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Entropy from extra dimensions
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Heating may result from the collapse of the extra compact dimension in Kaluza-Klein cosmolo-
gies. This interesting phenomenon was pointed out in a recent letter by Alvarez and Gavela. Here
we correct and clarify the physical interpretation of this effect.

E'=p'+B(t) 'A, , (2)

where A. is an eigenvalue of a Laplace operator built on
the metric g,b. Note that p is the momentum measured
in a local inertial frame.

The authors of Ref. 4 consider bosons which are
described by the Planck distribution function

Recently there has been interest in the cosmology of
universes with more than four dimensions. ' In particular
it has been pointed out that these Kaluza-Klein cosmolo-
gies can have an "inflationary" phase, and thus resolve,
perhaps, well-known cosmological conundrums such as
the horizon problem. We wish to comment here on a
letter by Alvarez and Gavela in which the authors raise
the interesting question of heating due to the collapse of
the extra dimensions in these Kaluza-Klein cosmologies.
Our main purpose is to make clear some of the physics
which we believe is made obscure by the viewpoint of
those authors. We will briefly sketch their line of ap-
proach and then our own.

The (4+D}-dimensional universe is assumed to be
described by an interval of the form

ds =g~adk dk

dt +R(t}—gktdx dx +B(t) g,bdy'dy . (l)
The first two terms represent the familiar four-
dimensional Robertson-Walker space-time with scale fac-
tor R (t). The last term gives the interval in the compact,
extra D-dimensional space. It is assumed that this addi-
tional "ball" can be represented by a time-independent
metric for a homogeneous space g,b(y), and an overall,
time-dependent scale factor B(t). Although at very early
times both R (t) and B(t}may be small and expanding, it
is assumed that after a short time B(t) begins to contract
while R(t) continues to expand. It is also assumed that
the reaction times are short enough (compared to the ex-
pansion and contraction times) to maintain thermal equi-
librium in the matter system so that it may be character-
ized by a single temperature T, and moreover, the entropy
in any comoving volume remains constant. Finally, it is
assumed that the matter is sufficiently hot to be described
by free particles. It is natural within the context of the
Kaluza-Klein theory to require that these particles be
massless in the extended (4+D)-dimensional space-time.
Since the extra D-dimensional ball is compact, the energy
E of a particle with three-space momentum p is given by

f=(e ~ l) ' i—n the (4+D)-dimensional space-time.
They then define what they call an equivalent "four-
dimensional distribution function" f4(p, t), by averaging f
over the phase space of the extra D dimensions. The re-
sulting distribution is no longer of the Planckian form.
Nevertheless, the authors define an "effective four-
dimensional temperature" T,ff by fitting f4 to a four-
dimensional Planckian distribution. That is, they require
that the four-dimensional energy density given by f4 be
the same as that given by a true four-dimensional Plancki-
an distribution at temperature T,ff. Further, they com-
pute the "effective four-dimensional entropy" density Sq
from T,tf, and express its dependence on R and B. This
is claimed as the main result of their paper.

Our main concern in this comment is to emphasize that
these "effective" quantities f4, T,tt, and S4 are not the
sensible quantities to study from the physical point of
view, as they hide the true physics of what is going on,
which we will now describe.

From a (4+D)-dimensional vantage point, one has (by
assumption) a gas of massless Bose or Fermi particles-
one species of particle (with various polarization states).
However, from a four-dimensional point of view, one has
many species of particles of different masses. The various
normal-mode excitations of the matter field in the com-
pact extra dimensions appear as fields of definite charge
and mass in the four-dimensional world, as is well
known. That is, M~ =B(t) A, appears as a (mass) in
Eq. (2). If T «B ', none of these modes are excited save
for those with A, =O, which give a gas of massless four-
dimensional particles. If T »B ', many of these modes
are excited, and in four dimensions it appears that one has
a gas consisting of a mixture of many species of various
masses. Thus, it is wrong to treat the effective four-
dimensional situation as though it were a massless gas at
temperature off as do the authors of Ref. 4. It is really
a gas of many particle types of various masses at tempera-
ture T. The true four-dimensional effective temperature is
the same as the true (4+D)-dimensional temperature,
namely, T. It is not the temperature which looks dif-
ferent in the dimensionally reduced world, but the particle
spectrum. Indeed, T,tf is not really the temperature of
anything. A gas of one species of particle at temperature
Tgff would (by the definition of Teff ) have the correct en-

ergy density. However, it would differ from the true situ-
ation in other macroscopic, thermodynamic quantities
such as pressure, entropy density, and so forth.
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3-Dim. Mo ments

FIR. 1. A schematic representation of the energy level of the
(D+3)-dime sni oniafield E=[p +A, /B(t) ]'~ . The levels of
( p )' are plotted on the horizontal axis. The levels of
[iL/B(t) ]'~ are plotted vertically. The energy is the distance to
the origin. The circular arc is the temperature. Solid and empty
circles denote filled and empty energy levels, respectively.

$—Dim. Momenta

FIG. 2. Because of the contraction of the compact dimen-
sions (8 decreases) the level spacings have become larger in the
vertical direction relative to Fig. 1. Conservation of entropy im-
plies that T has increased. Note that the higher modes of the
D-dimensional kinetic energy are being frozen out.

The physical situation may be clarified by contemplat-
ing Fig. 1. The horizontal axis denotes schematically the
three-dimensional momentum space, while the vertical
axis denotes the D-dimensional momentum space of the
extra dimensions. The circular arc represents the true
temperature T. The vertical and horizontal lines
represent energy levels (we represent the three-dimensional
levels as being discrete for clarity). The levels where
E& T are mostly filled (denoted by black circles) while
those for which T ~E are mostly empty (denoted by open
circles). From the four-dimensional view, each row of
states is the set of states of a specific species of particle;
the higher the row, the larger is the mass of that species.
As the size B(t) of the compact dimension shrinks, the
level spacings in the vertical directions get larger. Conser-
vation of entropy tells us that the number of filled levels
remains roughly constant. So if, for example, R (t)
remains fixed while B(t) shrinks, T(t) will increase as
shown in Fig. 2. But T(t) will not increase as fast as the
level spacing B(t) ', and so the more massive modes will
be progressively frozen out. Eventually when B(t)
exceeds T(t), very few massive particles will remain, and
we are left with a hot gas of massless particles in the
four-dimensional space-time.

This whole process is exactly analogous to what hap-
pens in standard cosmology when the temperature drops
below the mass M of some particle species. When
T »M&, there are many protons and antiprotons about.
As the temperature drops below Mz, the protons and an-
tiprotons freeze out. They annihilate and dump their en-

ergy into lighter species, thus causing those lighter species

to heat up. As T falls below Mz, M, M&, M„ the
kaons, pions, muons, and electrons and their antiparticles
freeze out as well and dump their energy into photons, the
photons heat up. It is the same physics in the Kaluza-
Klein case.

Let us now give a quantitative analysis of the physics
which we have just described. A basic assumption is that
we have a conserved entropy current s in 4+ D dimen-
sions:

s". =(—detgcn)
' [( de—tgc~)' s "]=0 . (3)

Since the three-dimensional space and the extra D-
dimensional ball are both isotropic, s has only a nonvan-
ishing time component s . We integrate over the extra D
dimensions to obtain the entropy density observable in
four-dimensional space-time,

s4(t)= J (dy)B(t) ( edt g$)' s (4)

The conservation law (3) tells us that

R (t)'S4(t) =C

is a constant.
We assume that at early times the temperature T; is

sufficiently large that T; »8 '. In this epoch the
discrete spectra B(t) X can be replaced by (p ), where
p' is a continuous momentum variable defined in a local
inertial frame in the ball. Thus, in the early epoch

E= [0'+V ')'1'", (6)

and the entropy density in the (3+D)-dimensional space
is given by the usual, flat-space formula



ENTROPY FROM EXTRA DIMENSIONS 2781

g = T
3 ~co E T(d 3+Dp)

(2~) +

in which

co(E/T) = —b~ln(1 —e ~ )+fzln(1+e i ), (8)

where bz and fz are the number of bosonic and fermionic
degrees of polarization. Expanding the logarithms and
performing the integration term by term produces a series
that defines the Riemann g function with overall coeffi-
cient involving I functions. Thus, one easily computes

s= b+f 1 ——
23+D

2I (3+D/2)
g(4 )T3+g)X 2+~~2 +

Therefore the constant C is identified as

C=R(t)'8(r)~V~ b~+f~ 1—
23+D

E/T= q +
[8(t)T]' (13)

Thus as 8 (t)T becomes very small, all the masses become
relatively very large, and these modes cannot be thermally
excited; they are frozen out of equilibrium. The zero
modes with A, =O remain, of course. Hence, in the later
epoch which we have just described

s4 —— T
3 co4(p/T),

8 (d p)
(14)

(2m )

where

~4(p/T) = —bain(1 —e )+foln(1+e i'~ ), (15)

with bo and fo the number of bosonic and ferrnionic zero
modes. We now obtain

and use Eq. (2) for the energy. Scaling the remaining
three-dimensional momenta by the temperature so as to
obtain dimensionless integration variables q=p/T, we
see that this integration involves

' 1/2

2I (3+D/2)
~(4 D) T3+g7X ~+~~2 + (10) C=r(t) sq

in which

Vz —— dy detg~b

=R(t)'(bp+ —', fo) 2 g(4)T (16)

is the geometrical, invariant volume of the extra D-
dimensional ball.

Given the two scale factors R (t) and 8 (t), Eq. (10) de-
fines the temperature T. This determination is valid over
a range of early times, where the matter can be treated as
free, massless particles. However, as the ball shrinks, the
product 8(t)T must decrease since the opposite behavior
leads to a contradiction: If 8(t)T were to remain con-
stant or increase, then Eq. (10) requires that R (t)T remain
constant or decrease, which, with R (t) increasing, re-
quires that T, and with it 8 (t) T, decrease.

We assumed that in the initial epoch B(t)T was large
so that the quantum modes in the ball could be well ap-
proximated by a momentum integral. If this is not the
case, we must make the replacement

f (dy)8(t) (detg, i, )' ' I ~g, (12)in
(2m. )

Comparing Eq. (16) with Eq. (10), we conclude that the
temperature T~ in the late epoch is related to the tempera-
ture T; in the early epoch by

R (r;)
[8(t;)T;] X const.

R r/
(17)

Although (by assumption) 8 (t; ) T~ is very large,
R(r;)/R(t~) is very small. Therefore, the final tempera-
ture can be either larger or smaller than the initial tem-
perature.
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