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The motion of charged particles in external electromagnetic fields is reviewed with the purpose of
determining the whole set of constants of motion. The Johnson-Lippmann results concerning the
interaction with a constant magnetic field are taken as the starting point of the study. Our results
are obtained through simple group-theoretical arguments based essentially on extended Lie algebras
associated with the kinematical group of the {constant) electromagnetic field involved in the interac-
tion. Nonrelativistic Schrodinger (or Pauli) and relativistic Dirac Hamiltonians are considered. The
corresponding Lagrangian densities are then studied when the charged particles move in arbitrary
electromagnetic fields. Through Noether's theorem, we get the constants of motion when coordi-
nate and gauge transformations are combined. These results complete the U(1)-gauge theory and re-
late the works of Bacry, Combe, and Richard and of Jackiw and Manton when external gauge fields
are considered. These developments enhance the minimal-coupling principle, the U{1)-gauge theory,
and Noether's theorem.

I. INTRODUCTION

Nonrelativistic and (or) relativistic charged particles
moving in classical external electromagnetic fields consti-
tute the simplest quantum systems with interaction.
These systems are treated using the Maxwell theory for
the electromagnetic fields together with the Schrodinger
equation (or the Pauli one) in the nonrelativistic case, or
the Dirac (for spin- —, particles) equations in the relativis-
tic case. Consequences of these treatments are the well-
known principle of minimal electromagnetic coupling'
and the first characteristics of the U(1)-gauge theory. ' In
the specialized literature, one of the most interesting pa-
pers is that of Johnson and Lippman (JL), published 35
years ago. It deals with the motion of a charged particle
in a constant magnetic field 8, treated in both nonrela-
tivistic and relativistic quantum theories.

In view of the recent impact in particle physics of gauge
theories [among these, the U(1)-gauge theory has played a
pioneer and prominent role], the numerous group-
theoretical developments ' applied to minimal-coupling
schemes, and finally the current interest"' in symmetries
and associated conserved physical quantities (or constants
of motion) through basic tools like the Noether theorem, '

we plan to reconsider here the JL contribution. Among
other things, our purpose is to generalize JL's results to
the case of motion in a constant electromagnetic field.
More precisely, we want to extend the Hamiltonian ap-
proach used extensively by JL and to consider a I.agrang-
ian approach to invariances and conserved quantities based
on Noether's theorem and recent contributions. ' These
approaches lead in complementary ways to the conserva-
tion laws which occur in the U(1)-gauge theory, and may
be generalized to arbitrary gauge theories. '

Reconsideration of the JL paper is also motivated by

the results of Bargmann' and Levy-Leblond' on group
extensions and invariance principles, respectively. More
precisely, if classical electromagnetic interactions enter,
we effectively deal with symmetry groups of potentials '
and we speak about the extension by .R of the kinematical
group' ' G~ of the associated electromagnetic field Ii.

Let us summarize the contents of this paper. In Sec. II,
we briefly survey the JL results in the Schrodinger and
Dirac theories in order to establish notation and to intro-
duce such studies within group theory. In Sec. III, we
show how to complete the JL results by taking the cases
of free Schrodinger and Dirac theories (Sec. III A) and by
extending our considerations to the interacting case (Sec.
IIIB), i.e., for charged particles interacting with a con-
stant electromagnetic field F=(E,B). We also present
some remarks on the nonrelativistic limit of our Dirac re-
sults and on the derivation of wave equations with classi-
cal interactions using Hoogland's construction. Then, we

return to the JL restricted interaction (E=0) and we make
some general comments (Sec. III C). In Sec. IV, we point
out some peculiarities of the Jackiw-Manton' and Bacry-
Combe-Richard' approaches and their applications of
Noether's theorem in the framework of U(1)-gauge theory.
We recall the more general form of Noether's theorem and
exploit (Sec. IVA) the U(1)-gauge theory when the Dirac
field is coupled to an arbitrary electromagnetic field and
when space-time coordinate transformations are combined
with local gauge transformations. Then, we emphasize the
connection of the preceding results with the elements of
the extended Lie algebra of the kinematical group of a
constant electromagnetic field (Sec. IV 8) which leads to a
clear relation between the present results and those of Sec.
III in the relativistic spin- —, case, for example. Finally, in
Sec. V some more comments and conclusions are present-
ed.
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II. A SHORT SURVEY
GF THE JL CONSTANTS GF MOTION

The Schrodinger equation for a nonrelativistic particle
interacting with a constant magnetic field 8 along the
third axis [8=(O,O,B)] is given by

.8 =ia, q=asy
Bt

with the Hamiltonian

(2.1)

Our notation is conventional and we have chosen to use
natural units (A'= l,c =1) in both relativisic and nonrela-
tivistic contexts. We refer to Minkowskian space
[GM ——diag(1, —1,—1,—1)] with space-time events
x —= Ix&I = Ix,x'I:(—t, r ) G. reek indices run from 0 to 3
and Latin ones from 1 to 3. The summation convention
on repeated indices is used. The parameters m and e stand
for the mass and the charge of a particle. Moreover, we
shall make use of a few notions from differential
geometry, ' such as Lie derivatives for studying infini-
tesimal motions. These are discussed for example, in the
papers by Forgacs and Manton" and by Jackiw and Man-
ton. "

(2.9)

where a and p are the well-known Dirac matrices.
Here, the constants of the motion are still given by the

quantities (2.5), b« the third component of the orbital an-
gular momentum I. is replaced by the third component
of the total angular momentum

4

J3=L3+X'=(r X p ) ——~t ~ (2.10)
2

J3 commutes with the Hamiltonian (2.9) and satisfies the
same commutation relations as 1. in (2.7).

Now, the constants of the motion (2.5) and (2.6) in the
Schrodinger context or (2.5) and (2.10) in the Dirac one,
taken together with the commutation relations (2.7), can
be identified with the generators of a Lie algebra. This
algebra is a subalgebra of a larger one associated with the
"physical kinematical group"' ' of the field 8. Qur aim
is to show that a/l the generators of such physical
kinematical algebras are interpreted as constants of
motion in this Hamiltonian formalism. From this point
of view, there are some missing constants of motion in the
JL approach.

III. CONSTANTS OF MOTION
AND HAMILTGNIAN FORMALISM

Hs=
2172

~here

(2.2) Within the Hamiltonian formalism, an arbitrary opera-
tor C is a constant of motion if the following condition
holds

H=p+eA= —i V +eA . (2.3)

1 —+ 1A= —,8X r = —,( —By,Bx,0) . (2.4)

The vector potential A associated with the field
8 ( = 7 XA) is chosen in the form of the gauge symmetri-
cal potential

C= = +i [H;C]=0 .
~ dC BC

dt dt
(3.1)

We shall consider the cases of free (Sec. IIIA) and in-
teracting (Sec. III 8) particles, and shall also return to the
JL situation and make some general comments (Sec.
III C).

The JL constants of motion are

m'=H'+eBy =p' —eg ',
m =H —eBx =p —eA2= 2 2 2 (2.5)

A. Free particles

The free nonrelativistic Hamiltonian for a particle of
mass I 1s given by

n =H =p3,
2Hz

(3.2)

I 3 (pX~p )3 xP2 yp1 (2.6)
The constants of motion are known to be the momentum

p, the angular momentum L= r && p, and the operators

These quantities are not explicitly time dependent: they
commute with the Hamiltonian (2.2). Among themselves,
they obey the following commutation relations:

[m-', H] =ieB, [n', m'] =0, [m, m.3]=0,
(2.7)

[L,m']=i', [I. ,vr ]= im', [L,~—]=0.
For a relativistic spin- —, particle interacting with the

same field 9, the motion is described by the Dirac equa-
tion

(3.3)

Let us point out that p and I. are time independent, so
that they do commute with the Hamiltonian (3.2) while K
does not.

These well-known results' follow from the fact that the
extended Galilean symmetry group is the invariance group
of the free Schrodinger equation. We notice that the
operators I' =Hz, P=p, J =L, and K satisfy the usual
commutation relations of the Cxalilean Lie algebra apart
from the commutators between the X' and PJ:

ia, y=HDy

with the Hamiltonian

(2.8) [X',PJ] = —im 5'J, (3.4)

which characterize nantrivial extensions' by R of the
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Galilean algebra. There is, in fact, a one-dimensional vec-
tor space of extensions characterized by the mass m. The
operators I' and P are the well-known time and space
translation generators, the J' (i = 1,2, 3) are the generators
of spatial rotations, and the X' (i =1,2, 3) are associated
with pure Galilean transformations inside the extension by
R of the Galilean group. Let us recall that the existence
of such an extension is intimately connected with the ex-
istence of proj ectiue' irreducible unitary representations of
the Galilean group.

The free relativistic (Dirac) Hamiltonian for a spin- —,

particle is given by

HD =a p +Prn (3.5)

The constants of motion are the momentum p, the total
angular momentum

(3.6)

X=(X',X,X )=——(a a,a a', a'a )
2

(3.7)

are the so-called spin matrices of the Dirac algebra, and
the quantities

B. Interacting particles

As already mentioned in the Introduction, by "interact-
ing particles" we mean that the charged particles interact
with an external constant electromagnetic field F—:(E,B ).
Let us immediately fix F as' a "parallel" F (Fll) along
the third axis:

Fll
—= [E=(O,O,E),B=(O,O,BI, (3.9)

E and B being arbitrary constants Fll erives from the
so-called gauge-symmetrical potentials explicitly given by

V= ——,'Ez, A= —,
'

( By,Bx, Et), — —(3.10)

or a gauge transformation of these. The vector potential
(2.4) is a particular case of Eq. (3.10) if the electric field is
zero.

Let us determine the constants of motion for charged
particles interacting with EI~. The Schrodinger Harnil-
tonian is

IIs II —e V, II —= (2.3). ——
2m

K= t p —rHD+i—
2

The operators P =HD, P=p, J =L+ X —=(3.6), and
K:—(3.8) are the generators of the Poincare Lie algebra, '

in a specific realization taking into account the presence
of the spin operators. This corresponds to the invariance
of the free Dirac equations under the Poincare group.

Here, we have to notice that the Poincare group admits
only true irreducible unitary representations, so that we do
not have to refer to an extended symmetry group. We
speak about trivial extensions of the Poincare Lie algebra.

The constants of motion are not difficult to find if we no-
tice that, with Eqs. (3.10) and (3.11), we have

e
p = —— II,— II,E, r =—II (3.12)

2 m m m

eEas =- ~tIIs
2m

Then, the constants of motion are

w'=p' —ea '= n'+cay,

m =p —eA =II —eBx,
m =p —eA =H +eEt,
m =Hs —eV,0

J =xp —yp'=I E =tp —mz .

(3.14a)

(3.14b)

(3.14c)

(3.14d)

The only nonzero commutators between these operators
are the following ones:

[m', n ]=ieB, [m, rf )=ieE. ,

[J,m'] =i m, [J,.H] = i m'', —

[K,n ]= im, —[K. ',m']= im . —
(3.15)

Let us now make some comments. We get only six can-
stants of motion in this interacting case while there were
ten in the free case. Moreover, in comparison with the
free case, we recover among them only two unchanged
conserved quantities (i.e., J and K ), and we notice that
the other four modified quantities explicitly depend on the
interaction through the electromagnetic potentials (3.10).
These properties can easily be explained by group-
theoretical arguments. We see that in the explicit realiza-
tion (3.14), intimately connected with the choice (3.10), the
only unchanged operators are J and E, because these
generate the two-dimensional Lie algebra associated with
the symmetry group of the chosen potentials V and A. '

Moreover, the algebra (3.15) corresponds to an extended
Lie algebra associated with an extension by R of the non-
relativistic kinematica1 group' Gz if we recall that, for

II

Fll
—=(3.9), we deal with' ' the algebra

GF = IF,P,J,IC ) . (3.16)

Hs —— (vr. n. +2eBJ' 2eEX')+ev-. —
2m

(3.17)

Then the Schrodinger equation in terms of the constants
of motion is

This algebra belongs to a two-dimensional vector space of
extensions characterized by the mass m and the charge e.

As a final remark in the nonrelativistic context, let us
relate these considerations with a study by Hoogland of
minimal electromagnetic coupling in wave equations. The
Hamiltonian (3.11) can directly be written in terms of the
quantities (3.14) as



CHARGED PARTICLES W'ITH ELECTROMAGNETIC INTERACTIONS. . . 2817

(n+2eBJ —2eEK )P .
2m

(3.18)
1 -- e8

Hp ——— II II+ o. —ev,
2m 2m

(3.26)

Such an equation has been obtained by Hoogland from the
derivation of the Casimir operators associated with the ex-
tension of GF by R. We refer to the original paper for
specific details on this interesting approach.

The Dirac Hamiltonian becomes in the interacting case

HD ——a 11+Pm —eV (3.19)

and the constants of motion are determined as

m =p —eA, m. =p —ei, m =p —eA1 1 1 2 2 2 3 3

m' =Hp —eV,0

J =xp —yp +2o, K =tp —mz.

(3.27a)

(3.27b)

(3.27c)

where we recognize the usual spin term leading to the
magnetic moment, the jLande factor, etc. This. leads to a
specific realization of the (six) conserved quantities

~'=p' —eW', H=p' —eA',

m =p —eA, m. =H~ —eV,
J3 xp2 yp 1++3 L 3+g3

(3.20a)

(3.20b)

(3.20c)

Such a realization can be obtained from Eqs. (3.19) and
(3.20) through usual considerations such as, e.g., the
Foldy-Wouthysen transformation. Remember that the
X and c7 matrices are, respectively, even and odd matrices
in the standard Dirac representation, so that results
[(3.20c), (3.20d)]~(3.27c) are obvious when we restrict
ourselves to the large components.

These six operators lead to the nonzero commutators

[m', ir ]=ieB, [~,m ]=ieE,
[J,m']=i', [J,H]= im'—,

[K',m-0] = i ~', —[K3,m'] = i m, — .
(3.21)

giving once again an extended algebra of GF =(3.16) and
II

corresponding to a one-dimensional vector space of exten-
sions characterized by only the charge of the particles.

Now, let us point out that, with the Hamiltonian opera-
tor (3.19), we can get a second-order equation which is ex-

plicitly written in terms of the constants of motion,

(m ) g=(m +m +2eBJ 2eEK )/,—
where we have used the property

(MD+eV) =(u II+Pm) =II +m +2eBX3 .

Equation (3.22) takes also the equivalent form

(3.22)

(3.23)

(3.24}

where

2e —a —BX = ——y y+"
2 2

with F:IF" I given by—(3.9). Such considerations are
typical of the Feynman —Gell-Mann developments lead-

ing to their well-known equation

[lli'll„—m 2 —e o"(B+iE ) ]P=0
in terms of a two-component wave function.

Equation (3.22) is a new result in the framework of
Hoogland's approach applied here to spin- —, particles in-

teracting with a constant Fll.
As a last comment, let us recall the nonrelativistic limit

of the Dirac theory. The nonrelativistic interacting or
Pauli Hamiltonian obtained from (3.19) reads

C. The JL case and some general comments

If the electric field E in Eqs. (3.9) is zero, the formulas
of Sec. III 8 reduce to those of Sec. II. Compared to the
JL results, we get all the constants of motion, and, in par-
ticular, m and K, which have not been previously men-
tioned. Another result consists in noticing that the elec-
tromagnetic field F

~ ~

—= (3.9) and the magnetic field
B=—(O, O,B) admit the same kinematical group but dif
ferent extended Lie algebras leading to different sets of
constants of motion. Moreover, for nonrelativistic parti-
cles, we point out that the algebra (2.7) is a subalgebra of
(3.15) and we notice the physical interest of the supple-
mentary constant of motion K in connection with the
mass of the particles.

I.et us now return to the interaction with the constant
field F~~ =(3.9) in order to note that the constants of
motion (3.14) and (3.20) do depend on the choice (3.10) for
V and A. But we know that the potentials leading to such
an F~~ field fall into equivalence classes through gauge
transforrnations, so that we can reconsider our problem
with other explicit forms of V and A (leading to the same
F~~}. Recalling our recent results, ' let us point out that
the dimension of the symmetry group of (3.10) is 2 and
that this is not the maximal dimension in the relativistic
context. We found' nil

——. So, as already ment&oned rn
Sec. IIIB, the number of unchanged (with respect to the
free case) constants of motion is equal to 2 with the poten-
tials (3.10), but can be equal to 3 if we choose a potential
with maximal symmetry as follows:

V= ,E(t —z), —
(3.28)

A= —,
'

( By,Bx, E(t —z)) . ——

In fact, if the potentials (3.10) admit the symmetry

[J,K J, the ones given by (3.28) admit IJ,K,P P I. —
The corresponding constants of motion are given (in the
Dirac case) by (3.20) in connection with (3.10) while they
become, with (3.28),
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w =AD+ (t +z),o eE
2

(3.29)

such that

Bqg"(x) =g"„(x)=0, (4.2)

Fi = f E= ( E, 0, 0), B=( 0, E, 0) }, (3.30)

which derives from gauge-symmetrical potentials given by

V= ——,Ex, A= , E(z t, O, ——x). —

The associated kinematical algebra' is

vr'=p'+ —(&+z),
2

and (3.20a), (3.20c), and (3.20d) leading to unchanged con-
stants n ~, J, and EC . Let us also notice that, if the
interaction is purely magnetic, the potential (2.2) admits a
four-dimensional symmetry leading to m. , ~, J, and E
as unchanged constants of motion.

Other types of electromagnetic interactions can evident-
ly be considered. In particular, for constant electromag-
netic fields in the relativistic case, there exists besides F~~ s
also Fi's. We know that the kinematical group Gz of Fi
is not isomorphic to G~, but is of the same dimension.Ii'
Similar considerations to those of Sec. IIIB can then be
developed with a fixed Fi chosen as

f' ~(x')=P „(x)+5/ „(x),
and if the Lagrangian density

W(g (x),g „(x),x)=—W

transforms as

(4.3)

(4.4)

~(Q' (x'),f' )(x')x') =W+ d„Z"(g (x),x ),
then there exists a conserved current J=

I
7"} given by

J"= 5$ (x)
BW

aux

(4.5)

(4 6)

the wave functions P (x) (a=i, . . . , n) and their first
derivatives 1t~ &(x) transform according to

P'(x')=P (x)+5/ (x),

(3.32)

Once again, there are six constants of motion in the
description of spinor particles which are also associated
with the generators of an extension by R of Gz . They can
be easily realized and we leave their determination as an
exercise for the reader. In the nonrelatiuistic context,
Bacry, Combe, and Richard' have shown that such an
orthogonal Fi leads to a meaningful situation when it
reduces to the magnetic field 8 alone. In this case, we
also recover the JL case. As a last remark, these nonrela-
tivistic considerations are restricted to the magnetic limit
of Galilean electromagnetism as discussed by Le Bellac
and Levy-Leblond.

If arbitrary electromagnetic fields are considered in ei-
ther the relativistic or nonrelativistic cases, the determina-
tion of the constants of motion can be achieved by finding
the extended Lie algebra associated with the symmetry
group of such a field. Knowledge of the potentials and of
their symmetries yields information about the constants of
motion which are unchanged with respect to the free case.

IV. CGNSTANTS GF MGTIGN
AND I.AGRANCxIAN PGRMAI. ISM

Noether's theorem' is one of the most powerful tools in
modern physics. Recently, it has been used extensively in
connection with arbitrary gauge theories, as in ihe work
of Jackiw and Manton' dealing with space-time and
gauge-transformation properties of Lagrangian densities.
Let us recall the Noether theorem in its generalized form
as given by Bacry, Combe, and Richard

"If, under infinitesimal transformations on space-time
events x = fx",@=0,1,2, 3}

which leads to the associated constant of motion

(4.7)

C= dr J'." (4.&)

Here we want to apply this theorem to the coupling of
Dirac and Maxwell theories. This coupling leads to the
well-known Abelian U(1)-gauge theory as far as local
gauge transformations on Dirac wave functions and on
electromagnetic potentials are concerned. Gauge invari-
ance in quantum electrodynamics then appears as a
dynamical principle.

If coordinate iransformations are combined with local
gauge transformations, the covariance of the theory and
its gauge invariance have to be examined simultaneously
and some current developments suggest that special care is
necessary. Jackiw and Manton' have considered such a
problem in the case of spin- —,

' particles coupled to arbi-
trary gauge fields. Here we apply their considerations in
the U(1)-theory. First, we take the interacting case with
an arbitrary electromagnetic field (Sec. IVA) and, later,
we specialize to the case of the constant "parallel"F:—(3.9) (Sec. IVB), in order to relate the Harniltonian
and Lagrangian approaches. In fact, we shall be particu-
larly interested in external' gauge fields, i.e., when the po-
tential A can only vary from point to point.

A. Dirac particles in an arbitrary electromagnetic field

Quantum electrodynamics is characterized by a La-
grangian density expressed in terms of the covariant
derivatives D& ——8„—I',eA„:

x~x' x"~x'I'=x"—P (4.1) (4.9)
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where g is the adjoint wave function defined by
=A' (y'=P)

Within the coordinate Poincare transformations (4.1)
i.e., with

P= a" —cP„—x", (4.10)

ai' and cia'" being the infinitesimal translational and
I orentz parameters, respectively, let us consider the
transformations (4.3) with

Ap(x) =A„(x) (4.23)

in order to get a conservation law. This relation is
equivalent to

LgAp(x) = —Bpa(x), (4.24)

Now, if the gauge field is external, ' we must be able to
combine coordinate and gauge transformations in such a
way that

5$(x)=Qf(x), 5$(x)= —g(x)Q (4.1 1) where the Lie derivative with respect to the vector fields g
is defined by

5A„(x)=a)„A (x)=(B„g")A„(x),

where Q stands for the homogeneous part:

(4.12)

JP =J~ +J$,
where

(4.14)

The Lagrangian density (4.9) is strictly invariant with
respect to these transformations (4.11) and (4.12). Then,
from Noether's theorem (with W=Lz, Z":—0), we get,
through Eq. (4.6), the total conserved current z

—a(x)=Wg (x)—= 8'„(x), (4.25)

where Wz depends on gz.
From the formulas (4.19)—(4.21) with g=g'~, Q=QF,

and a(x) = —WF(x), the Lagrangian density (4.9)
transforms in such a way that

LgA (x)=Pdg„(x)+(B„g")A„(x).

The condition (4.24) is possible only if we limit ourselves
to particular Poincare transformations characterized in
Eq. (4.1) by the @ leaving invariant the field F (L~F =0)
and to the compensating gauge transformations. Let us
denote

J~() D = — gyi'(PB g+Qg)+H. c. (4.15)
L„'=Lr a„(4"„LM—) (4.26)

and Noether's theorem applies. We immediately get the
conserved current

(4.16)

Equation (4.15) is the conserved current associated with
the free Dirac theory and Eq. (4.16) is the conserved
current associated with the free Maxwell theory. Here let
us recall that T=

I T""J is the (symmetric) energy-
momentum tensor defined by

Tv~ 'y y~~gI ~+I;I ~p ~

Moreover, under local gauge transformations character-
ized by infinitesimal modifications,

JP(x) = — Py" ( b,~—ie WF )g+—H. c. ,2

where

~F4=4 "dA'+QFP .

The constant of motion then takes the form

CF ———— dr P (b.z ieWz)g—+Hc.
2

(4.27)

(4.28)

(4.29)

5g=iea(x)g, 5g= —gaea(x)g, 5A„=B„a(x), (4.17)

Jg,„g,= eely"ga(x)—+F""r}~(x). (4.18)

Under combined coordinate and gauge transformations,
that is,

P'(x')= g(x)+ QP(x)+iea(x)P(x),
g'(x') =g(x) —g(x)Q —iea(x)P(x),

(4.19)

(4.20)

the Lagrangian density (4.9) is also strictly invariant.
From Noether's theorem, we get, from Eqs. (4.6) (with

@=0, Z"—:0) and (4.17},the gauge-conserved current

B. Dirac particles in a constant electromagnetic field

The determination of the constants CF —=(4.29) requires
explicit expressions for b~ and WF when the electromag-
netic field F is given. Let us take the case of the constant
F~~

—=(3.9}characterized by the following @:
g~ ——uz —a0 0

(4.30}
g~ ——Oy —a', gF= —(Ox+a ), gF vr —ai——

if 8 and U refer to rotations and boosts with respect to the
third axis. If we choose the (particular) gauge-
symmetrical potential (3.10) associated with the field F~~,
and evaluate 8'F from

A~(x') =A~(x)+(BpP)A„(x)+Bpa(x),

we get the conserved current

(4.21)

LgAp ——Bp8'F,

we find immediately' '

WF (x ) = ,
' B(a 'y —a x ) ——,

' E—(a z at)—(4.31)

(4.32)

=Jr+Jgauge (4 22) up to an additive constant.
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With all these results, we finally obtain

(h~ ieW—z)f(x)=i(a&m H—J +vK )g(x),
where

W=p" —eA",

(4.33)
(5.6)

while the electromagnetic Lagrangian density in this non-
relativistic context corresponds to the magnetic limit dis-
cussed by Le Bellac and Levy-Leblond,

J'=xp' —yp
' ——'a'o. ',

2

& =tp —zp +—a
2

(4.34)
The total Lagrangian density

IT=Is+IF

(5.7)

(5 &)

Then, from (4.29), (4.33), and (4.34), we get the six con-
stants of motion

(W& =fdr ytWy,

(J )=fdrgtJ Q, (K )=fdrgK Q,
(4.35)

V. COMMENTS AND CONCLUSIONS

Let us briefly consider the nonrelativistic case in the
Lagrangian approach. Free Schrodinger particles are
described by the Lagrangian density

Lo,s=
2771 2

Under infinitesimal Galilean transformations, '

t'=t+b, x =x+8+x+vt+a=x —g,

(5.1)

(5.2)

the density (S.l) is invariant when the field P transforms
according to

P'(x') =P(x)+if (x)P(x)

with

(5.3)

f(x)=mv x .

Then, Noether's theorem applies with

bP = bB,P+ g V /+if—(x)P

and leads to the constant of motion

Co —— i fdr p hp+c—c.
(5.4)

In the interacting case with an electromagnetic field I", the
Lagrangian density contains covariant derivatives instead
of the usual ones. It reads

in correspondence with the invariances under space-time
translations, rotations, and boosts around. and along the
third axis, respectively, all these transformations being
combined with the gauge transformation a(x) = —WF(x)
according to Eq. (4.25).

We thus recover the values (3.20) of the constants of
motion obtained from the Hamiltonian formalism. All
the comments about the explicit form of such constants
have already been discussed in Sec. III. Let us only add
that, in connection with the remaining free constants J
and K, it follows from (4.32) that WF ——0 for the cor-
responding rotations and boosts. According to (4.31), this
implies strict invariance of the potential A with respect to
these transformations.

P'(x) =P(x)+ iea(x)P(x)

when the potentials transform like

V'(x') = V(x) —v A(x),

(5.9)

A '(x') =A(x)+ 0 XA(x)
(5.10)

under coordinate transformations corresponding to (S.3)
and like

V'(x) = V(x)+ B,a(x),

A '(x) =A(x) —V'a(x),

under gauge transformations corresponding to (5.9). By
noticing that Lz is evidently invariant under (5.10) and
(5.11), we may apply Noether's theorem to the total La-
grangian density (5.8). So, through Galilean coordinate
transformations (associated with symmetries of the F
field) combined with gauge transformations characterized
by a(x)= —WF(x), such that the conditions correspond-
ing to Eq. (4.31) of the relativistic context are satisfied, we
get the constant of motion

CF ———i r * 4z —ieS"F +c.c., (5.12)

which may be compared with the value (5.5).
In conclusion, we see that, in both relativistic and non-

relativistic descriptions, we recover the constants of
motion as associated with the generators of an extension
by R of the symmetry group of the field F. These results
have been demonstrated within the Hamiltonian approach
in Sec. III and within the Lagrangian approach in Sec. IV.
They are obtained not only for constant electromagnetic
fields (Secs. IIIB and IVB) but also for arbitrary elec-
tromagnetic fields (Sec. IVA). In each approach, the JL
results follow in a particular case.

In connection with compensating gauge transforma-
tions, let us also note that P'z is zero for symmetries of
the fleld F if and only if the potential A is itself invariant
under these I symmetries. Such a case cannot occur for
constant electromagnetic fields but is conceivable for
other fields leading to constants of motion directly associ-
ated with the generators of the fj.eld-symmetry algebra.

Finally, let us emphasize the importance of the role

does not lead to the whole set of equations of motion,
but can be considered in order to get the constants of
motion. In fact, Ls = (5.6) is invariant under the
transformations (5.3) and under gauge transformations



CHARGED PARTICLES WITH ELECTROMAGNETIC INTERACTIONS. . .

played in our considerations by the electromagnetic poten-
tial, the gauge field of this U(l)-gauge theory, and its
physical consequences. Our results may be extended to ar-
bitrary gauge field theories and may be understood in both
the Hamiltonian and Lagrangian formalisrns.
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