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II. Instantons and large orders of the I/N series for the (P ) theory

in v dimensions (I & v&4)

J. Avan and H. J. de Vega
Iaboratoire de Physique Theorique et IIautes Energies-Paris, Uni Uersite Pierre et Marie Curie,

Tour j6-ler etage-4 Place Jussieu, 75230 Paris Cedex 05-I'rance*
(Received 24 October 1983)

Instantons of the nonlocal effective action S,ff that generates a 1/X perturbative expansion for
0(Ã)-symmetric (P ) theory are obtained for Euclidean spatial dimension 0& v&4, through the in-

verse scattering transformation {IST}.They are studied analytically to a large extent. In addition,
variational methods are used when the IST does not provide a closed solution for all couplings. The
values of the instanton action are given as a function of the coupling constant g for v=O, 1, 2, 3,
and 4, and 0(g (+ ce. The large orders of the 1/X perturbative expansion are thus estimated. It
is found that the 1/X perturbation series can be resummed by a Borel transform in integer dimen-
sion 0 & v& 3. In four dimensions, the 1/X perturbation series is not Borel-summable, owing to the
existence of an instanton with real positive action, for physically relevant values of the renormalized

coupling constant. It is concluded that (P ) theory in four dimensions is nonperturbatively un-

stable. The saddle-point equation of massless (P) theory in the 1/X expansion is found to be
completely integrable at least for spherically symmetric fields. Explicit instanton solutions are given
for this case. A large-X estimate of the decay rate of the vacuum is given.

I. INTRQDUCTIQN

The computation of saddle points for one-loop effective
actions consisting of the sum of local terms, plus a func-
tional determinant, is a very difficult task, since it
amounts to solving a nonlinear and nonlocal equation
called the "gap equation. " However, the study of these
saddle points is very useful in statistical mechanics and
quantum field theory. ' Therefore it would be very in-
teresting to find a general method to solve these equations.
It was possible, in some cases, to obtain solutions of a gap
equation: the gap equation for the N-dimensional anhar-
monic oscillator in the I/% expansion has been solved on
infinite and finite time intervals. This study was recent-
ly extended to a general potential V(P ). The resolution
is based on the inverse scattering transformation' which
enables one to express a nonlocal functional determinant

I

as a local functional of the scattering data of an associated
linear problem. It is generally easier to search for saddle
points of the effective action by extremizing it with
respect to those variables. In the preceding paper' we
used the inverse scattering transformation in the angular
momentum. The advantage of this particular inverse
scattering transformation is that it can be used in any spa-
tial dimension, provided that the fields are rotationally in-
variant. This transformation enabled us to express the ef-
fective action for (P ) theory (in particular the one that
generates a I/N expansion), in any spatial dimension, par-
tially or completely, as a local functional of the scattering
data. This procedure will allow us to investigate the
specific problem of the large-order behavior of the 1/X
perturbation expansion, in these models. It is known that
this behavior is dominated by the instantons of the effec-
tive action. The contribution of an instanton with effec-
tive action S, to the Xth order of perturbation reads

8'x ——C b, cos[(%+6/2)argS, ][1+O(i/&)],I (E'+i/2)

where b is the number of zero modes.
To obtain an instanton, one has to solve the corresponding gap equation. In this case it reads

1

—8 +m +u(. )

1 u(x)
F2+~2 8g

It will be much easier to find the instantons by using the effective action expressed in terms of the scattering data (SD).
We recall these expressions.
One dimension: r(k) is the reflection coefficient of the potential u (x). I a~ I are the eigenvalues corresponding to this

potential (j=1, . . . , N~):

O~ 1984 The American Physical Society



29 CLASSICAL SOLUTIONS BY INVERSE. . . . II. 2905

S=—2 g y'(x, ') —2 f k f(k)in[1 —
i
r(k) i'],

j=l
where

x3~2
2 2 ~x im.

F(x)=argtanh(m/vx )+ —(m —p ) +-
3g 2g 2

f(k)=- dI'
4 dx

(1.4a)

(1.4b)

m is the positive solution of m (m —p ) =2gp, g is the coupling constant.
Ttoo dimensions: D(r) is the norm of the Jost function of the spherically symmetric potential U (r) (in angular momen-

tum). I A~,%=1, . . . , Ãe I are the eigenvalues (zeros of the Jost function). I cz,X=1, . . . , X~ j are the corresponding
normalization coefficients:

4A,Ic
S1Il&A.K +

4
Seff = 2, lnD(~) InD(r')drdr'+lnD(0)

o o ( r'2)2

8 ~ & A,lclnD (r)
+2 ln

Ic=l ~+~K K=1

kK+Ag
1n

1&K~L &N~

+in 1+2 g E(AE )
K=1

f r v (r)dr,
4g 0

where $ denotes the principal-value integral.
Three dimensions:

(2l+ 1)

I'our Dimensions, rn &0:
00

1S,rr ———f HlnD(~)[ln2 ——,+Ref(ir)]dr
m'

N~ A~

S,rr ———2 f rtanhmrlnD(r)dr 2m g $—xtanhnxdx
0 K=1

N~ E (.A,~—1/2)

+ f r u(r) 1 — dr+in g2 K=1 l =O

1+ g —', (ln2 ——,
'

)Az + $ x 2$( +x1)+mcotnx ——dx
K=1 0 X

——,
' f r lnr[U(r)+2]u(r)dr+

0

N~ E(A~ —1)
—1 + f r U(r) dr+in g g (i2+1),

K=} l=0

where g(x) =(d/dx)lnI (x) and E(A, ) stands for the integer part of A, . g~ is the renormalized coupling constant (see Part
I).

Eour dimensions, m =0: r(k) and t Ak J have the same definition as r (k) and jaz ) in dimension 1. The mass scale is
set by an arbitrary quantity po (scale invariance):

S ff — f dk k'»[ 1 —
~

r (k) )
'], +«g(ik)

Ns ~ Ak E(A,k —1)

+ g Ak + f dxx 2$(x+1)+ncot~x —— +.im g
K=1 ga K=1 l =0

(1.8)

where g is the running coupling constant, taken at scale e; xo is the center of gravity of the field U (x):

xo= f xU (x)dx f U(x) dx .

We also recall the derivatives of U (r) with respect to angular momentum scattering data:

d 1 4 ~ ~sixth~~
5U(r)= — ———

3
'p(r, ir)5D(r)dr+ g 2yE (r)5c~+4 g c~y~(r)pe(r)M~

r dr r n o D(r)3 K=1 K=1
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An interesting expression for the inverse mapping is

tIAx ——— I y&(r) 5u (r)dr .
2A,~

In all those expressions, yz or y(r, iI.) are the solutions
y(r, A, ) of the radial Schrodinger equation, with angular
momentum A, equal to kz or i~, defined by

lim e"g(r, A, ) =1 .

Finally we recall that

clr —— A,x /—F( —A.x)F(k,x),

){I=0.5+pig (pl&0), el=2.2,
9.44. . .

When g becomes large, we get

+lng+im+0 (1) .

&I ——1+0(g '), c I
——0 (g '),

S =0 94. —115g I+iIr+0(g 2)

where F(A, ) is the Jost function.
First of all, we study the general features of those effec-

tive actions (Sec. II). Their main characteristic is the ex-
istence of infinite-action barriers, which separate the space
of configurations into distinct homotopy classes. This al-
lows a classification of instantons, according to the homo-
topy class to which they belong. Qwing to the behavior
(1.1), we shall only be interested in the "lowest-action in-
stanton, "which corresponds to a single bound-state poten-
tial with the lowest possible eigenvalue.

Since it does not seem possible to express the effective
action in a completely closed form as a functional of the
scattering data, variational methods through numerical
computations of Shirr ale also used. Tile Introduction of
the scattering data in the angular momentum considerably
simplifies numerical computation of the effective action.

It is also possible to study analytica11y the gap equation
(expressed through the scattering data) and its solutions
for weak and strong couplings. The results obtained
analytically are in very good agreement with the numeri-
cal simulations.

In Secs. III and IV, we study numerically and ana, lyti-
cally the gap equation in zero (Sec. III), one, two, and
three (Sec. IV) dimensions. In dimension v=0 and v= 1,
all saddle points are given in closed form. ' In dimension
v= 2, we study the lowest-action instanton corresponding
to a single-eigenvalued potential. For smaH g, the eigen-
value A, I behaves like alg; the normalization coefficient
behaves as a2g; the effective action reads
S = —2.95 /g+ lug+i'. +0(1). For large g, C de-
creases like g' ' (e-0.3); S, behaves like
2(1 —e)lng —0.65; A, I has a finite limit A, =0.818. . . ; this
value k can be exactly computed since S,~~ has a closed
form in terms of the scattering data, when g =+ oo. In
dimension v=3, again, S,gg cannot be expressed as a
closed functional of the scattering data. The lowest in-
stanton solution is studied analyticaHy and numerically.
When g —+0+, we get

ton has an imaginary part for any positive value of the
coupling constant g. The 1/ili perturbation series can
therefore be resummed by a Sorel transform.

We notice that in dimension v= 1, the modulus of the
effective action decreases as a function of g, which shows
that the I/X perturbation series becomes more divergent
when g increases. Qn the contrary, in dimensions v=2
and v=3,

I S, I
increases for large g, when g increases.

This effect is stronger in dimension v =2 where
~S, (g=+ ~)

~

=+ oo. This seems to be a typical
feature of field theory.

Finally, we study the case of (P ) in four dimensions
(Sec. V). When the renormalized mass is taken to be zero,
the gap equation is analytically solvable through the
scattering data. It is shown that the 1/X series is not
Borcl suIDIDRblc when the running coupling constant gg 1s
such that 0 &g~ & 48m y

' where y is the Euler constant.
This comes from the existence of a real-action instanton.
This instanton reads

8zo'
u, (r)= ——

2

r ro+
ro r

Xo

The instability of (P ) theory in four dimensions has
been argued before by other considerations. '2' 'I

%'e start to analyze the effective action in dimension v
that generates the I/X expansion for (P ) theory (see
Part I). For a spherically symmetric field, it can be seen
from Eq. {I.2.15) that S,rr contains a sum of d (v, l)ink(oI )
where crl ——1+v/2 —1, l=0, 1,2, . . . . So, each time a
discrete eigenvalue A,x. & v/2 —1 coincides with an integer
(half integer) at v=2,4,6 (v=3,5, . . . ), the effective ac-
tion blows to —ao. The lowest eigenvalues that make
S g= —oo are A,~=0 1,2, . . . at v=2 g~ ——

2 T, . . . at
v=3 and X~ ——1,2,3, . . . at v=4.

These singularities show more exphcitly in the expres-
sions of S,~~ in terms of the scattering data, given in the
Introduction. Qne sees in these expressions that the effec-
tive action has a logarithmic singularity each time an
eigenvalue kz coincides with a A,~. The singular part of
Scg I'eads

where ro is an arbitrary length scale, and Xo is a solution
of the transcendental equation {5.3); 0 & A,o( l.

Qiher instanton solutions can also be expressed analyti-
cally in a closed form [Eq. (5.5)j.

Massive (P ) theory is studied in the limit of a small
renormalized coupling constant g~. For g~ ~ 0, the
infinite-X limit is not physically meaningful. ' When
gz ~0, the X= ~ limit seems physically reasonable, but
the theory has a real-action saddle point; hence its pertur-
bation series in I/X is not Borel-summable. This real-
action instanton describes ihe instability of the vacuum
P =0. An estimate of the decay rate is found:

P =C e '|i+0(1/X)], X»1 .

In all these cases, the effective action of the lowest instan- D (v, k)ln(Ax —Ax. ), (2.1)
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where

A,o& —v/2+ I

The numerical computation of S,tt is then straightfor-
ward, and the research of extrema can be easily done.

D(v, k)= g d(v, l)
I=O

(2.2)
III. ZERO DIMENSION

and d (v, l) is the degeneracy of angular momentum in v-
dimensional space. These infinite-action barriers actually
determine in a crucial way the structure of the action. As
a consequence, we shall develop resolution methods which
will be adapted to the presence of those barriers. They
separate the space of field configurations in homotopy
classes defined by a set of integers [li, . . . , l& I. Those
integers define the intervals (l;+v/2 —1,l;+v/2) where
the eigenvalues IA, i, . . . , A~ I lie. Moreover the ima-

ginary part of the effective action is exactly determined by
the class l;,1 &i &Nz to which the configuration belongs.
We get

&a
ImS,tt=+m. g g d(v, l) .

k=1 l=o
(2.3)

In this paper, we shall study the stationary points (in-
stantons) of the effective action. As is known, s these in-
stantons control the large-order behavior of the perturba-
tive series in 1/N. The contribution of an instanton to the
Kth order of any physical quantity reads (K »1)

C cos[(K+b/2)argS, ][1+O(K ')),

(2.4)

where S, is the effective action (generally complex) of the
instanton and b depends on the number of zero modes,
and on the exact nature of the computed quantity. C con-
tains the small-fiuctuation contribution around the instan-
ton, and the collective-coordinate-transformation Jacobi-
an.

It is therefore clear the the dominant contribution will
come either from an instanton with real action (which
would imply that the 1/N series cannot be Borel-
summable) or from the saddle point with the smallest pos-
sible

i S,
~

(S, complex). One can expect to have a sta-
tionary point in each homotopy sector. We also expect to
find the dominant instanton in the lowest nontrivial
homotopy sector. Namely, this instanton will have one
eigenvalue (Nji ——1) and this eigenvalue will lie in the in-
terval (v/2 —1,v/2). For v=4, we find in addition a real-
action instanton with 0&A,&&1. In one dimension, and
four dimensions with vanishing physical mass m =0, we
can obtain explicitly the instanton solution in closed form,
by extremizing the effective action with respect to each
scattering data. The inverse scattering transformation
gives us the corresponding field configurations. In the
other cases (dimensions v=2, 3,4,m &0), it is only possi-
ble to get the behavior of the scattering data correspond-
ing to the instanton in limiting cases (weak and strong
couplings). For intermediate couplings we use a variation-
al method. We consider trial functions v, (r) depending on
some relevant parameters (e.g., range, depth, . . . ). We
compute the scattering data for a given configuration u, (r)
by numerically solving the Schrodinger equation (1.11).

In this case, the functional integral becomes an ordinary
N-dimensional Riemann integral:

Z ~/2 exp 2 x + x (3.1)

One gets after angular integration

2(N/2) +" xF(ind-e dt,I'(N/2)

where

F(t)= —,'(e'+Zge '—t) .

(3.2)

(3.3)

where

Ve . I (K) (1+16g)'~ —1
E

( I 6g )1/2 (3.4)

p=(22+H/4)'", (3.5a)

co8s=z/ p,

Z=- (1+16g)' '
i (1+16g)' '+1——,
' ln , 2

. (3.5c)
16g ' (1+16g )

'i2 —1

We explicitly find in this exactly solvable case an expres-
sion with the general structure (2A).

IV. ANALYTIC AND NUMERICAL STUDY.
ONE, TWO, AND THREE DIMENSIONS

A. One dimension"

In this solvable case, the scattering data of the station-
ary point come from extremizing the effective action
given in the Introduction [(1.3)]. We obtain

i
t(k)

i
=1, r(k)=0,

' 1/2
3m —1K(=

2

(4.1a)

(4.1b)

where m is the positive root of m (1—m )= —Zg. The in-
stanton follows from (4.1) by inverse scattering transfor-
mation:

v, (x)= —2» sech (»x) .

Its effective action reads

S, = —ln(m —1)

+2ln m + 3m —1

' 1/2
2(3m —1)

3v Zg

(4.1c)

(4.1d)

F(t) has one real saddle point, around which an expansion
generates the 1/N perturbation series, and a pair of
complex-conjugated saddle points that control the large-
order behavior of the 1/N series. One gets for the Kth or-
der
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where B. Two dimensions

+ [ (
2 & )1/2]2/3

Limiting cases. When g ~0+,
ai ——1+O(g),

(4.1e)

(4.2)

u, (x)=——2
(4.3)

(coshx)

which is precisely the square of the instanton for (P )

theory in g-perturbative expansion'

BS,ff0=
BCK

2 +—f dr v,'(r)
g 0 p

(4.6)

This case is not analytically solvable in general;
nevertheless we can study the instanton behavior for limit
coupling. %e start with the small-coupling regime of in-
stanton u, (r).

(a) g~o+. We assume that the lowest instanton v,
and its eigenfunction q&z(r) have a nonsingular limit when
g~O+. First of all, the derivative of Seff [Eq. (1.5)] with
respect to CK reads

r

S, = +ln —+O(g) .
3g 4

(4.4)

Hence we obtain for g —+0+

CK =Dig (4.7)

It is known that the value ——,
' controls the high orders of

the perturbation series in g. ' This feature of instantons,
exchange of limits N +co and—g~0, appears in all dimen-
sions. When g ~+ Oo,

23g2/3+O(g0) (4.5)

u, (x) becomes very deep and narrow (the depth is of order
a

&

——3g, and the range a
~

' -g ' ). We recall that as
long as g remains positive, vi & I; the effective action of
the instanton has an imaginary part +sr. This means that
the 1/% perturbation theory can be Borel summable, due
to the oscillating phase of (S, ) . ' The real part of S, is
plotted as a function of g in Fig. 1(a).

where a& is a finite numerical constant:
—1

a = — v'(r}dr1 2 0 &
c (4.8)

We will now study the gap equation 0=5S,ff/5v(r).
When g~O+, the term mru(r)/2g which comes from the
nonexplicit part of the effective action (1.5) has a singular
behavior. This singular behavior can only be canceled by
a singular contribution coming from the "explicit part" of
the effective action; such a contribution is provided by the
infinite-action barriers, and since we study the lowest
instanton, it is natural to set ourselves near the
(A,z. ——0+&——1) infinite-action barrier. In this case, the
singular behavior comes from the single term lnD(0). It is
easy to see that, near this barrier

Rp Sc

lnD(0) =ink++0(1) .

The effective action can be rewritten in this limit

S,ff=lnA& — f rv (r)dr+0(1) .
4g 0

If we now derive (4.10) with respect to u (r), we get

(4.9)

(4.10)

5S
5u (r)

yz(r) ru(r)+O(1) . —(4.11)
2kK2 4g

I

$250 6

Equations (4.6) and (4.11) have a common solution for
g~O+ if the first two terms cancel in Eq. (4.11). Indeed
this implies A,i~0 since we know that c&~0 as g~O+
(4.8). When A,

&

—+0:

c, =X,/2
~

E'(0)
~
+O (X,') . (4.12)

We assume that F'(0) is not singular; therefore c i/A, &
has a

finite limit when g —+0+. Moreover, we must have

A& ——Pg+O(g ), (4.13)

-10

FIG. 1. Real part of the lowest-instanton effective action as a
function of the coupling constant g. Curves (a), (b), and (c) cor-
respond to one, two, and three space dimensions, respectively.
The imaginary part of S,ff equals +m. for all g.

(4.15)

2P2 4y, (r)'= rv(r) . — (4.14)

r '/yi(r) is then a solution of the radial Schrodinger
equation with vanishing eigenvalue:

T

d2 1 d g i'(r) q, (r)
2 + 1+CD l /2dp' T dl' l /2
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S —2 95 (4.16)

Therefore, S, finally reads, for g~0+,

S,=— f rv, (r)dr +lng +O(1)
2g 0

95 o ~ ~

+lng +0(1), (4.17)

where we have used Eqs. (4.12)—(4.14) and (4.16).
(b) g~+ ao. In the strong-coupling regime, we will as-

sume that v(r) is short ranged. This assumption will be
checked analytically (in an indirect way), and also numeri-
cally. It is convenient to introduce in Eq. (4.6) (which is
exact for any g) the Jost solution f»(r) [Eq. (I.1.10), and
to rewrite c» as see Eq. (1.11)]

This shows that up to a finite norinalization (a),
r '~ yi(r) is an instanton solution of the equation of the
motion for the (P ) theory. This instanton controls the
large orders in g of the (P ) theory. Its classical action is
known numerically

~ drf v'(r)f»(r)' &A,g', (4.20)

CK (A2g (4.21)

cK goes to zero when g goes to + oo.
Let us now analyze the second saddle-point equation:

M
5D (r) (4.22)

From dispersion relations for the Jost function
tF(i ~) t 'r ~» 2i r ~ lnD (~')de'

exp
Fp(i r}», i~+ A» m o ~' ~ —(~—i 0)

where e& 1. This amounts to requiring that, since f»(r) is
A~+ 1/2perfectly regular and equals r» around r=O, v'(r) is

not too singular in this region. The interest of introducing
f» instead of y» is precisely the fact that f» has an exact-
ly known behavior for r —+0, while y» has not. From
Eqs. (4.18)—(4.20), we get

c» —— A»/—F(, —A,»)F'(A,») .

We recall that
A,~+ 1/2

f»(r) —r [1+O(r)] .
r~0

The saddle-paint equation (4.6) now reads

(4.18)

where 5(r) is defined by

(4.23b)

(4.23a)
T

F(i~) 4 2 ~ ~'d~'5(r')1+ exp
Fp(i r)» ( r m P ~' (v i 0—)—

2F'(A,» ) nF( —A») f ~ f»(r)
V'(r)dr =0 . (4.19)

g 0 r
D { )

is(T)

Fp(i v)
(4.23c)

We assume that, for g large, we get

5S,8 4 d 2rsinhm~ ~
d

d f'(r, t&)0= 5(~)— drv r
5D(~) nD(~) dv gD(~)

We see that if qr~(r, iw) is not singular around r=O, 5(v) must be of order 1/g, since 5( ~ ) =0. In the limit

5(~)=0, Kii ——1, D(~)=1+k» /+ .

(4.24}

(4.25)

This corresponds to a rather singular potential, which indirectly checks the hypothesis that v (r) is short ranged for 1«ge
g; indeed v (r) seems to be zero ranged in the limit g~+ 00.

The last saddle-point equation reads

8 4 " d f'»(r)i»(r)
+2mcotnA» ——f. .

z z lnD(r)dr+ —f dr v (r)
~K ( +&»')' g 0 dr r

(4.26)

Assuming that

g f dr y»(r)jp»(r)
v'(r)

I

instanton, is

—0 8181 (4.29)

goes to 0 when g —+ oo, using Eq. (4.25) and Ref. 16,

f ln(1+t ')dt = —m/2,
P (t2+ 1)2

we obtain

4 +m cotmk =0 .

(4.27)

(4.28)

The first raot of Eq. (4.29), corresponding to the lowest

We get the following pictures of the scattering data of the
leading instanton in large-g limit. The eigenvalue A, 1 tends
to the finite value A,

' =0.818. . . , the normalization coef-
ficient ci vanishes faster than g' ', and D(7) has the
form 1+ (A, /w) . Hence the effective action will be
dominated by the term (lnci) and goes to + oo when
g~+ ~, which confirms the conjecture of Ref. 11; we
have shown here how this value is reached when the non-
linear cr model is obtained from (P ) theory by sending g
to+ ~.
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S,=1.41ng —0.65+i~ . (4.30)

(c) Numerical results. A numerical survey of the effec-
tive action for g small indeed shows an extremum of ac-
tion close to the infinite-action barrier IA. i ——O,Ns =1I.
The normalization constant 2' J ru, (r) dr is computed
and is found equal to 3.10, which coincides up to 5%%uo with
the analytic prediction (4.17). In the general case
(0&g &+ ao ), we study numerically S,ff and we find an
extremum of S,ff in the region of one-eigenvalued poten-
tials with A. ~ &1. This is done for a coupling constant g
going from 10 to 1250. It is found that S, can be
represented as a function of g:

We shall now derive S,ff (1.6) with respect to u(r). We
obtain

5S,g0=
5u (r)

C) 77r
tanm. A, iyi(r) +r 1—

7T' g

+continuum contributions . (4.33)

Assuming that ihe continuum contributions do not have a
singular behavior, and since we have supposed c~ ~ + oo,
we obtain, as before, that the 1/g singularity must be can-
celed by an equivalent singular behavior from the contri-
bution of the eigenvalue. We then obtain

ci Ag (4.31)

This shows that the inequality (4.22) can actually be re-
placed by an approximate equality for large g: r'v, (r) =aiq i(r)'+O(g),

A, i ——0.5+a2g+0(g ) .

(4.34a)

(4.34b)

Another result is that the behavior of the eigenvalue A,
&

can be approximated by

A, i -0.82 —3g '~ for g & 10 (4.32)

which confirms the analytically computed value of A, i
when g —++ ~, A,

&

——0.818 . . A more qualitative result
is that, as was assumed in the analytic discussion, the ex-
tremum configuration tends to a very deep and narrow
potential when g~+ oo.

The conclusion of our analytic and numerical studies is
the following. There is indeed an instanton in the first
nontrivial hornotopic region. Its scattering data go from
ci ——O(g), Ai ——O(g) for g small to ci ——O(g' '),
A, i

——0.818 for g infinite. The corresponding action al-
ways has an imaginary part +m. which means that the per-
turbative expansion in 1/N can be resummed by using a
Sorel transform. Its real part goes to + ao when g be-
comes large [see Eq. (4.30)]; the perturbation series, which
is dominated by I (IC+ —, )/S, + ~ for IC large, becomes
therefore less divergent when g increases, and it would not
be surprising that the conjecture" of a convergent 1/X
series for the nonlinear o model, which is known to be
true for the S matrix' and for the form factors' should
be correct for the Cxreen's functions, too.

The effective action is plotted as a function of g in Fig.
1(b).

(We call this the first solution. ) Since the potential u (r) is
nonsingular, has an eigenvalue A, i, and a fixed sign [due to
(4.34a)], it is necessarily negative. From (4.34b) and
(4.33), it is easy to see that A, i)O.S (or az)0), which
means that at least for g small the "first instanton" lies in
the complex-action sector. The normalization constant c~
is given by

'= I,yi(r) = f u, (r)dr (4.35)

S = —9.44. (4.37)

Therefore, the effective action of the extremum configura-
tion will finally read

9 44 ~ - ~

+ln(g)+O(1)+i ~ . (4.38)

which is a finite constant, since v, (r) is assumed to be
nonsingular. From (4.35a), we obtain at once

+a) =0 (4.36)
dr r dr r2 r

which shows again, as in one and two dimensions, that—u(r) is the square (up to a normalization) of the instan-
ton solution for the ( P ) theory. This solution controls
the large orders of the perturbation expansion in g; its
classical action is known numerically

C. Three dimensions

As was the case in dimension 2, we cannot solve analyt-
ically the gap equation for this model. It is however pos-
sible to investigate the limit couplings g ~0+ and
g~+ oo.

(a) Analytic study: g~O+. In this limit we shall as-
sume that the one-eigenvalued extremum configuration
has a finite-range potential; this implies that the normali-
zation constant c i remains finite.

Indeed, if the potential has a finite range a, the integra-
tion from a to + oo in

cfog
= drlr gx(r)0

will be of order e '. Clearly, if we want c] to become in-
finite, we need (as a necessary condition) a ~+ ao.

BSoff oo 7ruo(r) d tPfc(r)0= = dr r 1—
BA~ o 2g dr r

This equation can only be fulfilled if v, (r)/g does not van-
ish for r &0 when g~+ ao. If u, (r)/g =0 (g =+ oo),
Eq. (4.40a) would read, after partial integration, in this
limit

(4.39a)

r =0 (4.39b)

which means that yr. (r) =0 when g = + oo, as we have al-

The lag is provided by the contribution of
K 1—2& x dx tanwx when A,g ~0 2 '

(b) Analytic study: g~+ oo. First of all, we derive S,ff
with respect to cz. It gives

o
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ready seen for r & a, since both functions have the same boundary condi-
tion

lim e'yx(r)= lim e"qPz(r)=1, (4.40)

this implies that u, (r) has an infinite range. We shall here
assume that the first instanton is a simple well-shaped po-
tential with finite range. This will be confirmed by nu-
merical computations. Hence, u, (r) is in fact a potential
whose depth increases like g (or faster than g). Combining
this behavior with the request of a single eigenvalue, it is
clear that the range of u must vanish when g~ ao [here by
range we mean the distance a such that u (r) « 1 if r & aj.
Therefore the difference between the free solution pox(r)
and the bound-state eigenfunction yx(r) will be small for

I

and u (r) can be neglected for r & a. Hence the normaliza-
tion coefficient of

yx (r)
ex(r), cor —— da

0 p2
'QO

0will diverge when a~0 since [yx(r) /r jdr diverges
2k+ 0

like a /21'.x when a goes to zero. So, we conclude
that cd~0 when g goes to + oo. Let us now compute
BS/M, x wheng —++ co. We get

r

BS mu (r) d f'xPx0= —= —2~A,x tanm. l,x —4cx r dr 1—
BA,x 0 g dp T

(4.41a)

Assuming that cx vanishes fast enough, we get when
g~+ oo

I

suits for the real part of the action are plotted in Fig. 1(c).
We find that ReS, can be accurately represented as

0= —2@k,stank, ~m . (4.41b) ReS, (g) =0.94—115g (4.45)

The first solution of this equation is A,x ——0. We interpret
this value as corresponding to the trivial potential u (r) —=0,
which is a solution of the gap equation for any value of
the coupling constant g. Should it correspond to a non-
trivial solution, it would mean that a real-action instanton
exists, and that the three-dimension (P ) theory is un-
stable for large values of g. As a matter of fact, we shall
see that numerical computations do confirm the absence
of such an instanton. Therefore, we obtain that the first
nontrivial solution of Eq. (4.41b) is A, i ——1:

A ]
2

F(—)i,i)F'(A, i)

goes to zero as g~+ao. This can be interpreted as a
singularity of F around z = —1 (we recall that F does not
need to be analytic for z&0). The instanton remains in
the first complex-action sector, as is the case when

g ~0+
(c) Numerical results: g~O+. We find an extremum

of the effective action in the first nontrivial homotopic
sector; it corresponds indeed to a nonsingular, finite-
ranged potential u (r), with a single eigenvalue

for g&150. The eigenvalue A, , corresponding to this po-
tential is also studied. We find it has a limit A, i

——1 when
gazoo. Finally, we want to emphasize that, when g in-
creases, we find that the potential u, (r) becomes deeper
and narrower, which confirms our analytic conclusion.

Our general conclusion will be the following: first of
all, the analytic results have been totally confirmed by nu-
merical simulations. It then follows that the 1/N pertur-
bation series is controlled by a complex-action instanton,
and can therefore be resummed by using the methods of
Borel transformation.

Another conclusiou is that we now know, with a fairly
good precision, the action of the instanton that controls
the large orders in 1/N of (P ) when g —++Do. This
limit is known to describe the phase transition of a
Heisenberg spin system. ' The knowledge of the first or-
ders of the 1/N perturbation theory and of the large-
order behavior of the 1/N expansion will make it possible
to compute numerical values of critical exponents directly
in three dimensions, avoiding 2 + e and 4—e expansions.

V. FOUR DIMENSIONS

A, i ———,
' +O(g) (4.43)

A. Massless case
with

&(g) &0 . (4.44)

The numerical value of the limit 2n f drr u, (r) —is
computed and found equal to 9.50, which coincides up to
1% with the analytic prediction (4.38). For the constant
c~, we get the value 2.2 in the limit g~0+.

(d) General computation We do not find. any nontrivial
extremum in the real-action sector A,x & 1/2, confirming
the interpretation of the solution Ax ——0 previously given.
For values of g ranging from 10 to 1250, we find an ex-
tremum in the first nontrivial homotopic sector. The re-

0= =k Re11t(ik)+-6S p . 96m

5r(k)
2r(k)*

1 —
f
r(k)

f

(5.1)

We recall that in this case the spherically symmetric in-
stantons can be found analytically, owing to the separabil-
ity of the action [see (1.8)j. It is more convenient here to
introduce the reflection coefficient r(k) rather than the
transmission coefficient t(k) or the Jost function F(k) as
continuous scattering data. The derivatives of S,f~ will
read [see Eq. (1.8)j
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0= — =A, 2 +2/(1+k )+m cotmA, —as 1

a~j gz Aj

(5.2)

Equation (5.1) immediately gives r(k) =0. Equation (5.2)
has a trivial solution A~ =0. This, together with r(k)=0,
generates the trivial potential U=o.

We shall now study nontrivial solutions A,»&0. This
leads to

96m. = —2$(1+AJ )+ —rr cotIrAJ .1

AtJ
(5.3)

V, (x)=—
cosh'A, ,(x —xo)

(5.4a)

In terms of the variable r we obtain

The term on the right-hand side behaves like 2y+O(A&. )

around AJ- ——0.' lt is always increasing, and has asymp-
totic vertical straight lines for each integer Aj ~O. The
discussion of (5.3) is therefore straightforward.

0 & gR & 48Ir /y. This is equivalent to the condition
96m /g» &2y.

Equation (5.3) has an infinite number of solutions. The
first one is smaller than 1. Therefore it corresponds to a
configuration of a real effective action. The correspond-
ing instanton V, (x) reads

For the first instanton (XII ——1,A, I & 1) the effective action
S~ reduces to s(A, I). Equation (5.3) shows that the in-
tcgl'and II1 (5.6) vaIllsllcs when x =A,». Slncc
96m gz ~2y, the integrand is positive in the interval
[O, A, , ] and SI is therefore positive. The 1/X petturbation
series will be controlled by a term which behaves like
K!SI and therefore keeps a constant sign when IC is
large. The methods of resummation by Borel transforma-
tion cannot be applied here: this indicates an instability in
the theory itself. Notice that

2(1+A, , )
VI(r) — —CIr (5.7a)

—2(1—A, ()uI(r) ——C2r
r —+0

(5.7b)

since 0&A, I &1, uI(ao )=0, and u&(0)= oo. We can there-
fore interpret u& as an instanton describing the transition
from the unstable vacuum P =0 into the state of infinite
field P and back to /=0.

gII &0 or g~ &48~ /y. In this case, 48~ /g» &y and
no solution of (5.3) exists in the interval [0,1]. However,
in each interval [n, n+ 1] with n a nonzero integer, there
is a solution of (5.3), which means that there are in fact an
infinite number of instantons. We shall study the first in-
stanton: X~ ——1, A, 1&2. It is possible to solve analytically
(5.3) when gz is small. We obtain A, I

——1 g»/96Ir —&1,
since g& small implies

(5.8)
81

u, (r)=-
r 2 ro

ro+ r
(5 4b) The effective action takes the value

V(x) = —2—-ln detM,—a-

X

where M is a Xz &X& matrix with elements

&+'Ya+'Vb ' .
(2~.~, )'"

M~~ ——5,b +—— exp
a+ b

(5.5)

Here IA,;;i =1, . . . , Nz j is the set of eigenvalues of V,
and [y;] are %II arbitrary parameters. The action can be
easily obtained in general; it reads

1V~

S,rf ——g s(A»),
E=1

96m-s(i,») = I dx x +x 2$(1+x)

In those formulas, xu is a term which is necessary to con-
strain the potential V(x) and ro is an arbitrary scale,

ro =e 'po, where po is the arbitrary mass scale (see Part I).
The most general spherically symmetric instanton is a

reflectionless potential with any number X~ of bound
states, all of them being solutions of (5.3). All those po-
tentials admit closed-form expressions '

S,(gz )= + lng~ +0 (1)+i rr .= 32~
(5.9)

Those scattering data [A,, = l, r (k) =0] correspond to a po-
tential V(x) which reads

V(x)= —2sech (x —xo), (5.10)

where xo is determined by the constraint on V(x) (see the
Introduction).

Coming back to the variable r (x —xo=lnr/ro) we get

r 2

u (r) = —2V 2ro 1+— (5.11)
rp

This is exactly the square of the massless instanton of (t

theory: qr, =2k@2/(1+1, r ) up to a Vg factor. As in
the first case (gR &0 and gR &48m /y), the scale A, is
A, =ppe with the same definition of pp and xp. Notice
that this feature also appeared in the previous case, al-
though we did not mention it. We also check that the
dominant term in S, in (5.9), for gII ~0, exactly gives the

massless instanton action (with our convention). ' We
see once more that, as in one, two, or three dimensions, a
tight link exists between the limit g~O+ of the 1/X in-
stanton and the g instanton.

When gz goes to + oc, we are left with the equation

—2$(1+A» ) Ir cot+A»+ 1—/A, » =0 ,.

+m cotmx ——
x (5.6)

The first solution to this equation is computed numerical-
ly. The effective action reads
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1
S,= xzdx 2$(x+1)——+m cotmx +i' .

%'e obtain

A, ( ——1.S84. - .

S —1 502. -.
(5.12a)

(5.12b)

B. Massive ( P ) z theory

Before we begin any numerical or analytic discussion,
we must discuss the consistency of the large-1V approxi-
mation of the (P ) theory in four dimensions. It is
known that, in one, two, or three dimensions, the theory

J

The effective action of the real-action instanton is plotted
in Fig. 2.

The conclusions are the following: (1) For 0 & gz
&48+/y, there is a positive real-action instanton. The
I/N series is not Borel-summable. The theory is therefore
unstable. (2) For gii &0 and gii )48m /y, all instantons
have a complex action. The 1/X perturbation series ap-
pear as Sorel-summable in this case.

remains well defined as long as both the squared mass m
and the unrenormalized coupling constant g are kept posi-
tive. 22 In four dimensions, we renormalize this coupling
constant, and we want to know which is the region
(m, gii ) where the large-X limit is well defined. The pro-
cedure is simple. One computes the effective potential
V(u) which ls pi'oportlollal to the effective action Seff[u]
for u constant, with a given squared mass m and a renor-
malized coupling constant gii defined in part (I). Our ef-
fective potential is connected with the one in Ref. 12
through a simple renormalization-group transformation.
We find that the large-N limit is meaningful if our renor-
malized coupling constant g~ is kept positive. Otherwise,
we find for gii &0 a 1/N perturbation theory with ta-
chyons. Therefore we shall always keep g~ & 0.

1. Analytic study; gg ~0
Again, the gap equation is not solvable (at least explicit-

ly), since the effective action S,ff does not have a closed
form in terms of the scattering data (1.7). The only in-
teresting hmit here is the small-coupling one. The gap
equation Ieads

12+2 3
~ &z~r 1r u(r) —g 21((A,~ + 1 )+17 cot7TA, x. — px ( r) + (continuum contribution)

2
(5.13)

The same arguments as in dimensions 2 and 3 lead us to
the conclusion that, for gz —+0+, &z ——1,

A. i ——1+0 (g),
q)1(r) -r u(r) .

(5.14a)

(5.14b)

From (5.14b) we obtain the following equation for y1..

d 3 d %1(") 0'l(r)———+1—E =0
dr r dr r r

(5.15)

I
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FIG. 2. Lowest-instanton effective action S«q as a function of
the running coupling constant gz in four space dimensions for
m =0. This S«& is always real.

I

This means that r q&1 must be an instanton solution of
massive P theory in four dimensions. It is known that no
such instanton exists with a finite action S(P ). In fact,
the configuration that extremizes the classical action can
be considered as the limit, when the scale goes to infinity,
of the instanton of massless (P ) theory, with a mass "cut-
off."' ' Although this limit is singular for the instanton
solution itself ("virtual instanton"), the P action tends to
the massless action value 32m. .

Here we deal with effective action; anyway we expect,
for gz small, a similar situation as in p theory (gii per-
tlli'batloil theory). So tile 1/N lnstanton ls expected to
have a singular limit when g& ~0+.

An interesting feature of (5.13) is that, if we assume
V, (r) to be negative and with the shape of a well, as it is
for v= 1, 2, 3, and 4 (with m =0), the solution A, 1 attains
1 —0 from below when gz —+0+. This means that the
instanton —at least for gz small —has a positive real ac-
tion. This instanton describes the decay of the unstable
vacuum (P =0) into infinite field configurations. Indeed

A.l+ 1/2
we know that y-& behaves as r ' around r=0 with

2k] 2
A.1&1. Hence, from Eq. (5.14), u(r)-r ' and V1(r)
goes to —m when r goes to zero. The situation is exactly
the same as in the massless case.

Two conclusions can be drawn from this study. (1) The
massive and massless theories have the same qualitative
behavior, at least for small gR and gii. (2) The massive
theory is unstable for gz ~ 0 and gz small.

2. Numerical results

We have studied the interesting case gz &0 and small,
where an instanton of positive real action is present. For
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weak coupling, the computation of the effective action is
simpler than for large coupling («) 96m ), since the in-
tegrals over the continuous scattering data D(r) [see Eq.
{1.7)] are not dominant. This has been checked numerical-
ly for the instanton solution.

As trial functions, we have used two-parameter poten-
tials

a =
2eIA

«+o(«), (5.22)

hence a ~O when g~O+ which shows thai our computa™
tion is consistent for g small, since we find a «1. From
(5.21) and (5.22), we get

u (r) = Pf (r—/a), (5.16) A3 2y —yo= — «+0(« in«)~ y &yo0!I
(5.23)

S(P,a) = CK], P'a' —u,P'a'lna

where f(x) is a rapidly decreasing function. For instance,
-x2 -x'

we used f(x)=e ", e ",e
We avant to emphasize that the parameters P and a are

thc csscntlal varlablcs lI1 the extremlzatlon problem. Nu-
merical checks have shown that other variables are essen-
tially redundant. It is therefore possible to draw qualita-
tive conclusions from a study of the effective action as a
function of these two parameters only.

When a is small and I' is large, we find that the effec-
tive action can be approximated by

(5.24)

From (5.22)—(5.24), we obtain the following picture of the
instanton when gz ~O+:

Its range a behaves as ~gz.
Its depth I' behaves as gz
Its eigenvalue XI stays below 1; the action S has no ima-

ginary part.
Its effective action behaves like

+~,in[ —P'a'(1 —Aa')+y, ] . (5.17)
&&So —(~2yo —~3»n«+&(1) .

g~ —+0+ RR

The first term comes from 6m « ' J r dr u(r); the
second one comes from r dr lnr (u +2u) when

0
the depth I' is much larger than 1. The third term takes
into account the infinite-action barrier at A. ~

——1. It has
been checked numerically that the equation

Numerical simulations show the existence of such an
instanton for «small, with those qualitative features.
The constant alyp is found numerically equal to =330.
This must be compared with the analytical result of the g
instanton of massless P theory:

P a (1—Aa ) =const (5.18)

accurately represented the infinite-action barrier when
I Q)1 aIld a +&1.

Here the parameters AI o.2 (x3 A and pp 3le positive
constants depending on the exact shape of u (r).

The study of S(P,a} is easier in the variables a and

y =P a (1—Aa ). We get

S&=«S =330 ' ' +(~3—~2yo)«in« . (5.27)

If we replace gz by the scale parameter A, =1/a, we obtain,
from (5.27) and (5.22),

Finally, it is interesting to note that (5.25) and (5.26) lead
to

S~——330 . +CA, ink. (5.28)
S(a,y) = y (1+Aa )—any lna (1+Aa )

+~3» ly —yo I
(5.19)

when we have set 1/(1 —Aa )=1 + Aa since a « 1.
The stationary-point equations read

0= =2 Aya — -(1+Aa +2Aa lna),BS &]. 23' 2 2

Ba g~ a

w»c»s exa«iy the a«ion of a massless p' instanton with
size A, in massive P theory. '4 23

Thc conclusloI1 Qf this IluIQcrlcal study ls that an lIl-
stanton exists for I/N perturbation theory, in the sector of
real action. When g~O+, this instanton tends to the
massive virtual instanton, namely, the massless instanton
when the scale is sent to + oo. This indicates the ex-
istence of an instability for small coupling. This instabili-
ty will probably also be present for larger couplings.

The decay rate of the vacuum will be given for large &
(Ref. 24) by

0= — = (1+Aa ) —a2lna(l+Aa~)+
3' 8a O' —Xo

P =e 'C[1+0 ( I/N)], (5.29)

We get from (5.20)

(5.21) where C is an %-independent factor; S, is given by (5.25)
when « is small and positive, and m &0, and by Eq.
(5.6) when m =0, and 0&«&48m /y.
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