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In this paper we give theoretical and experimental justification for the model of the quantum
relativistic rotator (QRR) which was defined and analyzed in two preceding papers. We give purely
theoretical arguments which involve the process of group contraction to show that the Hamilton
operator for the QRR goes into the Hamilton operators for the structureless relativistic mass point
and the nonrelativistic rotator in the elementary and nonrelativistic limits, respectively. We also
give the experimental verification for the QRR by showing that the known meson resonances do

form rotational bands.

I. CONTRACTION LIMITS
OF THE QUANTUM RELATIVISTIC ROTATOR

A. Introduction

The ultimate justification of a new theory is based pri-
marily, of course, on the theory’s success in describing the
experimental data. However, justification of a new theory
is also based on whether it builds on old, well-established
ideas rather than if it stands isolated.

In two previous papers (see Refs. 1 and 2) we defined
and discussed the quantum relativistic rotator (QRR). In
Sec. II of this paper we shall consider the experimental
justification of the QRR model while in this section we
give purely theoretical arguments for choosing Eq. (12.38)
for the Hamiltonian of the QRR [or, equivalently, justifi-
cation for choosing Eq. (12.37) for the constraint rela-
tion]. In particular, we shall show that correspondences
exist between the QRR and two well-established
quantum-mechanical models: The relativistic mass point
(elementary particle) which is described by the irreducible
representations of the Poincaré group® and the nonrela-
tivistic rotator* whose space-time symmetry is described
by the extended Galilei group and whose spectrum is
described by a three-dimensional Euclidean group [for
which one can take either E(3)p, 5, or EQ)p, 5, where D; is
the dipole operator, S; is the intrinsic angular momentum
which was defined in Sec. II of paper I, and =; is the non-
relativistic spin angular momentum]. These two
correspondences are given by group contractions.” The re-
lativistic mass point is obtained in the elementary limit
(1/R=A—0, a— «) by contracting the de Sitter group
(the group of motion in the micro—de Sitter space of ra-
dius R) into the Poincaré group:$

SO(4,1 — P
( > )BM’JF’V}\_“)’ s oo P}l"’[‘v

Aa—p

(p*=eignevalue of P,P*), (1.1)
and the nonrelativistic rotator is obtained in the nonrela-
tivistic limit (1/c¢—0,p— « ) by contracting the Poincaré
group into the extended Galilei group:

Py, ——=G (1.2)
WIBY 1/¢—0, p—>

p/c—m

P,,H,M,G,,J; *

B. Elementary limit

In the elementary limit (A—0 and a— «) the QRR
contracts into the relativistic mass point. The details of
this particular contraction are summarized in Table I. In
Table I, the generators and commutation relations of
30(4,1)3”, T (Ref. 7) are listed in the left-hand column,

the generators and commutation relations of & P,.J,, are

listed in the right-hand column, and the — indicates the
contraction limit, Eq. (1.1) between them. Also listed in
Table I are the second- and fourth-order Casimir opera-
tors of SO(4,1)BW T and Z Pyt along with their eigen-

values in the principal series representations. Here, the

symbol == between a Casimir operator and a number
means that the Casimir operator has that number as its
eigenvalue in an irreducible representation.

The principal series representations of SO(4,1) (Ref. 7)
are characterized by the pair (a,s), where s is a discrete
parameter that can take on one of the values s =0, %, 1,
%, 2,..., and « is a continuous parameter that can take
on values such that a®>> 5 —s(s +1). We have defined
the QRR to be the physical system that is characterized
by the eigenvalue Aa? of the second-order Casimir opera-
tor of SO(4,1)BM, Ty For the QRR, mass and spin are re-

lated because of the SO(4,1) Bty constraint, Eq. (12.37),

or, equivalently, due to C =a?.

In the elementary limit the second-order Casimir opera-
tor of SO(4,1)BW T,y 80CS, according to Eq. (T1g) in Table
I, into the second-order Casimir operator of & Pyt
This can be seen immediately by inserting Eq. (T1b) into
Eq. (I2.35) and taking the limit A—0. Thus a principal
series representation of SO(4,1)BW T contracts into a

physical irrep of the Poincaré group characterized by
(p>0,s), and the square of the momentum decouples
from the spin. Also, the Hamiltonian of the QRR, Eq.
(I2.38), goes into the Hamiltonian of the relativistic mass
point (elementary particle),
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TABLE 1. Elementary limit given by the group contraction from SO(4,1) to the Poincaré group.
S0@4,15,.5,, P ryd,
(T1a) Juv —Juy
(TIb)  B,=P,+ % (P*,0,.) P,
(TIC) [Jyv’Jpo] = ~l(gnp'lva +gva'Jpp '—guava _gvamr)
(T1d) [J;erp]=i(gvau_gpva) —’{J‘w:Pp]=i(gvau—gprv)
(Tle) [B,,B,1=iAY,, —[P,,P,]=0
(T1Hh Q= %e‘“’""BJN —(P, PV "=—;—e“VP"P‘JP.,
Casimir operators
2 u A2 pviTePy 2 o "
(Tlg) A*C=B,B"— —Z—J,WJ =A\’a —P,P
(AXC=P,PF4 522 —A2W)
(T1h)  ACy=A%J;o/; ) — Q0" —»P,‘P”Wz —P,PtD, 0 "g’pzs (s +1)
=2 s — s (s +1)s +2)+A%a (s +1)
TABLE II. Contraction of the Poincaré group into the extended Galilei group.
‘@Pw’pv gP,.,H,M,Gi,J‘.
(T2a)  Ji=sendn —J;
T2b)  Ki=Jio Gl= —i—K,- G
(T2c) Pi —>P,'
(T2d) Py MO= %(P(f—ifz)m M
(T2e) H'=cPy—M©c? —H
(T2) [J,',Jj]=i€,~jk-]k _’[Ji’Jj]=ieiijk
(T2g) [Ji,Kj]=i€iijk [Ji,G;C)]=i€ukGl(cC) —*[Ji,Gj]=i€ijka
(T2h)  [J;,Pj]l=i€uPr —[Ji, Pj]=i€p Py
(T2i)  [Ji,Po]=0 [/, H]=0 —[Ji,H]=0
(T2)) [Ki,Kj]l=—i€endx [G,G[7]=—ie %Jk —[G;,G;]=0
(T2k)  [K;,P;j]1=i8;Po [G9,P;1=ib; l—l—z—H("+M“’ ] —[G,P;]=i8;M
c
(T2)  [Ki,Pol=iP; [G9,H"]=iP; —[G,,H]=iP;
(T2m) [P;,P;]=0 —[P;,P;]=0
(T2n)  [P;,Po]=0 [P,H]=0 —[P;,H]=0
(T20) #°=-—L_B.F -0
M(c)c
2 1 o1y .. G@ 2 G 3 <
(T2p) @:[WH‘ ’+1‘J+P><M(c) —>J—“A7XP:2( )
Casimir operators
(T2q) —I;P,,P"=M (21T E; MRER 2
c c s
(T2r) W:——{D,,Q“imps(s +1) — T—%X_ﬁ =§(°°)22s(s+1)
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HP=¢(P,PF—p?), (1.3)

since A*C—P,P* and A’a®—p* where p* can have any
value greater than zero.

Therewith, we have shown that in the elementary limit
the QRR goes into the relativistic mass point (elementary
particle) described by the irreducible representation (p,s)
of the Poincaré group, with any values of momentum p
and spin s.

C. Nonrelativistic limit

In the nonrelativistic limit the QRR contracts into the
nonrelativistic rotator. As a preparation for showing this,
we shall first consider the well-known contraction Eq.
(1.2), from the irrep (p,s) of the Poincaré group describing
the relativistic mass point (elementary particle) into the ir-
rep of the extended Galilei group® describing the nonrela-
tivistic mass point. In this case, the Casimir operators
and their eigenvalues in an irreducible representation of
the extended (i.e., quantum mechanical) Galilei group are

M =central element=m,
S(e2_g(s+1), U=0 (+const) . (1.4)

The details of this contraction are summarized in Table
II, where our notation is established by listing the commu-
tation relations and Casimir operators of the Poincaré and
of the extended Galilei groups. 3 (=) s defined in Eq.
(T2p) and 3 (=2 is a Casimir operator of ¥.

It is important to note that in the contraction Eq. (1.2),
one does not just take the limit 1/¢—0. If this were the
case, then G,-(C)——>0 and one would not obtain a faithful
representation of the extended Galilei group &. There-
fore, one must increase K; along with ¢ in such a way that

=(1/c)K; remains ﬁmte This is accomplished by go-
mg through a sequence of representations (p,s) of Zp ; ,

taking p— o as 1/c¢-—0 in such a way that (1/c)p—m
remains finite. During this process, the operator P, “in-
creases to infinity,” but the operator

H=c(Py—me)=c[(B2+m2%)'?—mc]

P2 1

=m 2 (1.5)

Tovolk

remains finite and becomes the energy operator of the
nonrelativistic mass point,
B2
HY S H= P .
2m
We shall now consider the contraction of the QRR into
the nonrelativistic rotator.
The energy operator of the nonrelativistic rotator is
given by

(1.6)

_P_2 +__.1._§(oo)2.

= 7
oM 2, @7

This corresponds to the case in which the Casimir opera-
tors 2(®2 and U of & are related by

U=__1.__2(eo)2 .

20, (1.8)
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The same type of relation exists between the Casimir
operators of the Poincaré group for the relativistic case in
the form of the second-order Casimir operator of
SO@4,1) BTy and, as we shall see later, it survives the non-
relativistic limit to give Eq. (1.8).

As mentioned in Sec. I of paper I, the B, are generators
of translations along the de Sitter sphere and the B” are
dimensionless generators of the corresponding de Sitter ro-
tations (“de Sitter boosts”). In the nonrelativistic limit
(1/c—0) the operators B, increase to infinity. Therefore,
we shall consider what the dimensionless operators

B,,=(1/Ac)B,, go into. From Eq. (I2.33), with the con-
stant c properly restored, we have
A 1 1 1
B, ‘;;Bu = X;P# t oo IM©¢2

The splitting of the Lorentz generators J,,, into orbital an-
gular momentum M,,=Q,P,—Q,P, and 1ntr1ns1c angu-
lar momentum S,,, [see Eq. (I2.3a)] allows B to be writ-
ten in the followmg way:

(1.9

{JV;UPV}

5 1 ' (c)
Bu=7 Purt Spgtaes (QFu— QWP P} =M,
(1.10)
where
v i S P” (1.11)
BTERT M T 2M(C)2c2{ s } .

is the vector operator of Eq. (I2.9) which relates the parti-
cle position (position of charge) operator Q, to the c.m.
position operator Y, as in Eq. (I2.20). For the space
components, u=i=1,2,3, Eq. (1.10) can be written

A 1 1 1 1
Bi= Pt oz QP P = oG 5P
1
_W{M(C)ZCZ,Qi}_M(c)di . (1.12)
In the nonrelativistic limit, using
1 1
EPi—»O, W{vai,l’v} —0,
1
M(c) 2 P -0,
and Eq. (T2d), we obtain
Bi——MQ, —Md!*'= —MY{=, (1.13)
where we have defined
d{®'= lim d; (1.14)
Cc—> 0
and, in analogy to the relativistic case,
Y'i(w)EQi"Fdi(w) (1.15)

so that ¥{®’ is the nonrelativistic c.m. position operator.
For the time component of B, one obtains

§0—+—)1:M=RM . (1.16)
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Thus, —1/3\,- /M goes into the nonrelativistic c.m. position and
operator Y{®’ and ﬁo/M () goes into the radius R of the pi
micro—de Sitter space. M is the central element of the ex- do=Soi——5; 30 (1.22)
tended Galilei group and it has an arbxtrary exgenvalue m. M*e

In order to obtain the propertxes of d *) and Y o) , We This shows that the contraction limit of d;, Eq. (1.14), ex-
shall study the limit of Eq. (1.14) in detail. To do this, we ists and is given by
first define o 1
di*’'=—g; . (1.23)

g9=1Ls,, (1.17) M
¢ With Egs. (T2b), (T2d), (1.17), (1.23), and (1.15), it follows

which in the nonrelativistic limit is to remain finite in  from Eqs. (I12.3a) that

analogy to Eq. (T2b): - -
¢ 4 G=MY =) . (1.24)

gi= lim g{® . (1.18) ]
e The nonrelativistic limit of =, is obtained from definition

Then, in analogy to Egs. (T2f), (T2g), and (T2j), S; and g; (I2.13) by using Egs. (T2e), (1.17), (1.22), and (1.23):

satisfy the commutation relations of EQ)s, 4, 35— —d\= P+ d(oo) P, = E(oo) , (1.25)
[S',S']=ie"ksk’ [S"g':':ie"kgk: 1
i ij "8 ij (1.19) __2 10—8i —8; =0 . (1.26)
[gi,g;1=0. ”
. . . The last equality in Eq. (1.25) follows from the definition
Inserting Eq. (T2e) into Eq. (1.11) gives in Eq. (T2p) and the fact that
—s . |LHrO ppep | —1 1 R S
d”—S‘uo CH"—I—Mcc M2 +S“fPJM(c)202 , 7 — ___E_XP__:J_Y(m)xp=S+QXp_Y(oo)XP
(1.20) =S—d='xP, 127
which in the limit 1/c—0 gives where we have used Eq)s (1.24), (12.3a), and (1.15).
1 1 1 The operators d ®’ and 2y (=) form the spectrum-
d;=cg® :H ) M W+S,,P’—m generating group E(3) P of the nonrelativistic rota-
tor. To see this we take the nonrelativistic limits of Egs.
1 (1.21) (12.14), (I2 15), and (I2.16). With the constant ¢ properly
8y ) restored (P =P,/M (¢)¢), these equations read
|
d,.d —L_5 (1.28)
[dy,dy]=—i M©2.2 B .
. . P[t
[d,‘,Epa]=l (8upd s *g,‘adp)—l(zpa—spg)—m , (1.29)

[zp.v’ zpa] =—i (gypzva"i'gvazyp'_gpazvp_gvpzya)

+1i W—Z—(P P,2,,+P,P,%,,—P,P,%,—P,P,3,,), (1.30)
and in the limit 1/¢—0 they contract into Inection is made with Sec. I of paper I by taking
[d{=),d;=1=0, (1.31a) D,=d\> . (1.33)
[d; f) 2}{7’)]—“:1' (gikdl(w)—‘gildl(cw)) ’ (1.31b) Therewith, in the nonrelativistic limit we have
[ zﬁ;n)’ o= —ilgy S0+ 8u S —&uZi—gr ) » recovered the spectrum-generating group E(3) df), 5f) of

the dipole operator and spin angular momentum, and also
E(3) () ¢ generated by the dipole operator and the intrin-
. . . i R0

which are the commutation relations of E(3) df =, 3 In i angulalr momentum.

the same way, we find For the Majorana representation® the second Casimir
operator of SO(3,1)SM is zero:

(1.31¢c)

[di=),Su]=i(gud{ ' —gi*'di*)) , (1.32)

which follows from the contraction of Eq. (I2.11). This,
together with Egs. (1.31a) and (12.2), shows that d;*’ and  In the nonrelativistic limit this contracts, according to
Sj; also satisfy the Lie algebraic relations of E(3). A con- Egs. (1.17) and (1.18), into the second Casimir operator

S,'S,'O=O . (1.34)
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S;g; of EG)S,'&‘ (Ref. 10) such that Eq. (1.34) is retained:

S,'g,' =0. (1-35)
Then, according to Eq. (1.23),
® 1
di®'s; = 27851=0. (1.36)

The same kind of condition follows from Eq. (1.25) for
the spectrum-generating group E(3) df), z<w>

ed; 250 =d )2 =0 (1.37)

This shows that if we restrict ourselves to the Majorana
representation, then the nonrelativistic limit of the QRR
will be the dumbbell or the rigid-rod model with Eq.
(I11.6).

Just as the operators d;®’ commute, it follows from
Egs. (1.13) and (12.6) that the nonrelativistic c.m. position
operators Y,~‘°° also commute:

[Y{=),Y;~']=0. (1.38)

Thus, we have shown that in the nonrelativistic limit
the “dipole” operator d, and the c.m. position operator
Y,, have the familiar properties. Their noncommutativity,
Eqgs. (I12.14) and (12.26), is a relativistic effect.

In Table III some further details of the contraction of
the QRR into the nonrelativistic rotator are summarized.
According to Eqs (1.13), (1.16), (1.24), and (T2b), we have

1=

e B= B___> G
Consequently, in the nonrelativistic limit the Casimir
operator of SO(4,1)BW J,, contracts into the square of the

mass operator of the extended Galilei group:

2 - Z, A 2 y
i“—20=x23 o —AB 2+i—2 %%JijJ’f——»Mz .

%K_»é, ABy—M . (1.39)

K2-
(1.40)

In order that (1/¢)K; and l’?\, do not go into the zero
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operator in the limit 1/c¢—0, one must again go through a
sequence of representations taking a’— oo (A%a*— ) as
1/c—0 such that (A2a?/c?)—m? remains finite.

We are now ready to show that the correct form of the
energy operator of the nonrelativistic rotator is obtained in
the limit 1/¢—0 from the Hamiltonian of Eq. (I2.55),
i.e., from the SO(4,1) Bl Casimir operator in the form

A C=P,PF—\*W +5A%. (1.41)
In order to take the nonrelativistic limit of Eq. (1.41), we
first write it out in more detail:

A2C = LH(c)Z_i_2M(C)H(c)+M(c)2c2ﬂ_15’ 2
2
c
FAXBO—® A2 222, (1.42)
According to Egs. (T2e), (T20), and (T2p), we have
1 F2Swn, (1.43)

TH(C)2—>O, (uf}O)Z__)
c

In this 1/c—0 contraction process we take A%a*— o and
p?=m?%?— «, while keeping the difference A’a?—m2c?
finite. We can arrange to take A2a?—m2c?—Aa?, where

2 is an arbitrarily chosen finite number. Then, from Eq.

(1.42) we obtain

A2a?=2MH P2 \23 (*24 2)2,
(1.44)
i; E(m 2
H= Mt = (a?— ) .
o TN o T @)

This is the energy operator of the nonrelativistic rotator,
and it is identical to Eq. (I1.7) up to the arbitrary constant
(A2/2M)(a?®— <), which we choose to be zero if we take

1

—_ —R2
Iy=-sM=RM (1.45)

and if S in Eq. (I 1.7) represents the angular momentum in
the center-of-mass frame.

TABLE III. Nonrelativstic limit of the rotator given by the group contraction from the Poincaré

group to the Galilei group.

Relativistic rotator

Nonrelativistic rotator

(T3a) SOG,1),, —E(3)g,,
(T3b)  [J;,B;]=ieu By —[M;+81,0;+d} |=i€eu(Q+d' =)
T30 LKi=L Mo+ 50 —G=Q:M +g;
(T3d)  di=Sio [:H“’—i—M‘”)c } M(})ZCZ +SyP) s —d{ =g~
(T3e) [K, B, ]_ia,,ﬁo —[G;,Q;+d[*"]1=0
(T3f) [B,,5; ]—z Jy —[Qi+di*),Q;+d}*']1=0
" _ PP, .
(T3g) [B,,P,]=iM"? gﬂv-W] —[—MQ;, —Md{~,P;]=iMg;

[Q:i,P;]1=id;
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If we return to the picture of the nonrelativistic rotator
as a diquark dumbbell (mentioned in Sec. I of Ref. 1), then
we can use Egs. (1.44) and (1.45) to get an estimate of the
“distance” between the two quarks in a meson. The mo-
ment of inertia for the two quarks, with masses m; and
m, which are separated by the rigid distance x, is

mymj

Ip=x2——2— .
mi+m,

(1.46)
From the first term in Eq. (1.44), M is the total mass
which is equal to m; +m,, so that Eq. (1.45) gives
2 1 (m1+n12)2
X=—

}\‘2
Then for mesons consisting of quarks having nearly the
same masses, we find

(1.47)
mym,

x~ 2 =2R~0.7x10% em, (1.48)
where we have used the phenomenological value of
A=1/R given in Eq. (13.31).

In conclusion, we have shown that the QRR model,
specified by the value A2a? of the second-order Casimir
operator of SO(4,1) Bl has the desired properties of a

model for an extended relativistic rotating object: in the
elementary limit (1/R =A—0) it goes into the model of
the relativistic mass point (elementary particle), and in the
nonrelativistic limit (1/¢—0) it goes into the model of the
nonrelativistic rotator. The fact that the QRR model
reduces to these two models, which have both been used
successfully in their respective areas of physics, gives us

hope that the QRR model will be useful for relativistic ro-
]
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tating objects. But, whether the QRR is realized in na-
ture, i.e., whether a physical system really exists that is
described to a sufficient degree of accuracy by this model,
is a question which can only be answered by experiments.
Comparison with the experimental data, as discussed in
the following section, will indicate that this is indeed the
case. Meson resonances appear as rotators in the same
way that nuclei and molecules do, only that they are,
perhaps, less rigid.

II. EXPERIMENTAL EVIDENCE FOR
THE QUANTUM RELATIVISTIC ROTATOR

Experimental evidence for the rotational bands in mole-
cules'! and nuclei'? is given by their energy levels and the
matrix elements (intensities) for the radiative transitions
between them (mainly electric dipole moments for mole-
cules and electric quadrupole and magnetic dipole mo-
ments for nuclei). For the higher-spin hadron resonances,
radiative and weak decay rates and magnetic moments are
unknown so that presently any evidence for hadronic rota-
tional bands can only come from the mass levels where
the data are rather sparse. But for the best-known class of
meson resonances, those with normal s* and positive C, P,
rotational bands are clearly visible in perfect analogy to
the nonrelativistic rotator levels in nuclei and molecules.

According to our result, Eq. (II4.13) with Eqgs. (I14.8)
and (II4.15), the irreducible representation space #*
(Maj) describes a physical system which consists of dif-
ferent mass levels where each mass value is determined by
the spin. The spin spectrum is determined by the SO(3,2)
representation and, for the Majorana case, each spin
occurs exactly once with alternating parity:

sP=0%,17,2%,37,4%, ..., for the integer-spin case(ko=0,c =7)

and

p_1+ 3— 5+
ST=T 23 93 s e

(or with opposite parity 0~, 17, 27, etc.). This is the
same as for the energy levels of the simple nonrelativistic
rotator, where to each energy level there corresponds an

(2.1

., for the ® -integer-spin case(ko= -i—,c =0)

r
irreducible representation of the rotation group. For our

relativistic case, to each mass level there corresponds an
irreducible representation (m (s),s) of the physical Poin-

TABLE IV. Experimental data of all known meson resonances with normal s* and positive C,P.

Y =0 Y =0 Y=1
I=1 I=0 I=%
Particle Particle Particle
s? name m Am name m Am name m Am
1~ P 0.769 0.154 1) 0.7826 0.0099 K* 0.892 0.051
2+ A, 1.318 0.110 f 1.273 0.179 1.434 0.100
3~ g 1.691 0.200 ® 1.67 0.166 1.775 0.14
4+ ) 2.034 0.20 h 2.04 0.15 2.037 0.249
€ 2.30 0.17

5- p 2.35 0.20
6+ ) 2.45 0.32
1- p'(1600)

1= p'(2150)
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caré group Zp ; . Thus each hadron, which is

described by this irreducible representation, is considered
as a different level of the rotator. To test whether had-
rons fall into rotational bands we will have to assign to
each * (Maj) a set of hadrons with increasing value of
spin and mass but otherwise with identical or similar
properties. Such a set we will call a tower. The best-
known integer-spin towers are those with normal s¥ and
positive C, P consisting of 13

(SP)DCnP=(1_)N+’(2+)N+’(3_)N+’(4+)N+" e
(2.2)

In Table IV we list the p tower (I =1), the o tower
(I =0), and the K tower (Y =1). Although there are indi-
cations for other towers with s abnormal and C,P nega-
tive or positive, there are not enough recurrences in these
towers (or in the ¢ tower) to perform a meaningful test on
them. Therefore, we will restrict our tests to these three
meson towers. It is important to note that we have listed
all the known resonances from Ref. 14 with the proper-
ties of these towers and not just a subset of them con-
veniently selected for our purpose. Not all resonances list-
ed in Table IV are entries in the meson table of Ref. 14,
but some are entries in the meson data card listings. No-
tice that for the I =0 tower there are two 4+ resonances
in the meson data card listings. If this degeneracy is con-
firmed, then the Majorana representation is too simple to
describe this tower and a larger representation of SO(3,2)
must be chosen which allows for a degeneracy of the
states with the same s¥. We have already mentioned, in
Sec. III of Ref. 1, that this is likely to be the case and we
should expect fine-structure effects to appear. Here our
interest lies only in checking whether rotational bands do
exist for the mesons and, therefore, we ignore these prob-
able fine-structure effects'> and omit the €(2300) from our
test.

When we performed fits of the p, w, and K towers in or-
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FIG. 1. Rotational bands of the p, ®, and K meson towers.
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FIG. 2. Rotational bands of the p, w, and K meson towers.

der to determine the parameters A% and @? in the mass for-
mula

m2=AAa?—3)+A%s(s +1)

=A%a2+A%s (s +1), (2.3)

we found values for A? of approximately A2~0.3 (GeV)?,
which leads to a radius R=1/A of approximately
R=~+Xx10"" cm [as already reported in Eq. (I3.31)].
But we also noticed a slight dependence of A? upon s.
This is depicted in Fig. 1 where we have drawn
m?2/s(s +1) versus s and in Fig. 2 where we have drawn
m?/s(s +1) versus s(s+1).'® Figure 2 is the analog of
Fig. 3 for the rotational bands in nuclei and of Fig.4 for
the rotational bands in molecules, in which
(E(J)—Ey)/J(J +1) versus J(J +1) is drawn. In molec-
ular and nuclear physics the rotational energy levels are
conventionally parametrized by

E(J)—Ey=J(J +1)[B—DJ(J +1)] (2.4a)
o]
o
~
': o
3 S0 100 250 300 350

150 200.
JJ+1)
FIG. 3. Ground-state rotational band of "?Hf [plot following

A. Bohr and B. Mottelson (Ref. 13); data from F. S. Stephens
et al., Nucl. Phys. 63, 82 (1965)].
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FIG. 4. Ground-state rotational band of HCI [data from M.
Czerny, Z. Phys. 34, 227 (1925)].

and the dependence of the moment of inertia upon J,

1

Y =B—-DJ(J+1),
is explained as the effect of centrifugal stretching.
The nonrigidity, which is expressed by the ratio D /B,
for molecular rotators is D /B ~10~* and for nuclear ro-
tators is D/B~10"3. In analogy to these nonrelativistic
cases we would expect a slight dependence of A2 (or
1/R?=A2% upon s of the form

)\,2=A.12—)\,22S (s+1) ’

(2.4b)

11,12

(2.5)
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where A, describes the effect of the centrifugal stretching
and is expected to be a few orders of magnitude smaller
than A,%. The curves in Fig. 2 represent a fit of Eq. (2.3)
with Eq. (2.5) to the experimental data of the three towers.
The values of the parameters &2, A2, and A,2 for the three
towers are given in the upper left-hand part of Table V.
We also give the values of the masses predicted by this fit
for the various s’ states. All the fits are good, as can be
seen from the value of X2/np. Since &2=a?— 7 in all the
fits is consistent with zero, we have fixed it at zero in or-
der to reduce the number of fitted parameters to two. The
results of these fits are given in the lower left-hand part of
Table V. Since X? increases only minimally, the confi-
dence level for these fits is even better than for the fits
with @2 as a parameter. The nonrigidity for the hadronic
rotational bands is A,2/A>=~1072, i.e., it is an order of
magnitude larger than the nonrigidity D /B for the nuclear
bands and two orders of magnitude larger than for the
molecular bands.

In Fig. 1 we have assumed that the s dependence of A?
is given by

A2=22— Q0% . (2.6)

This gives an even better fit to the experimental data as is
displayed in the right-hand part of Table V. We do not
know of any theoretical arguments that would discrim-
inate between Eqgs. (2.5) and (2.6), but taking the fine-
structure effects into account!® leads to a formula for A2
where Egs. (2.5) and (2.6) are the two external cases. In
order to check whether the J(J +1) dependence of 1/1 is
essential for the nuclear rotators, in Fig. 5 we have
redrawn (E(J)—E)/J(J +1) versus J using the same
data that was used for Fig. 3. One can see that
1

— —B—
27 DJ

TABLE V. Fits of the quantum relativistic rotator mass formula to the experimental data for three meson towers with normal s?

and positive C,P. Fits A include predicted masses in GeV.

Fit A m=[a%+s(s + )] [A 2 =A% (s +1)]'2 m=[&%+s(s +1)]H A2 ~A,%)!2
s? p tower w tower K tower p tower @ tower K tower
1- 0.79 0.783 0.893 0.78 0.783 0.893
2+ 1.28 1.26 1.413 1.30 1.27 1.421
3- 1.72 1.68 1.81 1.72 1.69 1.800
4+ 2.08 2.03 2.006 2.06 2.04 2.012
5- 2.34 (2.28) 2.32 (2.31)
6+ 2.44 (2.38) 2.46 (2.50)
X*/np 0.84/3 0.06/1 0.50/1 0.49/3 0.29/1 0.05/1
a? 0.30+0.59 0.34+0.50 0.26+0.34 —0.09+0.52 0.075+1.036 —0.042+0.657
A2 0.28+0.03 0.27+0.06 0.37+0.05 0.35+0.05 0.32+0.19 0.4710.16
A2 0.003+0.001 0.003+0.003 0.009+0.003 0.03+0.01 0.029+0.050 0.068+0.048
Fit B m=[s(s + D] A 2=A2s (s +1)]? m=[s(s +1)]2(A2—1A,%5)!?
p tower o tower K tower p tower o tower K tower
X2/np 1.19/4 0.73/2 1.19/2 0.53/4 0.12/2 0.25/72
(@2=0)
A2 0.30+0.02 0.32+0.01 0.41+0.02 0.35+0.03 0.34+0.01 0.47+0.03
A2 0.004+0.001 0.006+0.001 0.011+0.002 0.034+0.006 0.033+0.005 0.065+0.011
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FIG. 5. Ground-state rotational band of !"?Hf [data from F.
S. Stephens et al., Nucl. Phys. 63, 82 (1965)].

gives even better agreement with the experimental data
than the conventional ansatz of Eq. (2.4).

From the results of the fits we see that A;? and A,? take
on nearly the same value for the p and the o towers. For
the quadratic correction term, Eq. (2.5), A,>~0.28 GeV?
and for the linear correction term, Eq. (2.6), A;’>~0.34
GeV?2. For the p and o towers, &2 is comparable to zero
and fixing it at zero (i.e., taking for a? the lowest group
theoretically allowed value of ) increases the X? only
minimally and therewith makes the fit significantly better.
For the K tower A, is slightly larger than for the non-
strange towers, but within the errors (one standard devia-
tion from the minimum) all three values of A, agree with
each other for both the quadratic and the linear correction
term. If A2 turns out to be larger for the K tower, it may
be explained as coming from the different constituents of
the diquark dumbbell.

From our fits in Table V and Figs. 1 and 2, we conclude
that the normal s¥ and positive C,P mesons form rota-
tional bands similar to the rotational states of molecules
and nuclei. The relativistic rotator, like the molecular and
nuclear rotators, is also not completely rigid but stretches
with increasing angular momentum. The similarity be-
tween the rotator properties of molecules and nuclei is
well known.!? That this similarity also extends from the
nonrelativistic to the relativistic domain, as demonstrated
by comparing Fig. 2 with Figs. 3 and 4 (or Fig. 1 with
Fig. 5), is a fascinating display of unity in physics.

In conclusion, we now summarize the basic assump-
tions and results of this three-part series of papers. The
quantum relativistic rotator is defined by a relativistic
Hamiltonian and other quantum observables to which the
rules of constrained Hamiltonian mechanics (with Dirac-
Poisson brackets replaced with commutators) are ap-
plied.!® The Hamiltonian is conjectured to be given in
terms of the second-order Casimir operator of the
“dynamical group” SO(4,1)B“'J#V (Ref. 19) [see Eq.
(I2.38)] which contains one parameter, A, if the rotator is
rigid or two parameters, A; and A, [which are related to A
by Egs. (2.5) or (2.6)], if centrifugal stretching is con-
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sidered. To justify the name quantum relativistic rotator,
we have shown in Sec. I that this model corresponds to
the quantum relativistic mass point in the elementary lim-
it and to the nonrelativistic rotator, with moment of iner-
tia given by Eq. (1.45), in the nonrelativistic limit.

A single relativistic rotator, characterized by the value
of the parameter a in the Hamiltonian, consists of a tower
of spin levels s=1,2,3,..., with masses given by Eq.
(2.3). Thus for every rotator there corresponds three pa-
rameters if centrifugal stretching is included where «a is
the analog of the ground-state energy for the nonrelativis-
tic rotator and where A; and A, describe the relativistic
analog of the moment of inertia with elasticity. If two ro-
tators happen to have identical “moments of inertia,” as
may be the case for all mesons with normal s and posi-
tive C,P and should be the case for all nonstrange di-
quarks of this particular kind, then the parameters A and
A, will have the same values for each “rotator.” Also, if
two rotators have the same ‘“ground-state mass,” then a
should take on the same values for each.

We have fitted the hadron masses of the p tower (with
six known masses), the o tower (with four known masses),
and the K tower (with four known masses) to the mass
formula Eq. (2.3) predicted by our Hamiltonian. The re-
sults in Table V show that both nonstrange meson towers
(presently containing ten hadron masses) can indeed be fit-
ted with the two structure parameters: A;’>~0.31 (GeV)?
and A,2~0.005 (GeV)? (where one and the same value
@2=0 has been taken for the ground state). For the
strange meson tower the moment of inertia appears to be
slightly different, although a fit of all 18 known mesons
with normal s* and positive C,P to Eq. (2.3) (with &=0),
does give an acceptable fit.

We have also applied the mass formula, Eq. (2.3), to nu-
cleon and hyperon resonances. Here one does not have a
very clear selection criteria which assigns a set of hadrons
to a particular tower so that some of the baryon reso-
nances have to be excluded arbitrarily. But, the existing
baryon data are consistent with Eq. (2.3).

As mentioned at the beginning of Sec. I of this paper
the transition matrix elements, which are another test for
the rotational bands in molecular and nuclear physics,
cannot be tested for the relativistic rotator since the re-
quired data (radiative transitions and photoproduction or
other production scattering between higher spin hadrons)
do not yet exist. Therefore, for the time being, the mass-
spin spectrum remains the only testing ground for the
QRR and here the evidence appears to be favorable.
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