), i.e.,
in any class of homotopically equivalent closed continu-
ous curves in H, one can find a representative in the form
of a one-parameter subgroup. [However, as will be clari-
fied later, this does not imply that the generator T is
characteristic of a given class in ~i(H); two different gen-
erators T, T' H H, both obeying (2.8) but, for example,
with quite different spectra, can lead to homotopically
equivalent curves e'~, e'~ .]

With the transition function hT(x) in the form (2.9),
the construction of A is quite straightforward. We use
the fact that" SU(2) as a manifold is known to be a U(1)
bundle over the two-sphere base S, which is also the base
for A. Write the elements of H in some faithful matrix
representation, for instance, the one in Sec. I with genera-
tors T„as B,B', . . . , and introduce the Cartesian prod-
uct of H and SU(2):

A =H&&SU(2)=[(B,u)
~

BEH, u CSU(2)I . (2.10)



A.P. BALACHANDRAN et al. 29

(B,u)=(e ' rB,ue' ') . (2.12)

The required bundle A is the quotient of A with respect
to this relation of equivalence:

with transition function e'~ .
There is a global action of H on A' which happens to

be a right action because in the equivalence relation (2.11)
we have e ' appearing on the left:

% =X/-= {(B,u)
~

BEHu ESU(2) ] . (2.13) 8'EH: (B,u ) EA~(BB',u ) EA . (2.25)

The projection m".A ~S is defined by

m((B, u ) ) = —,
' Tr(o.uo3u ') =x ES (2.14)

To verify this construction we specifically assume that X~
(Xs) is all of X minus S (N). For x EXiv (Xs), define
uiv(x )(us(x ) }ESU(2) as

—i pa3/2 —i 8o.2/2 i po.3/20(8&m: u~(x) =e e e

(2.15)
i pn—3/2 i eo 2—/2 i pcr3

—/20&8&m-. us x =e e e

These are well defined in their respective domains where
they obey

This global action is the one always available in a princi-
pal fiber bundle, and is used below in characterizing a
connection.

The global description of the pair of gauge potentials
W&(x),Ws(x) defined for x EXiv, Xs, respectively, and
related in the overlap by

W&( x ) =e '~ Ws( x ) ——P' e'~ (2.26)

[which is (2.6) given (2.9)] is through a connection Q on
We write it as Q(B,u) and demand two principal

properties:

u iv s (x )0'3u iv s (x ) = cT x'
Furthermore, in the overlap we have

0&8&m-. uiv(x)=us(x)e

(2.16)

(2.17)

(i) Q(e ' B,ue ') =Q(B,u), any a, (2.27)

(ii) Q(BB',u) =8' 'Q(B,u)B' — 8' 'dB—', 8'EH .
e

(2.28)

u =univ(x)e (2.18)

By (2.12) this element in A, or the corresponding
equivalence class in A, can be represented by the element

(e ' Buiv(x))EA' .

If we write

(2.19)

In case (B,u ) E A is such that m((B, u ) ) =x&S, the
south pole of S, there is a definite a for which

[These equations are written somewhat loosely. Thus
(2.27) is supposed to mean that the pullback of Q by the
map (B,u) —+(e ' B,ue ') must be equal to Q. There
is an analogous interpretation for (2.28) in terms of map-
pings of sections. See also (4.2).] Property (i) ensures that
Q is defined on A, not on A; and property (ii), specify-
ing the behavior of Q under the (right) action of H on A
(2.25), ensures that it is a connection form. To recover
W&( x ), we consider the local section

B~——e '" B, (2.20) Xiv ~~ (Xiv ) C A'

each such (B,u ) E A corresponds uniquely to the pair
(Bz,x ); in this way m (Xiv) is exhibited as (being
homeomorphic to) the Cartesian product H)&Xiv. Simi-
larly if (B,u) EA is such that m((B, u))=x&N, the
north pole of S, there is a definite p for which

u =us(x)e (2.21)

Again by (2.12), such an element in A can be represented
by the pair (Bs,x ) where

given by

x E Xiv ~ ( jl, uiv (x ) ) .

The pullback of Q to this section gives Wiv(x ):

Q(3.,uiv(x)) =Wiv(x) d x .

In a similar manner, by using the local section

x EXs~( jl, us(x) & E~—'(Xs) Cu

(2.29)

(2.30)

(2.31)

—i PTB (2 22) we have

a —P=g=azimuth of x . (2.23)

The elements B&,B~ of H which appear in the two local
trivializations of A are related by a left action of H:
from (2.20), (2.22), and (2.23),

B~——e '~ Bs hT(x) 'Bs . —— (2.24)

This proves that" A is a principal H bundle over S

That exhibits vr '(Xs) as (being homeomorphic to) the
Cartesian product R & Xs. If, finally, (B,u ) lies in both

'(Xiv) and ~ (Xs), it follows from (2.17), (2.18), and
(2.21) that

Q(I, us(x)) =Ws(x) dx . (2.32)

(Here it is important to remember that Wivs have only
"surface" components, and that 0 depends parametrically
on r.) From (2.17), (2.27), (2.28), (2.30), and (2.32) we im-
mediately recover (2.26). Thus while the nontrivial topo-
logical nature of the H monopole forces us to give
separate local descriptions of the gauge potentials in ordi-
nary space, glued together by (2.26) in the overlap, this
obstruction gets "unfolded" if we use the global connec-
tion 0 on A'. This 0 will be used in subsequent sections
to describe test-particle motion.

In the preceding construction, the principal bundle A
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A' = I(h, u)
~

h HU(2), u &SU(2) I . (2.33)

was realized as the quotient of a larger space X with
respect to an equivalence relation. In some cases, it is
possible to give a more direct description of the manifold
structure of A. Because of its intrinsic interest, we con-
clude this section by illustrating this method in four cases,
with a suitable choice of T in each: (i) H =U(2), ' (ii)
H =U(3),' (iii) H = [SU(3)XSU(2) XU(1)]/Z6, ' and
(iv) H =SO(3).'

(i) H=U(2).
The set A =U(2) XSU(2) is

GUT group breaks to [SU(3)cXU(1), ]/Z3 =—U(3). '

The set Ã=U(3) X SU(2) is

Ã= I(h, u)
~

h eU(3), u &SU(2) I . (2.42)

We choose TH U(3) to lie partly in the "SU(3) part" and
partly in the "U(1) part" of U(3), so that e'4', 0&/&2+,
is a nontrivial closed loop:

000
3 3

(2.43)
001

We choose Tin U(2) tobe

T = —,
' (1+cr3) (2.34)

The equivalence relation on A is

/ +i A,g/ 3h
'

3) (2.44)

so that e'&,0&/&2m, is a nontrivial closed loop in
U(2). ' The equivalence relation (2.11) is

Under this transformation the rows of h, determinant of
h, and columns of u change as

ia(1—+a3 2
(2.35)

Thus under the transformations defining this equivalence
the rows of h and the columns of u behave as

h2p~h2p h3p~e h37

h=deth ~e
ia —ia

Qa 1 +e lpga 1&Qa2 +e lka2

(2 45)

h],~e ' h(, , h2, ~h2, ,

ia —ia+g]~e +g] & +g2~e ~@2

(2.36)
We then define new matrices V, U out of h, u invariant
under (2.45):

h&r
With the help of b. =deth which under (2.36) changes as V= h2, ESU(3),

6—+e (2.37)

we can easily construct new matrices out of the rows of h
and columns of u with the property of being invariant
under (2.36):

h ), /b,
V=

h &SU(2),
2a

(2.38)
U =(u, )b„u,2/b, ) &SU(2) .

It is easy to check that all equivalence classes (h, u ) E A
are obtained faithfully, each one just once, if V and U run
independently over SU(2). Thus ( V, U) form coordinates
for A and we may write

(h, u) —= (V, U) . (2.39)

h'E U(2)
(h u)EA ~ (hh', u)EA

translates into

(2.40)

The manifold structure of the U(2) bundle A over S, for
the choice (2.34) of T, has turned out to be SU(2) X SU(2).

The global (right) action (2.25) of the structure group
on A can be expressed as an action on V and U. We find
that

U = (u, )b„u, 2/b, ) H SU(2) .
(2.46)

h' EU(3)
(h, u) EA ~ (hh', u) EA

goes into

(2.47)

( V, U) ~ ((deth') ' Vh', U(deth') ') . (2.48)

Again, only integral powers of deth' appear, as is proper.
(iii) H =ISU(3) X SU(2) X U(I)J/ Z6.
This example is also chosen because of its obvious phys-

ical relevance for GUT models. ' At first we settle the
precise definition of H. We begin with the larger group

H =SU(3) XSU(2) XU(1)

One can check that these are coordinates for A; as V runs
over SU(3) and U over SU(2), we recover each element of
A exactly once, so we may write (2.39) again. This ex-
hibits the manifold structure of this U(3) bundle over S
to be SU(3) XSU(2).

The global (right) action of U(3) on A can be worked
out. We find

h'G U(2)
(V, U) ~ ((deth') ' Vh', U(deth') ') . (2.41)

=I(M&v, e' ) ~M&SU(3), v&SU(2), e'z&U(1)I .

(2.49)

The appearance of only integral powers of deth' here en-
sures that we have indeed an action of U(2), and not of
SU(2) XU(1), on A.

(ii) H= U(3).
Such a choice of H leads to the description of rnono-

poles produced in GUT models when a (simply connected)

Let b HH be the central element

(e2mi/3I eiwI eim/3) (2.50)

which, because b =e, generates a cyclic discrete invariant
subgroup Z6C:H. We then define H to be the factor
group
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H =H/Z6 . (2.51)

0 0
02

3

0 —, 0 II I2&&2+ 13~3I3, . (2.54)
0

0 0

The equivalence relation (2.11) on A is
—iai8/ 3 ia/2(cr&+1—/3) lan&v

A faithful matrix realization of H is given by the
Kronecker products of SU(3) matrices by U(2) matrices:

H = IMI3s
i
MESU(3),s&U(2)I . (2.52)

As before, we now set up the space A =H X SU(2),

%=I(Ms, u) ~MeSU(3), seU(2), u ESU(2)I . (2.53)

For the bundle construction, we pick the generator TEH
in such a way that the curve e'~, 0&/ &2~, would have
run in H from the identity at /=0 to b at P =2m, so that
in H we do get a nontrivial closed loop:

1 1T— A,8+, o.3+,
M3

r

In all the three cases considered so far, the projection
m:A —&S can be simply expressed in the ( V, U) descrip-
tion of A, because in all these cases U is related to u by

U=uh ', (2.61)

= I (B,u)
i
BH SO(3),u E SU(2) I . (2.63)

The three antisymmetric Hermitian SO(3) generators Sj
are taken as

where only the phase factor 6 varies from case to case.
Therefore the general rule (2.14) here takes the form

~(( V, U) ) =x HS
(2.62)

o'x = Uo.3U

(iu) H=SO(3).
This last example is chosen partly because it does not

follow the same pattern as the previous three. Further
SO(3) monopoles are predicted by the model of Slansky,
Goldman, and Shaw, ' designed to explain the alleged ob-
servation of fractional charges. ' We begin with the defi-
nition of A as

X=SO(3) X SU(2)

The rows of M and s, the columns of u, and the deter-
minant of Ms experience

(Sj)kl ~jkl ~ (2.64)

—2ia/3 i a/3Si,~e Sia, $2a~e S2
(2.56)

and the 2&2 matrices u, o.j are enlarged to 3&3 ones by
defining

Q 0
U=

b.=det(Ms)~e ' b, ,

ia —iaua )~e Qa ), Qa2~e Qa2 .

The appropriate definitions of invariant matrices V, U in
this case are

oj 0
Xj 0 0 ~

(2.65)

M)„ S1,/5
V= M2„e

$2a
M3,6

U =(u, 1b„u,2/b, ) ESU(2) .
(2.57)

One sees that V runs over the set of 6 & 6 Kronecker prod-
uct matrices SU(3)@SU(2). In fact, the manifold struc-
ture of the present bundle A is (SU(3)I31SU(2))X SU(2),
with ( V, U) as faithful coordinates:

In particular, X2 coincides with —S3. The generator
TORSO(3) is taken to be S3. the loop e'~, 0&/&2m is
then nontrivial. The equivalence relation on A reads

(B,u)-(e 'B,u e '), (2.66)

incr&/4
e

(2.67)

leading to equivalence classes (B,u ) and the bundle A.
A (matrix) combination of B and u that is constant over
an equivalence class (B,u) turns out to be

(Ms, u ) —= ( V, U) .

The global (right) action of H on A,
M's'cH

(MI3s, u ) ~ (MM'Ass', u )

(2.58)

(2.59)

To verify this fact we need the equality of X2 and —S3,
and

alters Vand Uas
—im.o &/4 i@a&/4e o3e = —o2 . (2.68)

V—&(det[M's']) ' ' V(M'C81s'),
—1/6 —cr3/2 —A,8~3

U~U(det[M's']) '. (2.60)

Needless to say, only integral powers of det[M'I33s'] ap-
pear here.

The matrices 8' correspond one-to-one to the elements of
A, and replace the pairs ( V, U) of the previous examples.
They form a subset of matrices of SU(3), namely, just
those that can be put into the form (2.67).

The (right) action of SO(3) in A is very simple in terms
of 8',



NQN-ABELIAN MONQPQLES BREAK COLOR. I. 2927

8' o' so(3)
(a,u) (aa', u)---

8'~I'a' .
(2.69)

x EX?v. mx? = —e Tl[I?ttG~p (x)]xk

I~+iexj [6'~?(x),I?v ]=0 .

The projection m".A —+S appears slightly complicated.
Using standard properties of SU(2) matrices one finds one
can write

When the particle is located in Xs, we must be able to as-
cribe an isospin Is to it and must have

x HXs. mxj ———e Tr[IsGsjk(x)]xk,
?r(8') =x ES

(2.70) Is+iex? [Wsj(x),Is]=0
(32)

x= ——, TrS'8' X2X .

Thus in this slightly atypical case too, we have found an
intrinsic description of the manifold structure of A [a
certain subset of SU(3)], and expressed both the global
SO(3) action and the projection to S in these terms.

III. TEST-PARTICLE CONFIGURATION SPACE:
LOSS OF H ACTION

In Sec. I we have recounted brieAy three levels of
description of classical test-particle motion in a given to-
pologically trivial gauge field. At the (Newtonian) equa-
tions of motion level, the configuration space may be tak-
en as the Cartesian product of P, the space of the adjoint
representation of H, with the relevant portion of three-
dimensional physical space. We shall write R+ for the ap-
propriate range of the radial variable. (For a point mono-
pole the origin must be excluded and R+ then consists of
0 & r & m, while in the present case we must take R+ to be
r& &r & oo.) The appropriate configuration space at this
level is then (7 )&S ) &&R+, and on this space the group
H acts naturally and unambiguously: the "isospin" I
transforms under the adjoint representation of H acting
on P . At the Lagrangian level, the appropriate configu-
ration space is clearly the Cartesian product
(H XS ) XR+. Here we have two possible actions on H
available, either by left or by right translation; but it is
clear that it is the left action that is physically relevant, in
view of Eq. (1.10). In the Hamiltonian formulation, final-
ly, the left action on the configuration space is lifted to a
corresponding action on phase space. The infinitesimal
generators of this left action of H are the canonical mo-
menta W~ appearing in (1.13), (1.16), (1.17), and (1.18),
which are weakly equal to the isospin components I, de-
fined already at the Lagrangian level in (1.10). Note that
the generators of right action of H are not the physically
relevant quantities.

In summary, at each level of description there is a de-
finite and physically appropriate action of H on the con-
figuration space. We now examine the situation when the
test particie is placed in a monopole field of nontrivial to-
pological character.

Let the gauge potentials W&(x),Ws(x) be specified
over X~,Xs, respectively, obeying (2.26) in the overlap.
The natural generalization of the equations of motion of
Sec. I is as follows. When the test particle is located in
X&, it must be possible to ascribe an isospin I& to it and
the motion must be governed by

In the overlap, to be consistent with the relation (2.26) and
the implied relation for G~ and Gs, we must have

x e X~ 8 Xs. I?v (t)=e '& Is(t)e'~ (3.3)

P=P(t) being the azimuth of x(t). [Thus,
Tr(I?vG?v)=Tr(IsGs) and mxJ in (3.1) and (3.2) are the
same. ] The proper configuration space in which to embed
these equations of motion is obviously the following: we
must use a vector bundle over S, with fiber 7, transition
function h? (x)=e', and structure group H, apart fr'om

R+ for the radial variable. The technique of construction
is patterned after the work of the last section. We start
with the set Q which is the Cartesian product of F and
SU(2):

Q=P XSU(2)=I(I,u) iIRF, u &SU(2)I . (34)

On Q introduce the equivalence relation [cf. (2.11)]

(I u) (e ' Ie', u e ')

leading to equivalence classes (I,u ):
(Iu)=(e ' Ie' ue' ') .

(3.5)

(3.6)

Pass to the quotient of Q with respect to (3.5), namely,

Q=Q/- = [(I,u )
~

Ie P, u &SU(2)I .

The projection?r: Q~S is defined by

?r((I,u ) ) =x HS

(3.7)

(3.8)

That this Q is just the bundle structure required for ac-
commodating (3.1)—(3.3) is easily verified. As in the pre-
vious section, for?r((I, u ) ) E'X?v we express u as in (2.18)
and then identify

—iaTI iaT (3.9)

Similarly for?t((I, u ))HXs we express u as in (2.21) and
write

—iPTI i PT (3.10)

In this way ?r '(X?v) [?r '(Xs)] is exhibited as being
homeomorphic to the Cartesian product P Q X&
[F )&Xs], which is just what (3.1) and (3.2) require. And
because of (2.23), in the overlap these two trivializations
of Q are connected by (3.3).

This makes it clear that the global configuration space
in which to view the equations of motion (3.1) and (3.2) is
the Cartesian pmduct QXR+, where Q is the 7 bundle



A.P. BAI.ACHANDRAN et aI.

over S just constructed. For a nontrivial non-Abelian
monopole Q is quite different from g XS, and in partic-
ular there is in general no natural action of H on Q at all.
The problem is that any such action on Q will not as a
rule commute with T, and in view of (3.6), cannot be
viewed as an action on Q. (The problem of course disap-

pears if H' is Abelian. )

The situation is qualitatively similar ai the Lagrangian
level, but it is instructive to give the details, and especially
to find. the form of the global Lagrangian. Generalizing
(1.9), when xEX~ we assume generalized coordinates
x,B&HH and take the Lagrangian to be

Wv(x, B~,x,B~,'I &~I)= , m—x +i Tr(KB~ '8~) e—x&Tr[B~KB~ 'W~~(x)], KEH .

This will lead to the equations of motion (3.1) provided we identify

I~ ——A~KB~

When x H Xs, we use as Lagrangian coordinates x and Bs HH, and take

~,(x,B„x,Bs; I resj) = —,
'

m x '+i Tr(KB,-'8, ) —e x,Tr[BsKBs-'W„(x)] .

(3.11)

(3.12)

(3.13)

Notice that the same KHH is used in W~ and in Ws.
We now recover (3.2) provided

E CXCT3

change u —+u e in u. The rest of W can be explicitly
checked to be unchanged if we make the replacements

Is =&s&&s —1CXT iaa38—+e ' 8u —+u e (3.17)

W= —,mx +I TrEB B+&e-- ' -BQ(I, u)
dt

(3.16)

and now show explicitly that it has all the required prop-
ertIes.

We note first that W is indeed a function of r, 8, and
u and their velocities, since x is determined by u. We
must make sure that W does not depend individually on
B,u (and their velocities) but only on the equivalence class
(B,u ) (and its velocity). Only then can we claim that we
are working on [the tangent bundle T ( A X R+ ) of]
W X R+. The leading kinetic energy term in W causes no
problem in this regard, since x is invariant under the

Gbviously in the overlap the generalized coordinates 8&
and Bs must be connected by

x &X~ & Xs: 8~(t) =e '~~Bs(t»

so as to ensure (3.3).
A comparison of the transition rule (3.15) with the rule

verified as holding in the bundle A constructed in Sec. II
[see Eq. (2.24) and the arguments leading thereto] tells us
the following: the global configuration space on which to
base the Lagrangian description of motion in a non-
Abelian monopole field is A XR+. The bundle A is a
principal H bundle over S consisting of the equivalence
classes (B,u ), and on these, there is in general no global
left action of H at all. The problem is the transition for-
mula (3.15) which will not as a rule be preserved by such
an action.

We can now ask: what is the global Lagrangian, defined
on (the tangent bundle of) A X R+, which leads to the two
local Lagrangians W& and Ws of (3.11) and (3.13) when
we use the trivializations of vr '(X&) and ~ '(Xs) and
exhibit them as (essentially) H X X~ and H XXs, respec-
tively' The answer is that this Lagrangian has to be con-
structed using the connection form Q(B,u) which obeys
(2.27), (2.28), (2.30), and (3.32). We take as Lagrangian

in it, with arbitrary (time dependent) a; here we use the
properties (2.27) and (2.28) of Q(B,u). This establishes
that W is well defined on T(A XR+). Now we check
that in each of the two regions X~,Xs for x, this global
Lagrangian reduces to the locally valid W~ and Ws of
(3.11) and (3.13). If it be given that x EX~, the u in
(3.16) can be written in terms of u~(x) and some a as in
(2.18). Using the property (2.27) followed by (2.28), the
factor e ' can be shifted so as to be attached to 8 and
it then produces B~——e ' 8 [cf. (2.20)]. Since
Q(I, tt~(x)) reduces to the gauge potential Wz(x) ac-
cording to (2.30), we then find easily that W becomes
W~ of (3.11). In a similar way, for xeXs we find W
reducing to Ws of (3.13). Incidentally, this shows that in
the overlap region, W~ and Ws are (numerically)
equal —a fact that could have been directly verified using
(2.26) and (3.15). Thus we have established the correct-
ness of our choice (3.16) for W in all respects.

It is clear that the topological nontriviality of the
monopole field has led to a "twist" in the way in which
the internal space of the test particle P or H combines
with the S of ordinary space to produce its true configu-
ration spaces. These spaces QXR+ or A XR+ are non-
trivial bundles over S and in general do not permit a
(physically relevant) global action of H. We shall exam-
ine in Sec. V the question of what subgroup (or sub-
groups) of H can in fact be globally defined, once the to-
pological "type" of the monopole [element of m'~(H)] is
specified. In the rest of this section, we examine briefly
the phase-space structure resulting from the Lagrangian
W of (3.16), and see again at this level the breakdown of
the action of H.

Since the radial variable r H R+ and its canonical conju-
gate p, are not involved in the following arguments, we
sometimes ignore them, and refer mainly to A and its as-
sociated objects. All the needed properties of A have
been assembled in Sec. II. We can regard it as the union
of A~ and As as follows:
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Us
(X~), As ——m (Xs),

S =X~ U&s

(3.18)

{xi~7&k J

{Bx~x. J
= iTaBx-

{~Xa ~ ~Nb ] Cabc~¹

(3.19)

Over the S part of phase space, i.e., over T*&s&& T*R+,
we use variables x, ps, Bs, and Ws„with exactly similar
PB's. Note that Jr¹are the generators of the left action
of H on Bz, and correspondingly for Ws, and Bs. Now
the relation between these two local coordinate systems on
phase space is fully determined by the fact that it is the
"lift" of the point transformation (3.15) acting on config-
uration space. Using some results from Appendix A, we
find the complete transition rules ( x omitted):

p =p +—'Tre-'& W, V e'&
R

W =e-'& W e'&

(3.20a)

(3.20b)

(3.20c)

Here R is the constant appearing in the trace orthogonali-
ty property (1.5) among the generators T„and Az, Ws
are the matrix combinations W~, T„Ws, T„respectively.
These transition formulas from one local phase-space
coordinate system to the other are consistent with the PB
relations holding in the two systems. Thus (3.19) com-
bined with (3.20) do imply the S version of (3.19). In the
canonical formalism, the basic problem appears in the fol-
lowing guise: while in the overlap (3.19) holds, we find in
general that

Local coordinates over A z are ( 8&,x ) with x EX&, and
similar coordinates over 9Fs are (Bs,x) with x HXs. In
the overlap, the gluing map (3.15) must be read as a point
transformation relating the local systems. The phase
space associated with A )& R+ as configuration space is, as
always, the cotangent bundle

T*(A XR+)=T'A ~ T*R+ .

It is the union of two parts, T*A'& && T R+ and
T*&s&T*R+.we call these the X and S parts of the
phase space. Over the X part of phase space, we have a
coordinate system made up of variables x, p&,B~,W&„
among which the only nonzero PB's are

cance for a quantum-mechanical test particle.
Relating W~ and Ws to the Lagrangian variables is

straightforward. For the former we use W~ of (3.11) and
find, as in (1.16), that W~ is weakly equal to I~ of (3.12).
Similarly, Jrs is weakly equal to Is. [So the transition
rules (3.3) and (3.20c) are consistent. ] But the basic prob-
lem of nonexistence of 8 action is recognized prior to ob-
taining these weak equalities.

IV. SIMPLE EXAMPLE
OF GLOBAL LAGRANGIAN

Q(B,u) =Q(B,u'u), u'CSU(2), (4.1)

it being understood that u' represents a rigid rotation. A
solution to all three conditions (2.27), (2.28), and (4.1) is

l
Q(B,u) = — 8'dB — 8—'TB , Ter—3u 'd—u .

e e
(4 2)

It is this solution that we shall use in the global Lagrang-
ian in this section.

We note that the possible parametric dependence of Q
on the radial variable r is in fact absent here. Remember-
ing that 8'&„and Rs, are both zero in our gauge, this
means that when we compute 8'~g, R'~~ and 8'sg, 8's~,
they will all turn out to be proportional to llr It is.
known that in such a case the monopole is basically simi-
lar in structure to the Dirac monopole of U(1) theory.
Specifically, while W& and Ws are only locally defined
potentials, the field strengths G& and Gs coincide in the
overlap and hence G~k is globally defined. This is because
all the 8&'s and Gjk are proportional to one common
THH. This similarity to the U(1) case will be evident
also when we obtain the equations of motion for the test
particle.

Setting 8 =I in (4.2) and using it in (3.16), the La-
grangian is

As an application of the global Lagrangian developed in
the preceding section, we consider the equations of motion
for a particularly simple monopole field in this section.
The two basic conditions on the connection Q(B,u) have
been listed in (2.27) and (2.28). To these we may, if we so
choose, add a third condition expressing the idea of spher-
ical symmetry in its simplest form. Because of the projec-
tion rule (2.14): u &SU(2)~x&S, it is seen that left
multiplication of u by some (fixed) element of SU(2) pro-
duces a corresponding rigid rotation on x in three-
dimensional space. Spherical symmetry is therefore the
requirement

{B~~x.)« '~'{Bs ~s.), (3.21) W= —,'mx +i TrKB '8
because [T„T]&0. The interpretation is the following:
while over the N part of phase space W~, generate a (left)
action of 8 on B&, and over the S part Ws, generate a
corresponding action of 8 on Bs, we are unable to say
that taken together W&, and Ws, are local descriptions of
a globally existing set of generators of a global (left) ac-
tion of 0 on the whole phase space. This is but a "lift-
ing" to phase space of the problem already recognized at
the level of the configuration space A' &&R+. But the im-
portance of stating it in phase-space terms is iis signifi-

+i TrECB 'TB X —,
' Tra3u 'si

mr =mrx (4.4)

= 2NZr + 2fPlr X

+i TrKB '8+i TrKB 'TB ,' Tra3u 'u . (4.3—)

The Euler-Lagrange equation for r yields the same result
as for a free particle:
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A variation of B, say on the right, leads to the equation

[K,B 'B]+[K,B 'TB]—, Tro 3u 'u =0,
which is the same as

(BKB ')+ —,
' (Tro3u 'u )[T,BKB ']=0 .

dt
(4.6)

From either of the above two equations we get a conserva-
tion law:

Tr(BKB 'T) =constant . (4.7)

Turning to the Euler-Lagrange equation for u or x: an
infinitesimal variation of u on the left induces a small ro-
tation of x,

Of course we demand that k (x;h) vary smoothly with x;
the smooth dependence of H„- on x does not guarantee
that such k(x;h) can be found. As a convention we as-
sume that

k(%;h)=h eH . (5.2)

k~(x;h) =g~(x) 'k(x;h)g~(x) HH (5.3)

We now make some choices of tv(x), gs(x) in G ac-
cording to (2.4), pass to the U gauge in which P(x) be-
comes asymptotically constant with stability group H
throughout, and then ask for the way the above problem
must be posed. This is clearly the following: for h HH
and x H X~, we need an element

5u =i o'Ou,
(4.8)

such that for fixed x,

h —+k~(x;h) (5.4)
5x = —20~x,

and this produces the change 5W in W of amount

is an automorphism of H. Similarly for h &Hand'
x 'E Xg, we need

5W =( —2m x && x —x TrBKB 'T) 9 . (4.9) k, (x;h) =g, (x)-'k(x;h)g, (x) eH (5.5)

So the corresponding equation of motion is just the law of
conservation of an augmented angular momentum:

such that for fixed x,

ks(x h) (5.6)

x
m x & x+ —TrBEB T =0 .—1

dt 2
(4.10)

is also an automorphism of H. Moreover, in the overlap
we must have

Combining this with (4.4) gives the vector equation of
motion for determining the orbit in ordinary space:

~ 0

m x= x)&x —, TrMCB T .
r 3

(4.11)

This is identical to the equation of motion for an electric
charge in the field of a magnetic monopole. The only
difference here is that the test particle carries with it an
isospin vector I(t) which precesses according to (4.6),
while maintaining a constant projection along T.

V. GLGBAL ACTION QF II AND ITS SUBGRQUPS

(5.1)

The analysis of Sec. III has shown that in general there
are topological obstructions standing in the way of a glo-
bal action of the "surviving symmetry group" H on the
variables of a test particle moving in the field of an H
monopole. In this section we analyze this problem in a
more systematic way.

To begin with let the monopole configuration be
described in the framework of the gauge group 6, symme-
try under which is spontaneously broken to H. As men-
tioned in Sec. II, we then have (asymptotically) a globally
defined Higgs field P( x) H A'0, and globally defined gauge
fields W(x), G(x) as well. The stability group H„- of P(x)
is conjugate to H =H~, as is seen in (2.2). In this set-up,
a "global definition of the action of H" evidently means
the following: for each h HH and each x ES, we must
define an element k(x;h)E:H„- such that we achieve an
1SOIIlorphlsm H ~H

x EX+ AXs. kx(x~h)=hT(x) ks(x~h)hT(x), (5.7)

where hT(x) is given by (2.6). Thus in the U gauge, for
given hT(x), the problem of defining H globally is the
problem of finding smooth functions k~(x;h), ks(x;h)
with the above properties.

The pair g~(x),gs(x) carrying us to the U gauge is
nonunique to the following extent: we may use instead

x EX~. g~(x ) =g~(x )h~(x ), h~(x ) CH,

x CXs.'gs(x)=gs(x)hs(x), hs(x)eH .
(5.8)

Here hzs(x) are smooth functions of x in the respective
domains, and h~(X) =e to maintain giv(X) =e. This
change causes the transition function hT(x) to be replaced

hT(x) =hs(x) 'hT(x)h~(x),

while kiv and ks (if they exist) go into

k~(x;h)=h~(x) 'k~(x;h)h~(x),

ks(x;h) =hs(x) 'ks(x;h)hs(x)

(5.9)

(5.10)

Now make the reasonable assumption that the outer au-
tomorphisms of H form a discrete set. ' Then since
k~(x;h) is to vary smoothly with x over X~, and since by
(5.2), (5.3), and g&(%)=e we have

k~(X;h) =h (5.11)

at x=X, it follows that all over X& there must be an
inner automorphism carrying h to k~(x;h):

k~(x;h) =h~(x)hh~(x)
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xEX~. k~(x;h)=h . (5.13)

With this simplification, what remains is to find a func-
tion ks(x;h) over Xs, depending smoothly on x, so that
we have both the automorphism property and the correct
transition rule:

x EXs,h EH: ks(x;h) EH

ks(x ~h')ks(&&h) =ks(x;h'h),

x HX~ ll Xs: ks(x;h) =hz (x)hhz (x )

(5.14a)

(5.14b)

At this stage we may assume that X~(Xs) is all of X
minus S(X), so that X~flXs is all of X except for the
two poles. In that case, the transition rule (5.14b) in fact
determines ks (x;h) all over Xs except at the one point S,
and this determination is consistent with (5.14a). For any
nontrivial monopole, the transition function hr(x) must
fail to be well defined as x approaches either pole, X or S.
The problem of defining H globally can then be solved if
and only if for each h, ks (x;h ) as determined by (5.14b)
tends to an azimuth independent value in H as x tends to
S, in spite of there being no such limit for hz. (x ).

Let us write

for some h~(x) HH. We can use this h~(x) in a change
of U gauge (5.8) and (5.9), supplemented by, say,
hs(x ) =e, to arrive at the result

Kr ——
I k &H

~

ke'~ =e'~ k for all PI . (5.17)

Then both k~(x;k) and ks(x;k) in (5.4) and (5.6) can be
taken equal to k HKz, and the transition rule (5.7) is trivi-
ally satisfied.

We can ask for the form this g1obal realization of Kz
takes if by means of a transformation (5.9) the transition
function is changed to some h r (x ). Here if we allow
h~(x) and hs(x) to be chosen freely and independently
from H, we arrive at the following picture: for each
x H X&, a subgroup Kz~ - in H is determined:

Kr ~ „- h~(x ) —'—Krh~(x ) . (5.18)

Similarly for each x EX+, a subgroup Kz& - in H is de-
fined by

Having seen that in general the action of the whole of
H cannot be globally defined, the following question
seems reasonable: for a given type of monopole deter-
mined by some class in m ~(H), what is the corresponding
subgroup of H whose action can be globally defined? We
shall give a partial answer to this problem now. We plan
to treat it in detail in another paper. (See below, Sec. VI,
and Refs. 8 and 9 for such subgroups of H in GUT's. )

Let us assume that hz(x) has been put into the form
(2.9). It is then obvious that the commutant of T in H
can certainly be globally defined. Call this subgroup Kz. .

(5.15) Kr s „- hs(x ) 'K——rhs(x ) . (5.19)

where P is the azimuth. Then c'(P) for 0&/ &2' is a
closed curve in H lying in some class of sr~(H) which
determines the "type" of the monopole. Then the condi-
tion that ks(x;h ) be uniquely determined as x ~S reads

kN(x;k) =hx(x) 1khz(x) EK-T
N (5.20)

For x =X, Kz&& coincides with the original Kz. . Then
the "image" of each k HKz- at each x H X& is the element

0

1.e.)

c'(P)hc'(P) '=independent of P

for each h

=c'(0)hc'(0)

c"(P)=h =bc "(P) for all h,

c"(P)=c'(0) 'c'(P) .
(5.16)

k&K~ks(x~k)=hs(x) khs(x)+Krs, „" .

In the overlap, we have two significant relationships:

x 6 Xg A Xs. Kr ~ „- hz (x ) 'Kr s „-hr (x——),

(5.21)

(5.22)

k~(x;k)=hz(x) 'ks(x;k)hr(x) .

and for fixed x, k~k&(x;k) is an isomorphism
K~ K~&-. Similarly for x&2~, we have an isomor-
ph1sm K&~KT s by

Now assuming H is connected, c"(P) for 0 & / &2' is a
closed curve in H starting and ending at e, homotopic to
the curve c'(P). Thus c"(P) describes the monopole type
as well as c'(P). The condition (5.16) demands that for all

P, c"(P) be in the center of H. Thus the necessary (and
sufficient) condition for the action of H to be globally de
fined is that the monopole type be represented by a closed
curue lying entirely in the center of H.

We can draw two useful conclusions: (i) if the monopole
is nontrivial, H is connected and the center of H is
discrete, the action of H cannot be globally defined; (ii) if
H has (one or more) U(1) factors, which then belong to
the center of H, and the monopole type can be represented
by a closed curve in such a U(l) factor, then the action of
H can be globally defined. But in that case we are dealing
exactly with a monopole of the original Abelian Dirac
variety.

This degree of complexity seems unavoidable because of
the freedom available in the choice of U gauge. It shows
that the global definition of the commutant of T,Kz C:H;
which appears extremely simple when hr(x)=e', does
not even utilize a definite subgroup of H at each x, but
two subgroups Kzz„- and K z„-, when we switch to a
different U gauge. Not only the representatives at x of
each k HKz-, but even these subgroups themselves, have to
be transformed by br (x ) in the overlap.

Finally, suppose hz(x) had been so chosen as to be
another one-parameter subgroup in H, say,

hr(x)=e'&r', T'eH,
(5.23)

27Tl T

Thus the closed curves e'~ and e'& both represent the
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1
2 8 0 1 0

0 0 1

The curve e ' (0&/&2m) is closed in the simply
connected group SU(3)c and is therefore homotopically
trivial. Thus both the transition functions hz ——e' and
hz ——e'& represent the same monopole. However, the
commutant of T' is not the group

SU(2)cXU(I)r XU(1),

but rather the Abelian group

Kr ——U( I )g, XU(I )r, XU(1),

where U(1)q, has the generator

1 0 0
0 —1 0
0 0 0

(5.25)

Thus we see explicitly that the groups E&,Kz-, . . . need
not even be isomorphic. We shall not exhibit the analogs
of formulas (5.20) and (5.21) for this example.

VI. CONCLUDING' REMARKS

In this paper, we have examined the classical mechanics
of a test particle in the field of a monopole which emits
non-Abelian (and Abelian) magnetic flux (the "non-
Abelian" monopole). The background field is not invari-

same class in m &(H). In this gauge, the subgroup Kr-C H
can be globally defined in a simple way, while the sub-
group Kr C:H can be also globally defined in the way out-
lined in the previous paragraph. However, the actions of
Kz. and Kz" are strikingly different.

The situation is therefore the following: given the
monopole "type" by specifying an element of n &(H), we
can search for all T, T', T", . . . HH such that
e'&r, e'~~, e'~~, . . . , 0&/ &2n., are closed one-parameter
subgroups belonging to ~&(H). Then each of
Ez,Ez,Ez', . . . can individually be globally defined, and
their actions can be exhibited in any choice of U gauge.
We can now envisage taking arbitrary products of these
actions and determining the group E~,Kz', Ez--, . . . gen-
erate. We hope to study this question elsewhere.

We conclude this section by illustrating these remarks
for the physically interesting choice

[SU(3)cXU(1),m]/Z3 ——U(3)

for H. A possible transition function for the elementary
monopole is e'~ where T is as in (2 43). The commutant
Kz of T is (if we ignore taking quotients with discrete
subgroups) SU(2)c X U(1)z XU(l), where SU(2)c acts
on the first two colors and U(1)z is generated by the

color hypercharge. Now let us change T to

—200
T' = T+W3 A. '8 —— 0 1 0

0 0 2
(5.24)

—200

ant under general transformations of the "unbroken" sub-
group H even locally, so that these transformations are
not symmetries of the dynamics. Such a property by itself
does not however prevent the implementability of
transformations: there are after all many canonical
transformations which are not symmetries. Further, the
global canonical implementability of H is essential to give
a global meaning to H multiplets on passage to quantum
mechanics. Our discussion shows that it is not in fact
possible to realize H globally. In the SU(5) grand unifica-
tion model, if H=SU(3)cXU(l), , we thus see that'
color transformations and color multiplets are not global-
ly defined, while if H =SU(3)cXSU(2)wsXU(l), the
same is seen to be the case for both color and electroweak
transformations and multiplets. These effects are conse-
quences of topology and are not associated with any ener-

gy scale.
Elsewhere ' it has been demonstrated that the transfor-

mations of H cannot all be globally implemented on the
non-Abelian monopole. Any such illegal transformation
creates a string singularity in the gauge field and maps the
monopole solution to an infinite energy configuration.
The results of this paper complement the preceding con-
clusions and show that similar features are encountered in
the mechanics of a test particle coupled to a non-Abelian
monopole field.

From the physical as well as the formal point of view,
it is important to know the transformations of H which
can be globally implemented. We have discovered that
there are several subgroups Ez,Ez,E~-, . . . which enjoy
this property and that the action of these subgroups is not
always what we may expect at first sight. We postpone to
another publication the completion of all these different
actions into a single group of implementable symmetries.
Incidentally, it has been shown elsewhere (see also the
conclusion of Sec. V) that if H =SU(3)c XU(1), , one of
these subgroups is SU(2)c XU(1)~ XU(1), while if
H =SU(3)c X SU(2)wsXU(1)z, one of these subgroups is
SU(2)c X U(1) X U(1) XU(l). Here SU(2)c acts on the first
two colors (say) and U(l)~ is the group generated by the

color hypercharge, while the three U(l)'s in SU(2)c
XU(1)XU(1) XU(1) along with the rotations around the
third axis of SU(2)c are generated by the Cartan subalge-
bra of SU(5).

In a paper under preparation, we will discuss the clas-
sical field theory of the non-Abelian monopole as well as
the quantum mechanics of a test particle in such a mono-
pole field in full detail (see also Balachandran ). There we
shall see that the lack of continuity of a generic H
transformation is transmuted in quantum mechanics into
a domain problem: the domain of the Hamiltonian is not
invariant under such transformations and these transfor-
mations can map a state with finite mean energy into a
state with infinite mean energy.

All these results suggest that color and electroweak
symmetries are broken in many grand unified models in a
novel way. Such a conclusion can be avoided if non-
Abelian monopoles do not exist: it may be that such
monopoles are confined for dynamical reasons and only
Abelian monopoles are observable. ' Investigation of such
issues, however, is beyond the scope of this paper.
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g, =J,(8,8) . (A9)

JT=—B ~I T (A10)

Directly from their definitions, I, and J, may be shown
to be related by

APPENDIX A: CANONICAL FORMALISM
FOR GROUP ELEMENTS AS COORDINATES

For the convenience of the reader we assemble here a
few key formulas that are useful when an element 8 of a
Lie group H is used as a generalized coordinate in a La-
grangian. As in the main text, H is realized via some
faithful matrix representation with generators T„and B
is a matrix in this representation.

Let the configuration space of some system consist of
H and other variables which will be suppressed. The in-
trinsic description of the phase space T*H, the cotangent
bundle over H is as follows: we have both left and right
canonical momenta conjugate to the coordinate BEH,
which we write as W, and g „respectively. The essential
Poisson-bracket relations are

so the identifications (A6) and (A9) are consistent with
(A2).

The general rule for constructing the Hamiltonian A is
clear from (A3): it reads

TrW, T,BB '+other pq —W

Trg, T,B '8+other pq —W . (A 1 1)

W=i TrKB '8+terms independent of 8, (A12)

we get

Two special forms of W are of interest. If for some
fixed KHH,

t B,W, J
= iT,B, (—W„Wb j =C,b,W, ,

[B,g~ J =iBT~, (g„gb) =C~g,+, .

(Ala)

(Alb)

I =TrBKB 'T~,
(A13)

g, T, = 8'W, T,B—. (A2)

From here in principle one can compute the PB's

The analogs of the important expressions "p6q" and
"pq" that appear in canonical mechanics are

These two kinds of canonical momenta are related
through the adjoint representation of H. The neatest way
to write the relation is

All the test particle Lagrangians in Secs. I, III, and IV
have this form, which is why in all of them the left
canonical momentum W, is physically relevant, while g,
is uninteresting. If, on the other hand,

i TrK—BB '+terms independent of 8,
(A14)

the roles of W and g~ get interchanged:

"p5q "~—TrW, T,588 '= ——Trg, T,B '58,
(A3) J =TrB 'KBT, .

(A15)

"pq" + TrW, T,B—B '= ———Tr/~T~B '8 .

Given a Lagrangian W(8,8;. . . ) the Legendre map
from TH to T H, i.e., in physical terms the definition of
momenta in terms of velocities, is set up as follows: we
first imagine making the infinitesimal changes

Finally we note that the phase-space transition formu-
las (3.20) arise from the general theorem than "p5q" is an
invariant under a point transformation.

APPENDIX 8: PROPERTIES OF hz(x )

58 =0, 58=i@,T 8, e,
~

((1,
and write the resulting change in W in the form

5W= e,I,(B,B) . —
Then we identify

W, =I,(B,B) .

For the right canonical momenta, we consider

5B =0, 6B=iBe,T,

and write

5W=e, J, (8,8) .

(A4)

(A5)

(A6)

(A7)

(A8)

Here we make the definite assumption that X~ (Xs)
consists of all of X except S(K). In any U gauge, the
transition function hT(x) is defined over X~AXs, i.e.,
over all of X except both poles, and in its domain of defi-
nition it varies smoothly with x. By its very nature, how-
ever, it does not approach a definite limit as x approaches
either X or S: this is a sign of the topological nontriviali-
ty of the monopole. We may define the azimuth-
dependent limits of hT(x) by taking the limits of the po-
lar angle 9 with fixed azimuthal angle P:

hT(x) ~ C~(p)HH,
x~N

hr(x) Cs(4) &H .
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hT(x)=hs(x) 'hT(x)h~(x) . (82)

This is (5.9), and need only hold in X~ A Xs.
First we prove that by a change of the form (82), we

can make hr(x ) a function of P alone. For instance, if we
let

h~(x)=hr(x) 'C~(P),

hs(x) =e,
(83)

we see from (81) that h&(x) is well defined over the
whole of X~ including the north pole; while hs(x) is trivi-
ally well defined over Xs. Using (83) in (82) we have pro-
duced

hz (x )=C~(P)

Similarly the acceptable choices

h~(x) =e,

hs(x ) =h T(x)Cs(P)

would have rendered

(84)

(85)

As P varies from 0 to 2~, C~(P) and Cs(P) describe two
closed curves in H which are clearly homotopic to one
another. This is because hT(x) =hT(8, $) interpolates be-
tween them smoothly as 0 goes from 0 to m.. Either one of
these two curves determines an element of m. ~(H) which is
the "type" of the monopole.

For all purposes of the theory, a transition function
hz(x) is equivalent to another hT(x) if we can define two
smooth functions h~(x), hs(x) over X~,Xs, respectively,
such that

We now prove that every class in m&(H) contains (at
least) one representative curve in the form of a one-
parameter subgroup. In the process we define somewhat
precisely the kind of group H we are dealing with —it
covers all cases of physical interest.

Let S be a compact, simple, simply connected Lie
group with center Ie,z'",z' ', . . . , z' 'I. Since every ele-
ment g H 9' lies on some one-parameter subgroup, for any
z in the center there is a generator ~ H 8 such that

(811)

(Strictly speaking, it is iu that is in 9'.) Further, because
S is simply connected, any curve K from e to any z is
deformable to the curve e'~, 0 & P & 2m.

The groups H we are concerned with are all of the form

H =[W~XN~X X9'~, XU(1)X . . XU(1)]/D,

X2 factors (812)

where each 8, a= 1, . . . , N&, is a compact simple sim-
ply connected Lie group, and D is discrete. We think of
H concretely in terms of a faithful matrix representation.
Since H is connected (though not simply connected), every
closed curve c(P),0&/(2m, in H is homotopic to one
starting and ending at the identity, for instance, to
c (0) 'c(P). Let a class in vr&(H) be then represented by a
closed curve C= Ic(P)HH: 0&/&2~] in H starting
and ending at the identity. This C is the image of a curve

in $&XÃ2X . . XSz XU(1)X . . XU(l) which

may be represented in each factor in this way:

hT(x) =Cs(P) . (86)

Let us assume that any closed curve C (P ),0 & P & 2', in
H is homotopic to one of the form e'&, THH (we will
prove this in a moment). In particular let this be true for
C~(P) obtained from hT(x) in (Bl). Then we can inter-
polate between C~(P), 0 & P & 2' and e'~, 0 & P & 2'.
That is, we can find a smooth function a (8,$) HH, de-
fined for 0&8&m, 0&/(2m, such that g (P)(y) e'~~P (814)

(813)
The factors K' '(P) in the various U(1)'s are either trivial
curves, so that they can be taken to be the identity, or they
can be assumed to have the form

a (m, p) =e'~r .

Now make the choices

h~(x)=hT(x) 'a(x),

hs(x ) =a (x )e

(87)

hz. (x ) =e'&

In all the above, it is assumed that T obeys

e ' =identity e .

(89)

(810)

Here we have written a (8,$)=—a (x ). From (81) and (87),
we verify that h&(x) is well defined all over X&, and
hs(x) all over Xs. Using (88) and (82) we find that we
have achieved

where Q& is a suitably normalized generator of the Pth
U(l). The factor K (P) in S either (a) runs from the
identity in S back to the identity or (b) runs from the
identity of 9' to a central element z of S . [Without
loss of generality we can assume that each K (0) and
each K'~'(0) is the identity element. ] If case (a) is not
true, then case (b) is true because, C being closed in H; the
end point K(2~) of Ã(P) in S ) X . . X 9'~, XU(1)

XU(1) must be in D. But D is an invariant
discrete subgroup of the product S ~ X ' XU(1),
each Ã (2') commutes with all of S~, i.e., it is in the
center of P . In case (a), K~(P) is homotopic to the con-
stant identity path or loop in 9' and hence is ignorable.
In case (b), it can be deformed to a one-parameter sub-if'
group (or a portion thereof) of the form I e
0&/(2n], by (811). Thus C in %~X. . . XU(1) is
homotopic to (a portion of) the one-parameter subgroup
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k =
I 0'((b):0 & P & 2m. I,

if') if' '~ &( ipQ )&(p)= e Xe X . Xe Xe

X X~ (815)

Here some of the M's and some of the Q's may be zero.
This proves our theorem: if T~,qp represent M~, gp in
H, the closed loop C in H is homotopic to the one-

parameter subgroup C in H with generator

X.T-+Xp~ p.
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