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Classical solutions by inverse scattering transformation in any number of dimensions.
I. The gap equation and the effective action
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A method to find space-dependent extrema (soliton or instanton) of one-loop effective actions (lo-
cal terms plus a logarithm of a functional determinant) is given. This method is based on a suitable
inverse scattering transformation and can be used in any number of space dimensions, provided the
field configurations depend on only one variable. The effective action of ((ty ) theory for the 1/X
series in one, two, three, and four dimensions is worked out in detail. Explicit expressions for the
effective action in terms of scattering data are derived. It is found that the gap equation for mass-
less ((t) ) theory (in four dimensions) is analytically solvable for spherically symmetric fields.

I. INTRODUCTION: INVERSE SCATTERING
TRANSFORMATION

Saddle-point methods are widely used in quantum field
theory and statistical mechanics. The knowledge of a
solution of the classical field equations enables one to
compute systematically perturbation theories in the cou-
pling constant.

This is true for constant or extended (solitons, instan-
tons} classical solutions. A step beyond classical solutions
involves the study of stationary points of an effective ac-
tion. This effective action is the generating functional of
one-particle-irreducible (1PI) Green s functions. It gives
the energy of a static configuration in quantum field
theory, and the Gibbs free energy in statistical mechanics.
Moreover, such an effective action at the one-loop level
(integral of local terms plus logarithm of a nonlocal func-
tional determinant} appears in several physical problems:
large-N and mean-field approximations; fermionic
theories when the anticommuting variables have been in-
tegrated over; and in connection with Gribov ambiguities
in Yang-Mills theories.

The search for extrema of such a one-loop effective ac-
tion leads to a new type of nonlinear and nonlocal equa-
tion (soinetimes referred to as a "gap equation") for which
no general methods existed up to now. This equation
reads, for instance (see below),

and to find the corresponding solutions in v-dimensional
Euclidean space for any integer v. This method is based
on the fact that there exists a set of natural variables to
express an effective action containing the determinant of a
local differential operator O. These variables are the
scattering data (SD) associated with this operator O. It
often happens that it is easier to extremize S,~~ with
respect to the SD rather than to the field variables.

Although functional determinants are always naturally
related to scattering amplitudes, we will restrict ourselves
to configurations in v-dimensional space that depend only
on one variable. In this paper, and the following one, we
assume these configurations to be rotationally invariant.
Other cases can be treated similarly, e.g., translationally
invariant U, u =U(xi ) (Ref. 9), etc.

To be specific, we start with the simplest possible case:
an X-component scalar field with quartic coupling. How-
ever, it must be clear that our method can be extended to
more general couplings' or to fields with nonzero spin,
and local symmetries. In v-dimensional Euclidean space,
the generating functional reads

Z( J)= f f &@exp[ —S(4)]exp f J C) dx

where 5 is the action of the model:

(
1

—t} +rrl +U( )

1 U(x)
g2+m2 gg

where g is a coupling constant, and u(x) the unknown
solution.

The aim of this paper is to develop a method to extrem-
ize such effective actions [which amounts to solving (1.1)]

Using the Hubbard-Stratonovitch transformation, "and
integrating over N, one obtains

Z(J)= j J &zexp ——Szz(z) exp —j 1 d xd"y J(x) y(y) x, yle
+p +z
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where S ff is the "one-loop effective action"

S,tt(z)= lndet( —8 +p +z) — f z (x)d"x .
8g —a)

A shift in z allows us to rewrite this effective action [see Eqs. (2.4)—(2.8)]

(1.4)

—8+m +US,rf(v) = lndet —

z—8 +m
PPl + OQ m

—' +
I (1—v/2) f d'x v(x) — f d'x v (x) (m &0) .(4~)"" 8g~

(1.5)

This action is shown to be finite for Rev & 6 provided gz contains the required counterterms.
We then look for extrema of this action. We shall restrict ourselves to spherically symmetric configurations. This as-

sumption is not too restrictive because the lowest-extended solutions usually have a maximum of symmetry. The prob-
lem becomes one dimensional. We expand the ln det in partial waves:

r

ln det + +" = g ' '+ ' "+ 'inc(X) (X=i+v/2 —1)—a'+m', , i!r(v —1)
(1.6)

where

b, (A, ) = lndet
—8, +m +v+(A, —

4 )/r
—8, +m +(A, —

4 )/r

This expression indicates that the scattering data (SD) of
the angular momentum for the potential v are the natural
variables in this case. ' These SD are defined by the linear
problem

~K2

F( —A»)F'(A»)

The Jost solution of Eq. (1.9) satisfies

(1.12)

where the discrete eigenvalues X~ are the positive real
zeros of F(A, ),

I c», IC = 1, . . . , Ng I,
which are the normalization coefficients of the respective
eigenfunctions:

—B„+m'+v(r) — X(r)= X(r) .
4r r

(1.8) qr(k, x )
X—+ —oo

Here —m & 0 plays the role of the energy. For m &0 we
can set m =1. In the case m =0, it is more convenient
to work with the variable x = lnr&R. This leads to the
linear problem

So the Jost function is given by

lim e ' y(x)=[t(k)] ' (Imk&0)—=F(k) .
X~+ Oo

(1.13)

[—B„+V(x)]q) =Eq&, (1.9) The scattering data associated with V(x) through Eq. (1.9)
are defined by

lim e "X(r,A, )=—F(A, ) . (1.10a)

In the free case (v =0) F reads

Fp(A, )=v'2~2 I (1+2) .

The scattering data associated with v(r) through (1.8)
are

D(r)= . , 0&r&+~,F(ir)
Fp )r

[A.»,K= 1, . . . , Ng I,

where V(x)—:e "v(r) and E= —A, =k . This linear
problem is also useful in the one-dimensional case for
m'~0 4'

The Jost solution of Eq. (1.8) is defined as the regular
solution at r =0:

limr '~ X(r, A, )=1 ( Rek, &0) .
r~O

The Jost function reads

F(A, )

Fp(A, )

N ~—~x 2k dv
exp f lnD( )

rc=j + i'+
(1.14)

we obtain

i
t(k) i, 0&k & ce

I »i,j= 1, . . . , N& I,
where the discrete eigenvalues i»i are the zeros of F(k) in
Imk &0,

Icj, j= 1, . . . , N&I,
which are the normalization coefficients for the respective
eigenfunctions.

The introduction of these scattering data will enable us
to express the nonlocal part of S,tt (functional deter-
minant) as a local functional of those data. The sum in
Eq. (1.6) can now be performed. Using a dispersion rela-
tion for the Jost function
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ln det

where

—8+m +u
8 +m

N8 dv= g y(AK, v)+ f lnD(w)p(r, v),
K=1

(1.15)

p(A, ,v) =i.a~(ix)
v —2 v —2 "p I(v —1) fp I(3—v) o 1 —(1—t)x

(1.16a)

(1.16b)

Those expressions are obtained for m &0. In the case when v= 1, m &0, and v=4, m =0 (this is the only massless
case which we shall study), we use the scattering data associated to the problem (1.9), and similar trace identities. '

The local terms of S,tt [Eq. (1.5)] in u(x) will be reexpressed thanks to trace identities which link thein to the scatter-
ing data, as explicitly as possible. '

We finally obtain, for the effective action in two, three, and four dimensions for spherically symmetric u(r) and
nonzero renormalized mass m, m & 0.

Two dimensions:

N~

lnD(~) lnD(~')dr d~'+ lnD(0) ——f g 1nD(~) dr
p p ( ~f2)2 K=1 +~K

'4~K'
+2 g ln sinn. A,K

1&K+L &N~

where $ denotes the principal-value integral.
Three dimensions:

T

A,K+ AL
ln +in. g [1+2E(AK)] f ru (r)dr,4'

(2n+ 1)

Four dimensions:

Ns
(

'
Ns

' E(2.» 1/2)—
S=—2 f rtanhirwlnD(~)dr —2ir g $ xtanirxdx + f r u(r) 1 — dr+i' g0 K=1 0 0 2 K=1 n =0

kS=—f HlnD(i)[ Re/(i~)+ ln2 ——,
' ]d~+ g —,

'
( ln~ ——,

'
)AK + f x 2$(1+ )x+mctno—x —. dx0 X

——, f r lnr[u (r)+2u(r)]dr+0

N~ E{A~)

16 f r'u2(r)dr+i~ g g n'
K=1 n=1

Here E(x) means the integer part of x, g(x)=(dldx) lnI (x), gR is the bare coupling constant in v=2 and 3 (no
coupling-constant renormalization is needed here), and gR is the renormalized coupling constant in four dimensions
(m &0) defined by I iv(0, 0,0,0)= —gR where I iv is here the four-point irreducible Green s function. In the massive
one-dimensional case, and the massless four-dimensional case, with the aid of a dispersion relation analogous to (1.14),
we get

One dimension [general u(x)]:
N~

S=—2 g P(az ) 2 f kdk —ln~F(k)
~

j=1
where

P(x) =arg tanh + + +m im x [(m —1)x]
2g

p(k) =— 2v x1 dP(x)
4 dx

F(k)=—[t(k)]
Massless four dimensions [spherically symmetric u(r)]:

32M 1f x 2$(1+x )+m cotnx ——dx.
gR( ~ ) =1 »=1Hog K

N~ E{X~)

f k dkln[ ~F(k)
~ ] +Ref(ik) + g g n in,

4~ gRV P~P) K=1 n=1
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where again

E= integer part,

1((x)—: lnI (x),=d
dx

ging (po/p) is the running (renormalized) coupling constant defined at a scale p such that

f drr v (rpo)ln(rpo)
ln(po/p )=

dr r U (rpo)

po is an arbitrary mass scale. We shall study in the following paper the properties of those actions, the solutions of the
corresponding stationary-point equations (gap equation), and the application to the specific problem of 1/N perturbation
seAes.

II. LARGE-N LIMIT. EFFECTIVE ACTION AND SCATTERING DATA

We want to study an N-field theory with O(N)-invariant quartic coupling. The generating functional in v Euclidean
dimensions reads

Z(J)= f f ~4(x)exp —S(@)—f J(x) 4(x)d"x

where

(2.1)

2 -2S(e)= f d"x —'8 C Bi'C+" e + g (q )'
2

Using the identity (Hubbard-Stratonovitch transformation)

exp ——f d"x(4 ) = f f&aexp —f d'x. a (x) 2iv'g/N—a(x)C& (x)

and integrating over ( 4 ) (Gaussian integration), we get

1 2 2 + oo

Z(z) = &z(x) exp ——lndet( —8 +p +z)— z (x)d "x + (source-dependent terms) . (2.2)
Zp 2 8g —oo

Saddle points of this functional integral are solutions of the so-called "gap equation"

1 z(x)
—8 +p +z(.) 4g

A constant solution zo obeys therefore

Zp +m I
4g —~ (2m. )"~ k +p +zo

Hence, setting p +zp ——m & 0 we get

m" 1 (1—v/2) m —p
(4~)"~' 4g

(2.3)

(2 4)

(2.5)

Expansion around the saddle point zo generates the 1/N perturbation theory. The two-point function at leading order
reads in momentum space

5(k+k')5, b
&y.(k)y (k')&=, ,

' +0(1/N) . (2 6)
k +m

This allows. us to interpret m as the renormalized mass for N large. We keep m &0, so we shall always stay in the
O(N)-symmetric phase of the theory. The spectrum consists of an N-piet of massive scalars transforming under the fun-
damental representation of O(N).

After a shift in the integration variable,

z~(z+po —m )—:U,2 2

we get from (2.2)—(2.4)

(2.7)
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S,ff(u)= lndet
—8 +m +u(. )

—8+m
Pl ~v—4

1 (1—v/2) f d "xu(x) — f u'(x )d "x,—0O 8' 00
(2.8)

where g~ is the dimensionless bare coupling constant (m is used as a mass unit). We will now show that S,ff can be
made finite for Rev & 6 if g~ contains an adequate counterterm. The ln det can be expanded as a sum of one-loop dia-
grams, as follows:

lndet 1+ =G(O) f
+ 00

u(x)d"x ——f f u(x&)u(xi)G (xi —x2)d"xid"x2+
2

( )II +1 + 00

+ o e e u(x i ) . u(x„)G(x &

—xz) G(x„—xi )d "xi . d "x„+
7l 00 00

where

(2.10)

The first term in (2.9) reads

(2.11)

This term clearly cancels in (2.8), as it must. Since u =0 is a trivial saddle point of S [due to the shift (2.7)], 5S/5u van-
ishes when u=0. When v=2, all terms with n )2 are finite in (2.9), and so is S,rr in (2.8}. Mass renormalization is
enough here to get rid of UV divergences.

When v~3, no divergence at all appears in (2.8). This phenomenon is well known for any object expressed in terms of
one-loop integrals such as S,ff.

When v—+4, besides mass renormalization, coupling-constant renormalization is also needed here since the second
term in (2.9) has a pole:

f +00
2 dx I+~ d k 1

(2m)" — (k +m ) (2m)"
V (x) m -4 + 00

+ finite terms f u (x)d "x .
16m (v —4) 00

(2.12)

We therefore choose

1 1

v —4 sg~2 + (2.13)

where gz is a finite coupling constant.
For higher dimensions (v) 6), new divergences appear in the expansion (2.9). For example, at v=6, one finds as resi-

due -[—,(B„u) +(u+1) —1]. This cannot be canceled by the previous counterterrns in (2.8) since P theory is nonrenor-
malizable beyond v=4. Anyhow, it is possible to derive trace identities by computing the residue at v=2, 4, . . . of
ln det[( —8 +m + u )/( —8 +m )] in two independent ways: first from the Feynman-diagram expansion (2.9) and then
from the expansion of this ln det in terms of the scattering data [for a spherically symmetric u(r)]. '

Now we go back to our problem. The extrema of effective action S in (2.8) are general solutions of the nonlocal gap
equation:

1

—8 +m +u(. )

1 ~v —4
u(x) .—8 +m 4' (2.14)

No general method is known to solve such equations, except in one dimension. ' ' '" We develop here a inethod to find
spherically symmetric solutions of these equations. This method consists in expressing the effective action itself, (2.8), as
explicitly as possible, in terms of the scattering data of a given problem, and then extremize S,rf with respect to those
data. Since u(r) is rotationally invariant, we can expand in partial waves:

ln det
—B2 2 00= g d(v, l) ink(l+v/2 —1),+ptl ( p

(2.15)

where d(v, l ) stands for the degeneracy of angular momentum l in a v-dimensional Euclidean space,

(2l+v —2)l (l+v —2)
1!I (v—1)

(2.16}
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b, (A, )= det (2.17)

It is now clear that the spectral problem (1.8) in the angular momentuin provides the adequate scattering data in this
case (v=2, 3,4;m &0). These scattering data read in this case (see Introduction)

D(r): continuum contribution,

IA» &0]: discrete eigenvalues,

I c» I: normalization coefficients .

%'e know' that

F(A, )
h(A, )= (2.18)

where F(A, ) is the Jost function for the potential v in angular momentum variables [see Eq. (1.10)] and Fv is the Jost
function in the free case v:—0 [see (1.11)]. Therefore we can write a dispersion relation for h(A, ):

b, (A, )= Q exp f dr
~—~» 2A, lnD(r)

(2.19)
» —1 +» ~ ~ +

In this way the sum over l in (2.15) can be performed:

ln det

where

—8+m +u
—8 +pal

Ng
= g p(A», v) f drl—nD(r)

00 dip

E'=1 dA,
(2.20)

2I+ v —2 I'(1+v—2)p(kv)= —2g, a g h (2.21)

This function y will be reexpressed in a simpler form. Inserting in (2.21) the identities

V A 1
I + ——1 arg tanh =A, + —, ds

1+v/2 —1
' o I+v 2 —1 —s

1

I +v/2 —1+s
(2.22)

I (v—2+l)
l!

we can sum over I with the help of the formula

t 'xdx
for z=v/2 —1+s .I+z 0 1 —xt

(2.23)

(2.24)

We finally obtain

2A, 4A, sds ' t "(1 t)" —' x '—x'
y(A, ,v)= —2argtanh + —2 f f dt f x "~~ ' dx .

v —2 v —2 0 . I'(v —1) o I (3—v) o 1 —(1—t)x
From now on we shall separate the cases v=2, v= 3, and v=4 (m &0).

(2.25)

III. EFFECTIVE ACTION IN T%'0, THREE, AND FOUR DIMENSIONS

A. Two dimensions

We start from expressions (2.8), (2.20), and (2.25). To express S,tt(v~2), we shall first of all study the local terms in u

from Eq. (2.8). Since the mass scale is naturally given by m &0, we can set m =1 without loss of generality; it
amounts to setting u =rn uo and r =ro/m with uo and ro dimensionless.

The first local part reads

I (1—v/2)( —,') ~ v f r 'v(r)dr .I (1+v/2)
This generates three terms: The first one is the pole at v=2 from I (1—v/2). It reads

(3.1)
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OO

—, f rv(r)dr .
2 —v

It can be reexpressed through the trace identity'

Oo 8 oof rv(r)dr= —4 g A,»+ —f d~lnD(r) .
0

SC = 1

(3.2)

(3.3)

The second one comes from the expansion around v=2 of the constant factor in front of (2.2). It is also proportional
to rv(r )dr, which allows one to reexpress it by the same trace identity (3.3).

0 OO

The third one comes from the expansion of x around v=2. It will generate the integral Qi —— r lnrv(r)dr. This
is a typical renormalization effect. Despite Qi not appearing in the trace identities, it can nevertheless be expressed as a
local functional of the scattering data. The derivation of this expression is given in Appendix A. We obtain

Oo 4 ao a)

Qi ——f r lnrv(r)dr =
z $ f — inD(~) InD(~')d~d~'

0 0 0 (P ~'2)2

oo 2A,~+—f lnD(~)[Ref(iv)+ ln2]d~ ——f d~ g InD(~)
»=i r'+~»'

N8 A,K+A,l
2

+2+in ln
I|.=1 1&E+L &N&

The second local part reads

Qq ——— f rv (r)dr .
4g 0

(3.5)

This term does not seem to have a local expression in terms of the scattering data. For instance, if we try to compute
BQz/Bc», we are left (after partial integration) with a term proportional to

dv(r) p» (v)
-dr .

0 dr r

In contrast with BQ, /Bc» (see Appendix A), this term does not show as a total derivative. The ( ln det) term in (2.8) will
be obtained from (2.20) and (2.25). We compute p(A, ,v) in (2.25) when v~2. Several terms must be considered.

—2 arg tanh[2A, /v —2] is replaced by +i~, according to the prescription A=A0+i, e ,The d. erivative of the term, which
appears in the continuum contribution (2.20), generates a 5(~). This leads to the appearance of a term lnD(0) in the ef-
fective action

4A. /v —2 generates a pole term which will read

4 g A.K ——f lnD(w)d~

This cancels as expected, with the pole generated by the first local term in v in (3.3) and (3.4).
Finally we have to compute the remaining finite part of y:

x '—x'
q„(X)=—2 f sds f f —:dxdt

o o o 1 (1 t)x
with yk(0) =0. Differentiating with respect to A, we get'

1

Bk
=4y+2 2$(k)+~cot~A, +—

(3.6)

Sln1TA, g
(p~(AK) =4yA»+41nI (AK)+21n +2 ink++i ~~, (3.7)

+XI
ln +in~ — rU r dr,

4g 01&EEL &N&

(3.8)

where ~=2E(A») (where E stands for the function "integer part"). Combining Eqs. (3.1)—(3.7), we finally obtain

4 r+r'S,zf = — $ $ inD(v) lnD(v') d~d~'+ lnD(0)
0 0 ( ~'2)2

8 ~ A,K 1nD(~) ~ A,K——f g, d~+2 g ln 4 sinai, »
»=i 4c'+
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where ~ is equal to

B
~ 2A

1 one i ufo. r each eigenvalue, coming from —2 arg tanh
E=1 v —2

[which comes from the poles in g~ y(Ax 0)].

+ g 2E(Ax) (3.9)

8. Three dimensions

In this case, we can set directly v=3 in the local terms in u of Eq. (2.8). No trace identity is available to express an in-
tegral of r u(r) or r u (r) in terms of the scattering data. The local term remains of the form

Q3
—f r u(r) u—(r) dr . (3.10)

0 2g

The ( lndet) can be obtained from (2.20) and (2.25) when v~3. Using the fact that' lim, oat ' '=5(t), we obtain
—s+ 1/2 s+ 1/2

y(A. , 3)=—2argtanh2A+4A. —2 f sds f dx .
0 0 1 —x

From the definition and properties of P(x) = (d/dx ) lnl (x), ' we finally get

y(A, , 3)= 2n. f x—dxtanmx .

Hence the effective action reads in three dimensions:

(3.1 1)

oo B K mu(r)S ff =2 ( —r tanhnr) lnD(r)A'r —2m. g x tannx dx + r u(r) 1 — — dr +&~~
0 K=1 0 0 g

where

E(XK—1/2)

(2n+1)
E=1 n=0

[due to the poles in the integrand of (3.11) when x =n+ —,', n integer].

(3.12)

C. Four dimensions (m2&0)

We start again from (2.8), (2.20), and (2.25) to obtain the expression for the effective action in terms of the scattering
data, and we set m = 1.

The first local term in (2.8) will give, as in the case v=2, three contributions: a pole

( proportional [1/(v —4)] r u(r)dr), a finite term proportional to r v(r)dr, and another finite term proportion-
oo 0 0

al to f r lnru(r)dr.
0

The second local term in (2,8) gives three contributions due to the coupling-cgnstant renormalization. One is a pole
proportional to [1/(v —4)] r u (r)dr, one is a finite part proportional to r u (r)dr, and the last one is another0 oo 0
finite part proportional to r u (r)lnrdr. It is useful to combine the poles, which allows us to reexpress

0
the residue at v=4 through the trace identity:

NB

f r [v (r)+2v(r)]dr= —", g Ax + —f dry lnD(r) .
0 'E

1
m' 0 (3.13)

Finite local terms contain the expression

——, f r [u (r)+2u(r)] lnr dr (3.14)

which cannot be reexpressed as a local functional of the scattering data.
The lndet term follows from (2.25). Here it is easier to compute By/BA, rather than y itself. In order to obtain the

limit v~4, we use the properties of the distribution

(3.15)

Partially integrating Eq. (2.25) and using the properties of g(x), ' we get

y(A, ,v~4)= A. + f s [f(1+s)+P(1—s)]ds+O(v —4) .
v —4 0 (3.16)
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The contribution of the pole A, /(v —4) to the ln det in (2.20) exactly cancels the pole in the local terms as expected.
The poles in the integrand of (3.16) will contribute to the imaginary part of the effective action as a factor

E(A, )

+i~~ where~= g n
n=1

since y can be rewritten as

"2 1y(X)= + f s 2$(1+s)+~cotns+ —ds+O(v —4) .
v —4 S

(3.17)

(3.18)

Finally, to obtain an interesting expression for S,rf we must define precisely the renormalized coupling constant in terms
of a physically meaningful quantity. In the massive theory, we can define the renormalized coupling constant by
gz /X = —I iv(0, 0,0,0) where I iv(0, 0,0,0) stands for the one-particle-irreducible (1PI) four-point function at zero exter-
nal momentum. To compute this four-point function at leading order in 1/X, we come back to the definition of S,ff
[(2.8) and (2.13)]:

S,ff ——ln det

We set

—8+m +v
—8 +I2 2

'v —2

I 1 —— dxvx —m 2 + f u (x)d'x. (3.19)
16m (v —4) 8'.

~R 1
( in4m. + 1 —y)

32%2 327T2
(3.20)

for conveniency of the next computations. It then follows by a standard computation that the 1PI four-point function
reads

I (x i xp x3 xg) =5...,5...,I'(x i,x2,x3,x&)+ two other crossed terms.

At leading order in 1/X, I reads

2r(x, x2 x3 x4)= —5(xi —xz)5(x3 x4)G(xi, x3),

(3.21)

(3.22)

where 6 is the propagator of the v field:

G(x,y) =
—1

6 Sgff

5u(x)5u(y )
(3.23)

In Fourier space, G reads [from (3.19)]

G(k) = (4m )
arg tanh

1

zg+(1+4m /k )' (1+k'/m')'"

When k goes to 0 (m &0), G(k) goes to a finite limit 16m /(zx + 1); and we finally obtain

(3.24)

gR=—g 6'
1+ZR

(3.25)

This allows us to give the expression for the effective action of a massive theory in four dimensions, in terms of the
scattering data, and the renormalized coupling constant, from Eqs. (2.8), (3.13), (3.14), (3.16), and (3.25):

S ff — f 2[ ln2 ——,
' + Ref(i r)] inD(r)dr+ g —', (»2 ——,

'
)Ax '+ $ x 2$( 1 +x )+m cotirx ——dx

x
r

——, f r lnr [2+u(r) ]u(r)dr +
00 1 96m

0

E[X&]
—1 f r u (r)dr+in g g l

EC=1 I =1
(3.26)

IV. EFFECTIVE ACTION IN ONE-DIMENSIONAL AND MASSLESS FOUR-DIMENSIONAL CASES

A. One dimension

It is known that the one-dimensional effective action S,ff can be reexpressed in a closed form as a local functional of
the scattering data of the auxiliary problem (1.9) studied in the Introduction:
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d2
+V(x) p(x)=k p(x) .

dx

We recall that these data are the modulus of the Jost function
~

F(k) ~, k C R+; the set of eigenvalues (positive zeros of
F) Ial,j= 1, . . . , Nz j; and the set of corresponding normalization coefficients I cj,j= 1, . . . , Ns j (see the Introduction).
We obtain

S,rr= —2 g P(aj. )+ f p(k)k ln
i
F(k)

i
dk,

i=~

where

(4.1)

m im x (m —p )' 1 dPP(x) = arg tanh + + — x,p(k) =-
3g 2g 4 dx

m is defined by the equation (m —p )m = —2g, where p is the bare oscillator mass, and g is the coupling constant.
For large N, the energy levels of this quantum-mechanical problem with N degrees of freedom read

' 1/2

+lm+2n +O(1/N)3' —p
n 2

(4.2)

(4.3)

where n and l, respectively, stand for the principal and angular quantum numbers. This allows us to reinterpret m as the
angular quantum.

'

B. Four dimensions —m =0

We come back to the functional determinant in Eq. (2.8), which we expand in partial waves as in (2.15). Now we set
m =0; h(A, ) [in (2.15)] reads

b(A, )= det
—8„'+(A,'——,)/r'+u( )

—8„+(A, ——, )/r
(4.4)

The linear problem naturally associated with 4(A, ) is

1 A,+u( ) X= — X.
4r r (4.5)

Through the change of variables

x = in@or, V(x) —=e ",%'(x) =e "~ g(r),2„u(r)
Po

where po is an arbitrary mass scale, Eq. (4.5) is equivalent to

+ V(x) %(x,A, )=—A, %(x,A, ),
dx

(4.6)

where

lim V(x)= hm r u(r)=0,

lim V(x)= lim r u(r)=0 .

We assume that u(r) decreases faster than r for large r so that V(x) decreases exponentially (or at least very fast) for
x~+ oo. Hence we can identify in', (A, ) with the logarithm of the Jost function defined in (1.11):

—8, +(A, ——,
' )/r +u( ) = lndet—B„+(iP——,)/r

(4.7)

A dispersion relation for F reads
N

1 + A dk'
F( —X', V)= ff ' exp —f »~F(k') ~'

A, +xi (4.8)
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where aj is defined as in one dimension. Hence, from (2.15)

p' +v ~ ~ 3+v/2 —1 —/cj
ln det q

—— d(v, 1 ) ln
o i 1+v/2 1+Icj

This leads to

+ continuum contribution. (4.9)

~2—&+ ()
—V

+e)= g cp(xj, v) ——f dkp(k, v)ln ~F(k)
~j=l

(4.10)

f r lnporv (r)dr—= f xV (x)dx .

There is no available trace identity for this last term. Let us introduce now the mean size p =R of the potential v(r)
through the identity

(4.12)

where y and p are defined exactly as in (2.21). y is therefore given by expression (3.16).
The contribution from the local terms can be expressed in terms of the scattering data of problem (1.9) by means of

trace identities. The linear term in v from Eq. (2.8) vanishes, when m =0, due to the (rn ) factor that appears in front
of it.

We have given the bare coupling constant g a dimension by introducing 1/g =go /8~ where po is the mass scale in-
troduced in the change of variables (4.6). 1/gii must be renormalized as in (2.13) to cancel the UV divergences appearing
in the ln det. Once this is done, the finite part of the quadratic term can be rewritten as

f r v (r)dr= f V (x)dx= —", g lcj +.—f Hln~F(~)
~

dr, (4.11)
j=l

lnpor v rr dr
ln

Po f r v (r)dr
(4.13)

In the x variables, ln(p, /po) corresponds to the center of gravity of the squared potential in the x axis. From Eqs. (4.10),
(2.8), (2.13), (3.16), and (4.11)—(4.13), we obtain for the effective action

N8 x'.
1 1S,tt ——g f x 2&(1+x)+m cotmx ——+'f HReij/(t'r) ln

~

F(g )
~j=l 0 x 4w

"~ 16''+2H g + continuum contribution
j=l

1 Po 1—ln + 2 ( ——,+y —inn. )
8gf p 32m

(4.14)

It is natural to introduce the running coupling constant. We define
T

6H 2 1 Po 1=(2p ) — —ln + ( —2+y —inn)
gk(I /j o) 8' p 327T

so the effective action reads

(4.15)

3217 3 «J5 ff g Icj + $ x 2p( 1 +x ) +mcotirx ——.dx +imgn.
j=1 gR n=1

+ ln F~ Re is+
4m

(4.16)

where gji(p/po) is the effective coupling constant at the dimensionless scale (p/po) associated with the field configura-
tion V(x) through (4.13). It must be remarked that this massless effective action has a closed form in terms of the
scattering data associated with the linear problem (1.9). This will allow us to get exact analytic solutions (instantons) of
the zero-inass version of the gap equation (2.14), provided that the scale (p/po) remains fixed. So we shall get extrema
or stationary points of the effective action with a constraint on the dilatations on r or equivalently on the translations on
x: V(x) will be obtained up to a translation on x, through inverse scattering transformation; this translational degree of
freedom will be suppressed by the constraint, and V(x) will be uniquely determined.

APPENDIX A: NEW TRACE IDENTITY

We want to obtain an explicit expression for Qi ——f r lnrv(r)dr in terms of the scattering data of v(r) An easy way.
to do that is to compute the derivatives of Qi with respect to those scattering data. We recall that the functional deriva-
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tives of u(r) with respect to the scattering data can be explicitly obtained from the Gel fand-Levitan-Marchenko equa-
tion:

d 1 4 ~sinhm~ . 25u(r) =— ~ ———f 3 [y(r, ir)] 5D(r)dr+4 g c»p»(r) p»(r)M»+ —,p» (r)5c»
d 2

r dr r n o [D(r)]3 X=1 dA, g
~, (A 1)

where y is the regular solution of the radial Schrodinger equation (1.8) such that lim~„+ ~e y(r, A, )=1. This enables
us to explicitly compute all derivatives of Qi with respect to scattering data. The first derivative reads

5Qi d q»'(r)
lnr 2 dr

5c~ o dr r

5Qi
5c»

Partial integration leads to

~ y»'(r)=—2 dr =
O r2

(A2)

(A3)

where p»(r) =p(r, A») is the eigenfunction corresponding to the eigenvalue A» of the linear problem (1.8). We recall

q»'(r)
c -'=f, dr. (A4)

Qi ———21nc»+Q2(A», D(r)) .

We now compute

5Q2 d 4c» a
lnr p»(r) y(r, i,») dr .

5A,» p dr r

Again, through partial integration, we get

5Q2 - 4c»
p(r, k,»)dr .

0 r

Now we write j~ as

y(r, A,»+ M,» )—g)(r, it» )

5A,»

and we use the equality

(A5)

(A6)

(A7)

where W is the Wronskian of the two solutions y(r, l, i) and y(r, l2). We now set A, i~A2 in (AS), and using (A7) and
(AS), we integrate exactly (A6). Using the behavior of y(r, A, ) when r ~0 (Ref. 12),

(„~) +(~), i.+in +(—~),i.+in-
we finally get

5Q2

M,»

E"(A,»)—2
A,» E'(A,») (A10)

2A, InD(v')
dexp d7-

We integrate (A10) with the help of

Q(g) + A, —A»=II
Fp(A, )» i A, +A,»

(Al 1)

2~I'(A, + 1)
&2m.

which leads to

(A12)
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NB 2
—2A, 2'

Ql = g —2111CK+2111 A,K 1
= + ' f drlnD(r)

K=1 ~ (~K) r +AK

1(K~I.(NB

r

A,~+A, L
ln — — +Q3 (D(r) )

K L
(A13)

Qs follows from differentiating Ql with respect to lnD(r); and following the same scheme as above

= f lnr —,[q(r, ir)]' «.
5D(r) o dr r [D(r)]

By partial integration, and using Eq. (AS) for A, l ——ir= i,2, we finally get

lnD(r) lnD(r')dr dr'
( —r')'

00 2A,K
N

+ —f lnD(r)[ Re/(ir)+ ln2]dr ——f g 1nD(r)dr
K= 1 ~+~K

~~K 2(1—A~)2 +
CK[I (kK)] 1&K~I.&NB

2

The numerical constant (ln4m. ) for each eigenvalue has been adjusted taking for U and exactly solvable potential.
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