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A new method for obtaining perturbative predictions in quantum field theory is developed. Our
method gives finite predictions, which are free from scheme ambiguities, for any quantity of interest
{like a cross section or a Careen's function) starting directly from the bare regularized Lagrangian.
The central idea in our approach is to incorporate directly the consequences of dimensional
transmutation for the predictions of the theory. We thus completely bypass the conventional renor-
malization procedure and the ambiguities associated with it. The case of massless theories with a
single dimensionless coupling constant is treated in detail to illustrate our approach.

I. INTRODUCTION That is,

In quantum field theory the bare perturbation series for
any quantity of interest W, which may be a cross section,
Green s function, etc., is not well defined since the coeffi-
cients of expansion are infinite. To extract finite results
the usual procedure, in a renormalizable theory, is to ab-
sorb the infinities in the bare parameters (coupling con-
stants, masses, etc.) and fields present in the Lagrangian.
The definitions of the renormalized parameters and fields
in terms of the corresponding bare quantities are, howev-
er, not unique because of the possibility of finite renormal-
izations. Consequently, finite-order predictions for A in
the renormalized theory depend on the renormalization
scheme (RS) used. The conventional renormalization pro-
cedure, therefore, gives predictions for A' which, although
finite, are still ambiguous.

The fact that predictions for A are not well defined in
the bare perturbation theory appears to suggest that A' it-
self is not directly computable in the theory. The RS
dependence of the predictions in the renormalized theory
is also perhaps an indication of the same thing. If this is
really so, then one may naturally ask how and in what
form does the theory determine A'. In the answer to this
basic question lies the key to the approach which we
develop here. This approach leads to a new perturbative
method for obtaining finite predictions which have the ad-
ditional feature that they are free from RS ambiguities.

To understand better and sharpen the question posed
above, let us focus our attention on a renormalizable
massless field theory which has only one dimensionless
coupling constant go. Consider now a dimensionless
physical quantity R (Q), which depends on only one exter-
nal energy scale Q, in such a theory. Since there is no
mass scale present in the Lagrangian, simple dimensional
analysis tells us that if R is unambiguously calculable in
the theory, then it must be a finite constant independent
of Q. This physically uninteresting result would not fol-
low if E. is not directly computable or uniquely specified
by the theory. In that case, E. can have a nontrivial
dependence on Q if instead the theory specifies uniquely
the derivative of R with respect to Q as a function of R.

Q—:R'(Q) =F(R (Q) )
dQ

Actually, as we shall show in Sec. II, this is exactly what
happens in the theory under consideration.

Equation (1.1) requires the knowledge of R at some
Q =Qo (which may be obtained from experiments) to
predict it at any other Q. This boundary condition on Eq.
(1.1) provides the necessary scale Ati for R to have a non-
trivial dependence on Q. The dependence of R on the pa-
rameter Ati (undetermined by the theory) is consistent
with the fact that the theory already contains one free pa-
rameter, namely, the unrenormalized coupling constant
go. What has actually happened is that this one parame-
ter dependence of R on go has now appeared, by "dimen-
sional transmutation, "' through Az.

From a practical point of view, the key question is how
to identify and compute functions like F(R). We address
ourselves to this question in the following sections. In
Sec. II, we show that for any physical quantity R, F(R)
can be obtained as a series in R with finite coefficients,
starting directly from the regularized unrenormalized per-
turbation series for R (in terms of go). The renormaliza-
bility of the theory guarantees the finiteness of the coeffi-
cients of series expansion of F(R) in R. One can use F(R)
calculated to a certain order in R in Eq. (1.1) to obtain a
new kind of "perturbative" approximations for R. These
perturbative predictions for R are clearly free from RS
ambiguities associated with the conventional renormaliza-
tion procedure. It is this method of obtaining perturbative
predictions in renormalizable field theories that we wish
to advocate here. In Sec. III, we extend our method to
Green's functions. Recognizing that the normalization of
a Green's function is also not computable, we find that in
this case it is the second derivative with respect to an
external momentum which is well defined and comput-
able. We give the example of the gluon propagator in
massless QCD to illustrate our method for obtaining per-
turbative predictions for Green's functions. Section IV
contains some general remarks and our conclusions.
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II. PHVSICAI. QUANTITIES I If—=rio="i ~ (2.9a)

dR, , 2, 3, 4
Q =R =rump +r2P0 +r30go + ' ' (2.2)

We shall be interested here in renormalizable massless
field theories which have only one dimensionless coupling
constant gp (e.g., massless quantum chromodynamics).
For simplicity first consider a physical quantity which de-
pends on only one external energy scale Q. Corresponding
to it one can always construct a dimensionless measurable
quantity R such that its regularized unrenormalized per-
turbation expansion is of the form

R —a Q +r /pap + r2QaQ + r3QaQ +2 3 4

Here ap—=gp /4m and the subscript 0 denotes unrenor-
malized quantities. The coefficients r„o depend on Q
through the regularizing scale (e.g., an ultraviolet cutoff).
Since ap does not depend on Q, differentiating both sides
of Eq. (2.1) with respect to Q, we get

—ff 1 =r20 2r lorlp r2rl 2r iri
—ff2 r 30 3r 20r 10 2r lor20+ 5r lor 10

=r 3
—3r2r i —2r i r2+ 5r ) r i

(2.9b)

(2.9c)

etc E. quations (2.9) imply that f,fi,f2, . . . are finite and
RS independent. We emphasize here that the above proof
of finiteness of f,fi,f2, . . . only uses the property of re-
normalizability of the theory. No specific renormalization
scheme has been used. In other words, had we started
with the regularized Lagrangian and computed the r„p, we
would have found their combinations in Eqs. (2.5) au-
tomatically finite.

The fact that f,fi,f2, . . . are finite and RS independent
suggests that they are somehow connected with the RS in-
variants ' b,pi, p2, . . . . It can be easily shown (see the
Appendix) that in fact these two sets are equal,

f =b, fi=p»i f2=p2 (2.10)

drnpr'o—=Q

For small R, Eq. (2.2) suggests the following power-series
expansion for R' in terms of R:

R'=E(R)= —fR'(1+f,R+f,R'+ . ) . (2.3)

Substituting for R from Eq. (2.1) in the above equation,
we get

R'=f&o'+—f(2r io+f i)&o'

+f (rio +2r20+3riofi+f2)&0 + '

Comparing Eqs. (2.2) and (2.4), we see that

f r 10

ff 1 ="2o—2r i—orio

—ff2 r 30 3r 20r 10 2r lor20+ 5r lor 10

(2.4)

(2.5a)

(2.5b)

(2.5c)
etc.

To show that the coefficients f,fi,f2, etc. , obtained
above are finite in the limit in which the ultraviolet cutoff
is removed, we use the fact that the theory is renormaliz-
able. This implies that one can define a renormalized cou-
pling constant g by

ao —a+z, a +z2a +z3a +2 3 4 (2.6}

where a =—g /4m, such that R can be written as a series in
terms of a with finite (but RS-dependent) coefficients r„:

R =a+r~a +r2a +r3a + (2.7)

From Eqs. (2.1), (2.6), and (2.7), we obtain the following
relations among the unrenormalized coefficients r„p and
the renormalized coefficients r„:

ri =rip+zan

r2 =r2Q+Z2+2Zir ip

r3 =r30+Z3 +3zir20+ (Zi + 2Z2)rip
2

(2.8b)

etc. Using now the fact that the z„are mere constants, in-
dependent of Q, it can be readily verified that

An important consequence of this result is that the first
two coefficients, f and f1, in Eq. (2.3) are also process in-
dependent. This fact can actually be demonstrated direct-
ly using Eqs. (2.8) and (2.9). Consider the physical quanti-
ties R and R, for two different processes, which have ex-
pansions of the form of Eq. (2.1). Then, since the z„do
not depend on the process, we have from Eqs. (2.8)

r r
—r& =r &o

—r &o

(r2 ri } (r2 rl } (r20 rip ) (r20 rlo
(2.11b)

Clearly the combinations on the right-hand side of Eqs.
(2.11) are RS independent and, by virtue of the left-hand
side, finite. Hence they are also independent of Q. It fol-
lows therefore that

r io=r&o

r 2o
—2r &orio=r2o —&riorio .

(2.12a)

(2.12b)

This completes the proof of the process independence of f
and fi. Following this method, it can also be shown that
the other coefficients f2,f3, . . . depend on the process.

The above results can be summarized in the equation

Q =bp(R),dR
(2.13)

where the function p(R} is unambiguously calculable in
perturbation theory as a series in R with finite coefficients
Pn:

p(R)= —R (1+piR+p2R + ) . (2.14)

The coefficients b,pi, p2, . . . can be computed directly
from the unrenormalized perturbation series for R. The
first two coefficients b and pi are universal in the sense
that they are the same for any R. In fact, they are also the
first two coefficients of the P function [see Eq. (Ai)]. An
important consequence of this is that for an asymptotical-
ly (infrared) free theory like @CD (QED) for which b& 0
(b&0), R (Q)~0 as Q~co (Q~O) for any process R.



A. DHAR AND V. GUPTA 29

We shall make an important use of this fact below.
The general solution of Eq. (2.13), as can be verified by

direct differentiation, can be written as

Q 1 1
b ln — =——p)ln 1+

AR R P)R

R ][+ dx —+
P(&) x (1+p1x)

(2.15)

R (Q)/R(Q) = 1 —(r10 —r10)I (Q) . (2.16b)

Here I (Q) annd I (Q) are physical quantities having ex-
pansions of the form of Eq. (2.1). Moreover, as shown in
Eq. (2.11), their coefficients in Eqs. (2.16) are finite. Now,
from Eq. (2.15) for R and R one has

A-
b ln-

R

1 1 + other terms .
R(Q) R (Q)

Since A11 and A- are independent of Q, we can take the
limit Q~oo (for asymptotically free theories) or Q~O
(for infrared-free theories). In this limit, R(Q), R(Q),
I (Q), and I (Q) vanish and the difference

[1/R(Q) —1/R (Q)l~(r10 —r1o) .

The "other terms" in Eq. (2.17) therefore vanish and so we
gei

This equation was earlier obtained in Ref. 2. Here A11 is
the constant of integration. It is the characteristic scale
for the physical quantity R. In principle, it can be fixed
by giving the value of R at some Q =Qo. Equation (2.15)
then determines R implicitly as a function of Q. In the
present approach, different physical quantities R,R, . . .
will automatically have scales AR, A-, . . . , which are
specific to them. Does this mean that the theory has
many independent scales' The answer to this question is
no. In fact, we will now show that the knowledge of the
scale AR for E. is sufficient to determine the scale A- for
R. Prom expansions like Eq. (2.1) for R and R, one has

1
(r 10 10)

R(Q)
+[(~zo —r1o ) —("2o—r1o )]I (Q)

(2.16a)

p'"'(R) = —R2(1+p1R +p2R + . +p„1R" '),
(2.19)

then the corresponding approximation R1"1 to R satisfies,
according to Eq. (2.15), the transcendental equation

5 ln- =—,, —p(ln 1+-- —

(
—,Q 1 1

p)R

R(a) 1 1+ Zx +p'"'(x) x (1+p1x)
(2.20)

An important point about Eq. (2.20) is that it is not a per-
turbation expansion for R'"' in the conventional sense
since there is no coupling constant or expansion parameter
present in it. The convergence of the successive approxi-
mations R ' ',R ' ', . . . to R is now controlled by the mag-
nitude of R itself. One way of testing theoretical predic-
tions in the present approach would be to fit values of
AR, A-, . . . to data on different processes using approxi-
mate predictions and then compare the ratio
(Az),„~,/(Az), „„, so obtained with the exact theoretical
prediction Eq. (2.18). There are many other ways of test-
ing predictions in the present approach. One can also give
a precise criterion for good convergence of successive ap-
proximations defined in Eq. (2.20). These important prac-
tical questions and several applications to QCD processes
have been discussed in detail in Ref. 5.

Extension of the above discussion to the case of a physi-
cal quantity which depends on more than one external en-
ergy variable Q, Q1,Q2, . . . is straightforward. One sim-
ply takes the derivative with respect to Q in Eq. (2.2) hold-
ing the ratios x1 ——Q1/Q, x2 ——Q2/Q, . . . fixed. The rest
of the arguments then go through without any change ex-
cept that AR and p2 p3 ~ may now depend on the di-
mensionless variables x ),x2, . . . .

To summarize the discussion of this section, we have
shown that in a renormalizable massless field theory with
a single dimensionless coupling constant, only the deriva-
tive p(R) of a physical quantity R with respect to an
external energy scale is well defined and unambiguously
calculable. That is, p(R) can be obtained as a series in R
with finite and RS independent co-efficients. Meaningful
successive approximation to p(R) can now be defined [see
Eq. (2.14)] and the corresponding approximations to R ob-
tained [see Eq. (2.20)]. It is this new procedure of obtain-
ing approximate predictions for any physical quantity that
we have called a new perturbative approach to renormaliz-
able field theories.

I—
A —/A~ =exp (r10 —r10)R (2.18) III. CAREEN'S FUNCTIONS

Equation (2.18) shows, as expected, that there is only one
independent free parameter (a mass scale) in the theory
corresponding to the fact that to begin with there was
only one free parameter in the Lagrangian, namely, the
bare coupling constant go.

For practical applications, p(R) may be approximated
by the first few terms on the right-hand side of Eq. (2.14)
for small R. If we define the nth-order approximation to
p(R) by

We now extend our approach, developed so far for
physical quantities, to Green's functions. There is an ad-
ditional complication here because Green's functions get
explicitly renormalized, unlike physical quantities. That
is to say, a renormalized Careen's function G is obtained
from the unrenormalized Crreen's function Go by multi-
plying the latter by an infinite constant ZG, the renormali-
zation constant. Thus
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Consequently, to be in a position to apply the discussion
of Sec. II here also, we must first construct an object out
of G (analogous to R) which does not get explicitly renor-
malized and is therefore independent of any RS. As we
shall see below, this implies that the second derivative of
6 (with respect to an external momentum) is well defined
and unambiguously calculable in perturbation theory. We
illustrate this procedure for the gluon propagator in mass-
less QCD.

For simplicity, we shall assume covariant quantization
in the Landau gauge. A nonzero value of the gauge pa-
rameter introduces unnecessary complications which are
not relevant for the following discussion. The full un-
renormalized gluon propagator can then be written as

R (p') =1/pi[t+H(t)], (3.9a)

p„(R„) is well defined and computable as a series in R~.
Following the arguments of the previous section, one can
show that b' '=b and p'i ' ——pi, these two coefficients are
universal. Further, it is clear that b'"',p'] ',pz ', . . . will
satisfy relations identical to Eqs. (2.10) and (2.5) (with r„o
replaced by m„o). Approximations to p (R ) can there-
fore be made to obtain approximate predictions for the
gluon propagator.

As an illustration we shall compute the gluon propaga-
tor in the second-order approximation: p =—R
&&(1+piR„). Equation (3.8a) is then easily integrated to
give

d„'„(p)=—
[D~'(p) 10=~i'(p)/[1+~o(p')]

i 5 PpPv
2 & 2g v—

(3.2)

eH'" H—(t) 1 =—t
(3.3)

(3.9b)

where the function H(t) satisfi'es the transcendental equa-
tion

D„'„(p)=d„' (p)/[1+~(p )], (3.4)

Here a,b are color indices and, as before, the subscript 0
denotes unrenormalized quantities. The dimensionless
function ~0(p ) can be obtained from the proper two-point
function for the gluon field. The renormalized gluon
propagator is given by

bt—:—— ln( —p /A„), p (0.
2p)

(3.9c)

The constant of integration appears as A and provides
the appropriate mass scale for the gluon propagator. It
can be related to A~ by a relation similar to Eq. (2.19).
Equation (3.9a) can be integrated once more to obtain
[1+m.(p )]. The result is

where

[1+~(p')] '=Z3[1+~0(p')] ' (3.5) [1++(p )]= [1+m(po )]exp [H (t) —H (to)]
b

and Z3 is the gluon wave-function renormalization con-
stant. Since Z& is independent of p, we obtain the fol-
lowing simple but important relation:

R—:p in[1+m(p )]
4p

, »[1+~0(p') l . (3.6)
4p

Obviously, R does not get explicitly renormalized and
therefore is the analog of the physical quantity R of Sec.
II. It can be obtained directly from mo(p ) and has a per-
turbation expansion in ao which is of the form of Eq.
(2.1):

=:N exp H (t)
2c
b

(3.10)

where to is defined as in Eq. (3.9c) with p replaced by
pQ . The constant of integration now appears as the finite
normalization constant N in Eq. (3.10). It is clearly not
calculable in the theory. As defined in this equation, it is,
however, free from any RS ambiguities associated with
the conventional renormalization procedure. X may be
fixed, as usual, by imposing a normalization condition on
the gluon propagator. To this approximation the gluon
propagator is then given by

R =cR (3.7a)
D„' (p) =dq„(p) X exp H(t) (3.11)

R„=aQ+m]QaQ +772QQQ +7T3QQQ +2 3 4, (3.7b)

(3.8a)
8p

p (R )= R'(1+p', 'R +p,'—"'R '+ . ) . (3.8b)

The factor —,
' on the right-hand side of Eq. (3.8a) is

present because of the derivative with respect to lnp [cf.
ing in Eq. (2.13)] on the left-hand side. The function

The finite constant c, which can be obtained from ordi-
nary one-loop calculation of m.o(p ), is essentially the one-
loop gluon-field anomalous dimension. For QCD,
c =(39 4N/)/24, wh—ere Ny is the number of quark fla-
vors. Since R is a quantity of the same nature as R, the
entire earlier discussion can be applied to it. Thus, we
have

The example given above illustrates our general ap-
proach for obtaining perturbative approximations to any
Green's function. One first constructs a quantity like R
which does not get renormalized. The corresponding

p (R ) is then obtained as a power series in R . Approxi-
mations to it are well defined and free from RS ambigui-
ties. The corresponding approximation to the Green's
function can then be obtained by integrating back. The
main point which we have tried to emphasize, in this and
the previous section, is that only quantities like p(R) and
p„(R ) are well defined and unambiguously calculable in
perturbation theory; they can be obtained directly from
the corresponding regularized unrenormalized perturba-
tion expansions. We thus completely bypass the conven-
tional renormalization procedure and the RS ambiguities
associated with it.
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IV. SUMMARY AND CONCLUDING REMARKS

Observing that in quantum field theory finite-order per-
turbative predictions for any quantity of interest W (cross
sections, Green's functions, etc.) are not well defined in
the bare theory and ambiguous in the renormalized
theory, we were led to suggest that A is not directly cal-
culable in the theory. This then naturally raised the ques-
tion as to how and in what form does the theory deter-
mine A. As we have seen, the answer to this question lies
in a new perturbative approach to renormalizable field
theories which, right from the start, incorporates the
consequences of dimensional transmutation for the predic-
tions of the theory. We have shown how this approach
works for a renormalizable massless field theory with only
one coupling constant. In this case, we have shown that
the theory at best specifies uniquely (i) the first derivative
of a physical quantity with respect to some external ener-

gy scale and (ii) the second derivative of a Careen's func-
tion with respect to some external momentum.

From the practical point of view, a new kind of "per-
turbation theory" has emerged from the present work.
Since functions like E(R) can be obtained as a series in R,
systematic order-by-order (in R) approximations to E(R)
can be made and the equation R'=E(R) integrated to get
the corresponding approximate predictions for R. These
predictions are clearly free from any RS ambiguities asso-
ciated with the conventional renormalization procedure.
An important point about these predictions is that the
coupling constant (bare or renormalized) is completely
eliminated from them. Convergence of perturbative ap-
proximations for R is now controlled by the magnitude of
R itself.

An important problem, not attempted here, is the exten-
sion of the present approach to theories with masses. The
main difficulty here is that perturbation theory is not ana-
lytic in masses, so we cannot expand around zero mass. A
possible approach, at least for nonconfining theories like
QED, would be to define the physical mass of a particle as
the pole in the corresponding propagator and then elim-
inate the bare mass from all quantities of interest in favor
of the physical mass and the bare coupling constant. The
resulting problem can then perhaps be tackled using the
methods presented. in this paper. The next step would be
to extend the present approach to massive theories with
many coupling constants. This is important for applica-
tions to electroweak and grand unified theories. Work in
this direction is in progress.

ACKNOWLEDGMENTS

Our warmest thanks are due to S. Wadia, G. Ra-
jasekaran, P. P. Divakaran, and H. S. Mani for discussions
and many helpful suggestions.

APPENDIX

cients. After this we prove Eq. (2.10).
The couplant a in Eq. (2.7) satisfies the P-function

equation

p =P(a) = ba—(1+c~a +c2a2+ . ),
Bp

(A 1)

where p denotes the renormalization point. In a different
RS characterized by the couplant a, where a and a are re-
lated by the equation

a =a+Ula +U2a + (A2)

the physical quantity R has the expansion

a+r la 2+r2a 3+ (A3)

The couplant a satisfies the P-function equation

p =P(a)= ba (1+—c&a+cqa + ) .
Bp

Moreover, P(a ) and P(a) are related by the equation

p(~)= p(a) .
Ba

(A5)

The prescription for obtaining the invariants is simply
this. Equations (2.7), (A2), and (A3) give r; in terms of r;
and u;; and Eqs. (Al) and (A2) and (A4) and (A5) give c;
in terms of c; and u;. To any given order n these consti-
tute two sets of n equations from which U l, U2, . . . , U„can
be eliminated. In each of the resulting n relations there
are no terms which mix the barred and unbarred quanti-
ties. The separation occurs in such a way that a polyno-
mial function of the former is equal to the same function
of the latter and is therefore RS invariant. We now list
some of the invariants obtained in this way:

Pl=&l ~

2
p2 =C2 + r2 —r 1pl —r 1

P3=&3+2r3 —4r2rl —2rlP2 —rl Pl+2rl2 3

(A7)

(A8)

etc. There is another invariant which can be obtained us-
ing the well-known relation between QCD scale parame-
ters A and A in two different renormalization schemes:
b ln(A/A) =u&. Also, we have r, r~ ——u~. Therefore w—e
find that

po ——b ln
A

is also a scheme invariant.
The proof of Eq. (2.10) now proceeds as follows. Since

A is dimensionless and depends on only one energy scale
Q, the r; must be functions of the dimensionless variable
p/Q only. Now since p&,pz, . . . are RS invariant, it fol-
lows that they must be independent of p and hence also of
Q. Thus p~, pq, . . . are constants independent of Q. More-
over, b, c~,c2, . . . are also constants independent of Q.
Therefore, differentiating Eqs. (A6)—(A8), we get

For the sake of completeness we first briefly outline the
method for obtaining the RS invariants in terms of the
perturbation series coefficients and the P-function coeffi-

r lPl =r2 —2r lrl

r l P2=r3 —2r2r l
—3rl r2 +5rl r l

(A10)

(Al 1)
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r) ———b. (A12)

etc. Further, Eq. (A9) implies that r ~ b——in@/Q + const.
Therefore, we have

For QCD, b =(33—2Nf )/6 and

p~
——(153—18Nf )/2(33 2—Nf ),

where Nf is the number of quark flavors.
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