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Does the cancellation of quadratic divergences imply supersymmetry?
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We consider a large class of renormalizable field theories containing scalar particles and look for
relations among the various coupling constants such that the one-loop contributions to the quadratic
divergence for each scalar cancel. With the severe restriction that any such relation be invariant
under the renormalization group, we show in all cases considered that whenever such relations exist,
they are those of a supersymmetric theory. Non-Abelian and Abelian gauge theories as we11 as Yu-
kawa theories are treated.

I. INTRODUCTION

Grand unified theories with large-energy-scale hier-
archies have a well-known theoretical problem in that the
parameters in the Higgs potential that determine the low-
energy behavior undergo large corrections due to the
strong cutoff dependence of quadratic divergences. Thus,
the fine tuning of parameters necessary for the correct
low-energy phenomenology seems very "unnatural. "' If
one adopts the philosphy that the correct theory should be
"natural" then one is led to models such as hypercolor,
where Higgs particles are composites of fermions, or to
supersymmetric models, where no-renormalization
theorems guarantee the absence of quadratic diver-
gences. Supersymmetry has received a great deal of at-
tention recently because of this nice property. However,
since there is still no solid experimental evidence for su-
persymmetry and since the no-renormalization theorems
actually do much more than just cancel quadratic diver-
gences, one wonders whether or not there might be a
lesser symmetry that would render a theory natural
without introducing a vast multitude of as-yet-unseen su-
perpartners that are unavoidable in supersymmetric
models. In this paper we attempt to shed some light on
this question by parametrizing a large number of renor-
malizable field theories and placing the restriction on
them that they be free of quadratic divergences. It will be
seen that this restriction implies a system of relations be-
tween the coupling constants that is actually overcon-
strained when one demands that they also be invariant
under the renormalization group. We will show in every
case that either no solution exists or that the derived rela-
tions between the couplings are those of a supersymmetric
theory. On the other hand, a chiral U(1) model which is
supersymmetric will be shown to have no solution for the
elimination of the quadratic divergence associated with a
radiatively induced Fayet-Illiopoulos D term, as will be
discussed in Sec. IV.

In Sec. II of this paper we discuss the general problem
of canceling quadratic divergences to one loop and outline
our procedure for finding relations among coupling con-

stants that will do it. In Sec. III we apply the procedure
to models of the Wess-Zumino type involving only spi-
nors and scalars. In Sec. IV we treat Abelian gauge
models, and in Sec. V we discuss some general non-
Abelian gauge models. A summary of our results and our
conclusions, which have already appeared in a letter, is
presented in Sec. VI. Details of our calculational tech-
nique are contained in the Appendix.

II. CANCELLATION OF QUADRATIC
DIVERGENCES TO ONE LOOP

In general, for a theory with n coupling constants and p
independent scalars, the cancellation of one-loop quadra-
tic divergences yields the system of equations

g atjgj =Oi
i=I

(2.1)

where we are using the convention that any coupling for a
three-point interaction be written in the Lagrangian as g;
but any coupling for four-point interactions be written as
a square g~, e.g.,

2

This will make our loop expansion consistent with a per-
turbation expansion in small coupling constants and is
necessary if one hopes to cancel fermion loops against sca-
lar loops order by order.

In addition, one can obtain from the theory expressions
for the n p functions to one loop,

Pl

16&@ g; —=p;=gbj'kgj gk, i =1, . . . , n
Bp )~k

(2.2)

where p is the renormalization scale. We evaluate these p
functions using dimensional regularization in the minimal
subtraction scheme as described in the Appendix. Now
for Eq. (2.1) to have any meaning physically, it must be
invariant under a change of scale p. That is taking
pB/Bp of Eq. (2.1), we require
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Ciklgk gl O~ l 1~ . . ~p .(o) 2 2

k&l
(2.4)

If all the gk scale independently under the renormaliza-
tion group, then gk" will scale differently from gl and
gk g! (1&k). Therefore, if C~,&0 for some given a, Eq.
(2.4) cannot be satisfied unless a g, scale dependence
arises from some of the other couplings (i.e., g, must not
be an independent coupling). The order-by-order cancella-
tions we seek then demand that we try to find a solution
with g, expressed as the linear combination

2 2
&ij~klgk gl 0, l=1, . . . ~p

j,k&l

Since a,J and bkl are fixed in the theory, it is very unlikely
that Eq. (2.3) will be satisfied in general. However, in
some simple cases where Eq. (2.3) holds, we would have
found the relationships between couplings that would
eliminate the quadratic divergences consistently to one
loop. If these relationships are those of a supersymmetric',
theory, then the no-renormalization theorems guarantee
that the cancellations will work order by order to all or-
ders. In all cases considered in this paper, the only solu-
tions found were supersymmetric; but if some other set of
relations had been found to work to one loop, we would
then have to check for consistency in higher orders.

I.et us suppose now the more likely case where Eq. (2.3)
does not hold. The procedure is to eliminate p of the cou-
plings by substituting Eqs. (2.1) into Eqs. (2.3). Now we
have a new set of constraints on the remaining n @in--
dependent couplings (which we relabel k =1, . . . , n-p for
notational convenience),

then one must continue the procedure. Again, expand the
new dependent coupling gb in terms of the n —p —2
remaining independent couplings to obtain a new system
of equations that will have 2(n —p —2) free parameters
and as many as (p +2)(n —p —2)(n —i0 —1)/2 con-
straints. These calculations may have to be repeated
several times, possibly even to the point where there is
only one remaining independent coupling, n —p —1 free
parameters, and n —1 constraints, before a solution can be
found. Because this proccdurc can bc qUitc tcdioUs
hand, we have limited our models considered in this paper
to less than ten couplings. With the aid of a computer,
however, this need not be such a serious restriction on our
method.

III. MESS-ZUMINO- TYPE MODELS

Let us first consider a simple model of one complex
scalar particle and one Majorana spinor with an interac-
tion Lagrangian

L .t = g!(0P'c—PL+0"0'c'A ) —gz'(4*0)'

where the subscripts L and R denote left and right helici-
ty projections. We are imposing symmetry under the
transformation

e' "P.
The quadratic divergence of the boson mass can be elim-
inated to one loop if there is an equality

2= 2
g2 =gi (3.3)

n —p
P. —QG, P, (2.6)

to the system of Eqs. (2.2). We can again form a system
of equations analogous to Eq. (2.4),

n —p —1

Cik!gk g! =Oi != 4 ~ ~ ~P +1
k&l

(2.7)

but this time there are p + 1 equations involving n —p —1

independent couplings, and there are n —p —1 free pa-
rameters GJ. If the assumption that the n —p —1 cou-
plings are independent is true, then each Ckl' must vanish,
which yields as many as (@+1)(n—i0 —1)(n —i0)/2 con-
straints on the n —p —1 free parameters. It should be
clear that in general these systems are severely overcon-
strained. Furthermore, the couplings may have additional
constraints such as positivity and reality from physical
demands on the Lagrangian. If one can find a set of pa-
rameters GJ consistent with all of the constraints, the
analysis is completed for one-loop cancellation, but if no
physical solution exists to make Cb'~' ——0 for some given b,

where the GJ are unknown coefficients. Our procedure
now is basically to iterate what wc have done by adding
Eq. (2.5) to the system of Eqs. (2.1) and its P-function
equation

P!= 12g!'

4=20gz' —16g +i8g!'gz' .

(3.4)

(3.5)

It is then obvious that Eq. (3.3) is a consistent solution.
In fact, this is just the massless supersymmetric Wess-
Zumino model.

Now let us remove our symmetry restriction so that we
may have a mass term for the spinor. The most general
Lagrangian becomes a bit more complicated:

g040 +fL +g0 f 0 C PR +glut!f Ci|R

+g*!4*4'CWL+gz'(A*A)'+m! '0'0

+ ,' ~f0'c0+(g3'0'-0'+g4'4'+g54'4'+g60'

+m b p +Uit!+H. c. ) . (3.6)

For this case we have three quadratic-divergence con-
straints:

gz'= lg! I'+
I go I'

from corrections to the mb parameter,

3g3 =4grgo

(3.7)

(3.8)

which must be invariant under the renormalization group.
The two P functions are computed, as discussed in the
Appendix, and we find



DOES THE CANCELLATION OF QUADRATIC DIVERGENCES. . . 2853

for the mb parameter, and

mf(g 1+go)=g5 (3.9)

po=12
I go I

'(
I g 1 I

'+
I go I

')

p1=12lgl I'( lgl I'+ lgo I')

p2=2og2' —16
I go I

'—16
I gl I

'—32
I gl I

'
I go I

'

+54lg, I'+144lg
I +8g Ig, I

+8g Ig

(3.10)

(3.11)

(3.12)

It is then easy to see that pB/Bp of Eq. (3.7) implies

2

g4 =o.2

(3.13)

(3.14)

Since g5 ——0, we can from Eq. (3.8) without loss of gen-
erahty, set

go=0 (3.15)

which gives us back the same interaction structure as be-
fore for the hard terms,

2= 2
g2 =g& (3.16)

Now we must consider the soft terms by taking pB/Bp of
Eq. (3.9),

for the U parameter. We see that adding the fermion mass
term and scalar cubic term actually creates a new source
of quadratic divergences in Eq. (3.9). To examine the
renormalization-group invariance of Eq. (3.7) we will need
the following P functions:

p& g5=p&
Bp Bp

(3.17)

[Recall that pl ——(47r) p(B/Bp)
I gl I

so that
(4~)'p(~/dp)g 1 =6

I gl I
'gl ] We compute p(a/ap)mf

and p(a/ap)g5 from the remaining theory and find

16& p mf 4mf Igl I

2

Bp
(3.18)

167r p g5 20g5g2 16g1
I gl I

m f+6g5 I gl I

' .
Bp

(3.19)

Using Eqs. (3.11), (3.16), (3.18), and (3.19), it is clear that
Eq. (3.17) is indeed satisfied, completing our solution
which is the massive Mess-Zumino model. Inami et ah.
have also found this result by eliminating the quadratic
divergences arising in a two-loop calculation of the effec-
tive potential.

From this result we see that soft breaking terms did not
destroy the previous result for the massless theory because
the p functions and original quadratic-divergence equa-
tion were not changed by them. Also, soft couplings that
introduced no new quadratic divergences (g&, mb, U,

mb ) remained unrelated to other coupling constants.
Henceforth, we will not consider soft couplings in any of
our models, but note that to all solutions we find we can
add arbitrary soft terms as long as they do not generate
any new quadratic divergences.

Next, let us return to our massless theory and add
another complex scalar field so the Lagrangian becomes

int gl 4('101 )+g2 (424'2) +( 3g$1 $1$2+H. ~ )+[g4 (p2 $2/1)+H. c.]+g5 (pl/1 )($2/2)

+[gb ($1 )(f2) +H. c.]+g7((51$CQL +$1 P CQR )+gs($2$ CQL +424 CPR ) ~
(3.20)

which is invariant under the generalized transformation of
Eq. (3.2).

This model can be simplified substantially if we rede-
fine new scalars as orthogonal linear combinations of pl
and p2 so that only one scalar interacts with the fermion.
We note that these redefinitions are renormalization-
group invariant to one loop. Thus, we can set g8 ——0
without loss of generality.

Then to cancel the quadratically divergent contribu-
tions for pl/1, pzp2, and $1/2 counterterms, respectively,
we need

P2 =2og2'+ g 5'+ 4
I g6'

I
'+24

I
g4'

I

',
P5 4g5 +8(gl +g2 )g5 +4g7 g5

+32
I
gb'

I
'+12

I g 5'
I

'

+» lg4 I
+8(g5'g4'+g3 g4

P7 =12g7' .

From Eqs. (3.21) and (3.22) we find

2 2= 2
g2 =g7

(3.25)

(3.26)

(3.27)

(3.28)

4g~ +g5 —4g7 ——0,
4'g2 +g5 =0

~

2 2

and

g3 +g42 24

The p functions we will need for this model are

P1
=20g 1 +g 5

—16g 7 + 8g 1 g 7

+4
I
gb'

I
'+24

I
g5'

I

',

(3.21)

(3.22)

(3.23)

(3.24)

and taking pB/Bp of Eq. (3.28) using Eqs. (3.23), (3.24),
(3.25), and (3.27) yields

82 (gl' —g.')=0. (3.29)

If we choose gl ——g2, then Eqs. (3.28) and (3.21) tell us
we must have g7 ——0 and g5 ———4g&, but for these to be
renormalization-group invariant, Eqs. (3.23), (3.24), and
(3.26) imply

2 2 2 2 2
g1 g2 g6 g3 g4

(i.e., a trivial theory). Therefore, we must satisfy Eq.
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(3.29) by letting

so that from Eq. (3.28) we get

(3.30)

n m n m

P,=20g, '—16+g,.'—16+g '+8g, ' gg +gg, '
i=1 j=1 i =1 j=l

(3.3S)
2 2

gl =g7 (3.31)

g5'= lg6'I = Ig3'I = lg4'I =o (3.32)

Using Eq. (3.25) we demand that Eq. (3.30) be
renormalization-group invariant, which sets

n m

P;=8g'+4g' gg, "+gg, '
i=1 j=l

n m

PJ=8gJ +4gJ Qg~ + QgJ'
i=1 j=l

(3.36)

(3.37)

~;.~ =go'(4*4)' gg. (—H'CPa. +4''O'CAa )
i=1

—gg;(PX,'CX,a+P*X,'Cy,, ), (3.33)

where we have P interacting with n left-handed fermions
and m right-handed fermions To e. liminate the quadratic
divergence we require

n m

go = ggr + ggJ' (3.34)

and this equation must be preserved under renormaliza-
tion where the p functions are given by

and gives us the supersymmetric Mess-Zumino model
with just one interacting scalar.

Finally, we try adding an arbitrary number of fermions
to the model, keeping just one complex scalar. We can
parametrize the model as

Setting

Po= gp;+ QPJ

implies the relation
n m n m

gg, "+gg,' = gg, "+&g, ',
i=1 j=l i =1 j=l

which can be satisfied only if all the g s and g 's are zero
except one. Again, the solution is just the Wess-Zumino
model.

IV. ABELIAN GAUGE THEORIES

In this section, we consider Abelian U(1) gauge theories.
Our first example will exhibit a somewhat surprising re-
sult. We take for our interaction Lagrangian a supersym-
metric chiral U(1) theory, but allow the couplings to be
arbitrary. The particle content includes a U(1) gauge bo-
son V&, a neutral Majorana spinor A, , a charged scalar A,
and a negatively charged left-handed Dirac spinor
Then the Lagrangian can be parametrized as

~.i=g i V"it r. -
2

+igiV"A* B&A +gi V&V„
I
2

—g, 'Ia I" ig, w' —X
I+) 5—A (4.1)

and the p functions are given by

Pi 2gi 4

pz=20g2 —12g2 gi +4gz g3 +6g'i —2g3

P3=4g3 -6g3 gi .4 2 2

Now in order to eliminate the quadratic divergence, the couplings must satisfy

3gl +4g2 —2g3 =O-

(4.2)

(4.3)

But this relation cannot be made renormalization-group invariant. Hence, we have no solution for eliminating the quad-
ratic divergence. However, if we set

2 2 283 =4g2 =2gl (4.4)

we recover the supersymmmetric theory. The theory evidently still has a quadratic divergence. To see where this diver-
gence comes from, let us construct the theory from a chiral superfield P (A,g,F ) and a vector superfield
V( V",A, ,D),

I se+ ~ ~
I yy+0 —e O' —

I sgye++V I sese . (4.5)

Normally one does not include the ~V
I eeyy supersymmetric term since in this case it breaks the U(1), gauge symmetry

spontaneously. However, Mitten has pointed out that for some nonsemisimple gauge groups this term will be generated
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by loops even if it is not put in at the tree level. If we expand the Lagrangian in terms of components this will become
clear:

W= —,'D2 —4F—p„F" + X—QA, +F*F+(&pA )'(Wl'A )+il/l Q' f gD—A' A

i—~2g A* A, f —A
2

1+y5 +xB . (4.6)

Figure 1 shows the one-loop diagram that will generate the ~D term from the DA A interaction, and it is quadratical-
ly divergent. After eliminating the auxiliary field D using its equation of motion, one gets a mass term for the scalar
field proportional to ll. Conventionally, mass terms arise from a mpp I ss F term and as such are guaranteed by the no-
renormalization theorems to be free of vertex corrections. However, in this case where the mass term arises from a
vV

I &&~e D term, the theorems do not apply and hence the quadratic divergence. It is easy to see that if we add more
chiral fields P; with charges e; to the theory, then more scalar loops can contribute in Fig. 1 and the total contribution
will be

d4k
~ (27r) k

(4.7)

Therefore, this problem does not arise if we have a theory where the sum of the charges is zero.
Let us now introduce a less pathological but much more complicated U(1) model with particle content V&, the gauge

boson, l/, a Dirac sPinor, A and A+, charged scalars, Ao, a neutral comPlex scalar, and l/o and A, , Majorana sPinors.
We also assume parity conservation and R-parity invariance analogous to Eq. (3.2) to make our parametrized Lagrangian
a little more tractable:

W;„,=g, V"gy„g+ig, V"(A* B„A ) —ig, V"(A' B„A )+g, V„V"(A* A +A* A )

—gz (A —A ) +(A+A+) +g3 (A A )(A+A+) ig4 A—* A, g —H. c.

&+/5 V5 1 +/5—lg4 A+ A,
2

l/j —H. c. —gs A l/ l/o+H. c. —gs A +f2 2
l/to+ H. c.

r

1 —y5 1 f5 2 + 2—g6 Apl/t g+H. c. —g7 Apl/Jp 1/Jp+H. c. —gs (AoAp)
2 2

I
Ao

I
(

I A+ I
+

I

A —
I

) —glo (A+A'—AoAo+H c ) . (4.8)

There are only two independent relations among the couplings to remove the quadratic divergences for the A+ scalars
and the Ao scalar, and they are, respectively,

3gi +482 —g3 —2g4 —2gS +g9 (4.9)

g 6 2g7 +2gs +g92 2 2 2

The p functions for the theory are given by

Pl =4gl'

p3 ——6gl +g2 ( —12gl +20g3 +4g4 +4gs )+g3 2g4 gs—+gs"—,

p3 ——12gl +g3 ( —12g l + 16g3 —4g3 +4g4 +4gs ) +4g4 +4gs —2g9 —4g lp

P4=g4 ( 6gl +'5g4 —g5 +g6 )—
ps=gs ( —6gl —g4 +5gs +g6 +4g6 ),
p6 ——g6 ( —12gl +2g4 +2gs +4g6 +4g7 ),
P7=g7'(6g 6'+12g7'),

ps ———2g6 +4g6 gs —16g7 +8g7 g8 +20g8 +2g9 +2glp

p9 g9 ( 6g1 + 8g2 2g3 +2g4 +2g5 +2g6 +4g7 + 8g8 +489 ) 4g4 g6 4g5 g6 16gs g7 + 8g lo

plo=glo ( —gl —g3 +2g4 +2gs +286 +4g7 +4g8 +8g9 ) 8g5 g6g7—

(4.10)

(4.11)
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where the matrices T' are representations of the group
generators and satisfy

[Ta Tb] ic—ab'Ta (5.2)

~ith our choice of representations for the particles, the
relationship between couplings that cancels the quadratic
divergences turns out to be independent of group structure
and is

3g~ +2g3 —2g2 0 ~
2 2 2 (5.3)

But for the P functions let us define some group constants

FICx. 1. One-loop graph generating the xa term which is
quadratically divergent.

CabcCbcd S(G—)gab

T,"k Tkj =S2(A)5;~,

Tr(T'T )=S(A)5—'b .

Then we find

(5.4)

(5.5)

(5.6)

Before we can apply the procedure outlined in Sec. II, we
must put pip in the form of Eq. (2.2). To accomplish this,
we define a fictitious parameter

2=gx =g6g7

with

(4.12)

P» =g» ( —6gi +ga +g5 +5gb +Sg7 ) (4.13)

This gives a system with eleven couplings which can be
methodically reduced to find the unique solution which
has only three independent couplings (gi, g&,g~),

2 2 22gr =4g2 =g4
2= 2 2

g3 =g1 —gs

2= 2= 2
gs g6 g9

2= 2
g7 =g8

2= 2=
g&0 =gx =gsg7 ~

(4.14)

This. corresponds to a supersymmetric U(1) theory with a
vector superfield V(V",k) and three chiral superfields
P+(P+ A+ ) P (f A ) arid Pp(gp Ap) where g1 is the
gauge coupling and gs and g7 are the Yukawa couplings
for the 0+0—A I ee and 0A'Ap I 88 suPerfield te1ms
respectively.

V. NON-ABELIAN CrAUGE THEORIES

+
I (8„+igi V„'T')A

I
+iso (B„+igiV„'T')g

ig2 (gA, 'T'A —A t—T'A.'g)

g3 (A "T'A)(A T'A)— (5.1)

In this section, we consider non-Abelian gauge theories
with particle content V'„, the gauge boson, P and A, , Weyl
spinors, and A, a complex scalar. We treat first the gen-
eral case of a compact non-Abelian group, choosing g and
3 to have the same representation while A, is chosen to be
in the adjoint. We can write the Lagrangian as

Pi ——gi [—6S1(G)+2S3(A)],

P2 g2 [ 6gl Sl(G)+g2 S3(A)+( g2 6gl )S2(A)l

(5.7)

(5.&)

When calculating one-loop contributions to g3, however,
we encounter the complication that a new vertex structure
might be generated. We have been assuming that our La-
grangian is renormalizable and therefore
(AtT'A)(A T'A) should be the only allowable quartic
structure generated. There are two possibilities; either our
representations are such that no other vertex structures
can arise (for example, if A and g are both in the funda-
mental representation) or the other vertex structures that
are generated must be canceled by a new supplementary
relation between couplings. Discussing the latter case
first, the new relation needed is

4g3 +3g 1 g2

and P3 is then given by

P3 ——( —2g3 + —,gi —g2 )Si(G)+4g, S,(A)

+4g3'(2g3' —3g i'+g2')S2(A) .

Equations (5.9) and (5.3) immediately give the result

g 2 =2g ) =4g 3
2 2 2

(5.9)

(5.10)

(5.11)

[—2S1(G)+5S2(A)+3$3(A)]=0, (5.13)

we have checked this for fundamentals of SU(X) and
SO(X) and found that no solutions exist for any N.
Furthermore, even if such a representation could be

which is the supersymmetric solution.
Now in the case where we have representations that do

not generate any different structures, P3 has an additional
contribution (4g3 +3g, —g2") [2S3(A)+2S2(A) —Si(G)].
Taking pBIBp of Eq. (5.3) then implies

(2gi —g2 ) [—2S1(G)+5S2(A)+3S3(A)]=0 . (5.12)

If 2g& —g2 ——0, we again immediately recover the super-
symmetric relations Eq. (5.11). As for the other possibili-
ty,
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found, higher-loop calculations would put still more con-
straints on the couplings that might not be satisifed by ap-
pealing to Eq. (5.13).

Let us now change the representations for the fields so
they do not correspond to any supermultiplet structure.
This time we choose the scalar A to be a singlet and let g
and A, form a Dirac spinor 4 in some arbitrary representa-
tion. Then our Lagrangian can be written as

A = I —3 ~i(G)+ 3 ~3(F)lgi'

132 20g2 D(F)g3 +4D(F)g3 g2

p3 ——2[D (F)+ 1 ]g, —12S2(F)g) 'g3

and cancellation of the quadratic divergence requires

4g2 ——2D (F)g3

(5.15)

(5.16)

Applying IMB/Bp to Eq. (5.16) and requiring invariance
under Eq. (5.15) gives the relation

+~„A'~A —g

2= 1 —2D (F)
D (F)S2(F)

(5.17)

so that

(5.14)

where D(F) is the dimension of the representation for %.
Since gz must be positive for a stable theory, g~ becomes
imaginary. Therefore, no satisfactory solutions exist for
this model.

We also treated an SU(N) model with the complex sca-
lar A and Weyl spinor g being in the fundamental repre-
sentation, but in this example we put the Weyl spinor A,

into the theory as a singlet. For this model,

,'Ff "Fq„—+ifV"(Bp+ig(VpT')/+i AV "d~A+
~
(Bp+ig) VqT')A

~

—gp (A T'A)(A Tt'A ) ig3(—QXA Atfk), —

(5.18)

P) ——( ——", N+1)g)

N +3N —4 4 4 N +2N —22=2
N g2 +3gt 4 4X

N —1

N —1

N Sz 81 +482 83
2 2 2 2 (5.19)

p3 ——(3+N)g3 —3g3 g& (N —1)/N,

while the cancellation of the quadratic divergence implies

2N 2 2=0
N —1

(5.20)

Once again, following the procedure of Sec. II, we found no consistent solution for any integer N.
Finally, we constructed another model with SU(2) gauge symmetry where we chose the complex scalar A to be in the

adjoint representation and added a Dirac spinor f in the fundamental representation. Then" the Lagrangian is

,'F„'g,""+i/—y" B„+ig,V„' g+
~
B„A'+g, V„e' A'~ —g2 (A'A')(A*bA' )1 P, 2

(A'A")(A A* ) —ig~ f PA' gP—A"
2 2 2 2

with the P functions

(5.21)

Pi = —12gi'

p2 ——8g2 +3g, —24g2 gg +32gz g3 + g2 g4 + 4 g4

p3 24g, + 16g& +9g~"—24g2 g] + 16g2 g3 +2g2 g4 z g4

P4 2g4 9g4 gl

(5.22)

and to eliminate the quadratic divergence we need
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6gl +4g2 +Sg3 g4 (5.23) VERTEX CONTRIBUTIONS NAVE FUNCTION CONTRIBUTIONS

In this model also, we found no consistent solution for
Eqs. (5.22) and (5.23). Thus, of all of the non-Abelian
models we studied, the only solution we found was the su-
persymmetric one of Eq. (5.11).

/
/

/

- — ——— ——-3H

VI. CONCLUSION

We have examined the question of whether supersym-
metry is the only symmetry that has the nice feature of el-
iminating the quadratic divergences of a theory and found
that in all of the models we studied a simple one-loop
analysis was enough to show that supersymmetry was
indeed unique in this respect. We considered a wide
variety of models with quartic and Yukawa interactions
as well as Abelian and non-Abelian gauge interactions.
Our analysis consisted of finding the relations among cou-
pling constants that would cancel the quadratic diver-
gences of a theory to one loop and then demanding that
these relations be renormalization-group invariant as
determined by the one-loop P functions of the theory.
This system of relations is in general overconstrained and
no solution could be found in the models considered other
than that of a supersymmetric theory. Soft terms can be
added to any of the solutions found as long as they do not
themselves create new quadratic divergences.
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APPENDIX

We present a concise and efficient method of calculat-
ing P functions to one loop. We choose the Landau gauge
and use dimensional regularization with the minimal sub-
traction scheme. This will give us the fewest number of
nonzero contributions and will make our P functions in-
dependent of masses. We first numerate all of the one-
loop diagrams contributing to the renormalization of a
particular vertex, say the one involving g;. For each of
these diagrams, we associate a factor Mz with the
momentum-space integral of the jth diagram and a struc-
ture factor VJ which includes all the coupling-constant
factors as well as factors from group structure. Factors
due to the combinatorics of a diagram are also included in
V~J. Thus, the factors MJ are independent of the model
under consideration, although they can depend on the hel-
icities of the fermions in the diagram. We have listed the
values of Mz for all the diagrams that are of interest in
this paper in Fig. 2. Note that only half the contribution
of self-energy diagrams on external lines contribute to P
functions, and this is taken into account in the values
given for MJ.

If we denote the Feynman rule for the vertex associated
with the coupling g; as g; V;, where V; can include helici-
ty factors as well as group theory factors, we shall obtain
for the P function the equation

„R L. ,

-I H

6i
R L

6H

16m (M V;gg ——QVJMJ .
8

(A 1)
Bp

With a complicated group structure, a particular one-loop
diagram can contribute to the renormalization of more
than one bare vertex involving the same external lines.
Using the appropriate projection operators on VJ, this
problem can be readily handled. We also add a note of
caution when handling helicity projection matrices. The
diagrams in Fig. 2 depend on the helicities, hence, in any
particular model it may be necessary to add or subtract
diagrams with L~~E. to get the same structure as the V;
under consideration.

- (2!) ig! (
yn

)

FIG. 3. Feynman rules for Mess-Zumino model.

FIG. 2. Momentum-space integral factors used in calculating
our P functions. We denote fermions with solid lines, scalars by
dashed lines, and gauge particles by wavy lines. The letters L
and R by a vertex stand for left and right helicity projectors,
respectively. Diagrams that are zero, or can be obtained from
interchanging L and R, or are used only in calculating P~,„~„
are not given here. The letter H stands for either helicity.
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R L

R L,J'

P
Cf

FIG. 5. One-loop contributions to the p functions for g~. Di-
agram 1 is multiplied by 2 because there are two external legs to
which it can be attached.

FIG. 4. One-loop contributions to the P functions for g2 .
Diagram 5 is multiplied by 4 because there are four external legs
to which it can be attached.

For the gauge coupling, the contributions to its P func-
tions from gauge interactions and ghosts can be separated
from the contributions of matter field loops and we can
write

M) ——2i,
M2 ——2i,
M3 ——2i,
Mg ——4i,
4~Ms= —4

and from Fig. 3,

Vp —— 4i, —V2s ——( —4ig~2)~

V2) ——( 4ig2') l—2, Vg4 ——( —2ig) )

(A4)

(A5)
1 1+ QS3 (F)nF + QS—3(s )ns

F S

(A2)

where S~(G) and S3(A) are defined in Eqs. (5.4) and (5.6)
for non-Abelian groups while for Abelian groups we de-
fine S~(G)=0 and S3(A)=q~, where q„ is the charge in
units of g,„,. The sums are taken over all fermion rep-
resentations F and all scalar representations S. The num-
ber of fermionic degrees of freedom nF is 2 for a left-
handed spinor or a Majorana spinor and 4 for a Dirac spi-
nor. The number of bosonic degrees of freedom ns is 1

for a real scalar and 2 for a complex scalar.
To fully illustrate this we calculate the P functions for

the simple Wess-Zumino model,

16m p g2 ——20g2 —16g) +8g) g2
2 ~ 2 4 4 2 2

Bp
(A6)

To compute P~, we list the contributing one-loop dia-
grams in Fig. 5 for which we find the following values:

(1—ys)
V) —— 2i (1—y—5)/2, 2M) ——— )&2,

V)) ——( —2ig( ), M2 = —(1—y5)/2,

Vi2 ——( 2igi) /—2,
(A7)

where V~q again contains the combinatorial factor of —,
' .

From Eq. (Al) we find

Vp2 =( 4ig2')—'& Vz5 =(—4lg2 )( —2' t ) /2,
where the factor —,

' in Vz& and V2s is the combinatorial
factor for an internal loop. Inserting these values into Eq.
(Al), we recover Eq. (3.4)

1+ys
g'll&'C li& — (A*A )

2
(A3) 16m p g) ——6g)

Bp
(A8)

with the Feynman rules given in Fig. 3. The one-loop
contributions for gq are enumerated in Fig. 4. Then
from Fig. 2, we find

so that we recover Eq. (3.5)

P& = 16&@ g &
= 12g

&

p
(A9)
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