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It is pointed out that there is no way to define linear momentum and supercharge for a generic
solution to 2 + 1 supergravity, whose asymptotic symmetries only include time translations and spa-
tial rotations. A Hamiltonian expression for the energy and the angular momentum is also given.

It has been shown recently that the energy and the an-
gular momentum of a gravitating system in 2+ 1 dimen-
sions are defined by the global geometrical properties of
spacetime.l’? These results are extended here to the case
of 2+1 supergravity. We point out that there is no way
to define a meaningful supercharge in general, just as
there is no way to talk about linear momentum. This fol-
lows from the fact that the asymptotic symmetries of a
generic solution do not include all the generators of the
super-Poincaré algebra, but only the time translations and
the space rotations.

We also show that the canonical generators of the
remaining asymptotic symmetries, whose values reduce to
surface integrals when the constraint equations hold, are
numerically equal to the energy and the angular momen-
tum as defined in Ref. 1.

In 2 4+ 1 dimensions, the gauge fields of supergravity
(i.e., the tetrads h(), and the spinor field ¢,) are pure
gauge outside matter (which we will always assume to be
localized in space); supergravity has no dynamical degrees
of freedom of its own. This means that one can locally
bring the metric and the spinor field to the form
8ap="ap> ¥1=0 by appropriate gauge transformations.

It turns out, however, that these transformations cannot
be extended in general to the whole region surrounding
the sources. Hence, it is too restrictive to assume that
spacetime is asymptotically Minkowskian, contrary to
what is usually done in four dimensions.

We will assume instead that the metric can be made to
approach asymptotically the metric of a conic spacetime.
This is the generic behavior in pure gravity">* and we
will argue below that it does not rule out interesting possi-
bilities in supergravity. We will also take the spinor field
to vanish at infinity, which is compatible with the field
equations in the gauge g,5=gq5" [ T4p(¥2) must vanish
at infinity because R ,5—0].

Our first task now is to determine the gauge transfor-
mations that leave the asymptotic form of the fields in-
variant since their generators define the conserved
charges, as in any gauge theory. The symmetry equations
read, in terms of the asymptotic fields,

EuptEpa=0 (8g55°=0) (1)
and

V,.e=0 (8¢,=0) . )

29

In Minkowski space, the solutions to the linear system (1),
(2) form an eight-dimensional manifold (six Killing vec-
tors and two Killing spinors). In a conic spacetime, how-
ever, there are only two linearly independent solutions be-
cause of nontrivial global matching conditions.

To prove that assertion, it is necessary to recall some
geometric properties of a flat conic spacetime, which is
obtained by removing the region limited by two half-
planes in Minkowski space, say ¢=27—f (0<fB<2mw)
and ¢ =0, and identifying the points (z,7,2m—pf), (¢',r’,0)
according to the rule t'=¢+ A4, r'=r. As is well known,
the only Killing vectors possessed by this spacetime are
/0t and 9/9¢. The other Killing vectors of Minkowski
space are not globally defined on the cone because they
fail to satisfy the matching conditions along the seams.
This allows us to concentrate only on the equation
V,.e=0.

When A vanishes, the trajectories generated by 0/9¢
are closed. When 4540, they are not, but those generated
by £=0/0¢—[A/(2m—)]0/3t are. One can take as
coordinates t'=t+A¢/(2m—pB), r, and ¢. The coordi-
nate ¢’ does not have the jump defect at $=0 and the
boundary at infinity of the surface ¢t'=const is a circle,
not a helix. In this coordinate system, the metric reads!

2

4 +dripridg?

2—_
ds*= 2B

dt'—

dé

O<d<27—B. (3)

Only its form for large r is of interest to us, since it is not
valid inside the sources. The cross term dt'd¢ in (3) re-
flects the nonorthogonality of £ and d/9¢.

It is now easy to analyze the equations V;e=0. In the
orthonormal frame

(—dt'+[A/Q2r—PB))d¢ ,dr ,rdd) ,
the nonzero spin connection coefficients are given by

D =1=—OG)ng - @
The equations Voe=V,e=0 simply imply e=e(¢). The
critical equation is V4e=0, from which one infers

e(¢)= cosg—l+sin-qu(0)

5 €(0) . (5)

Because ¢ =0 and ¢ =27 —f3 define the same point, €(¢)
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must come back to minus its original value €(0) at
¢=27—f (minus, because the frame dr, rd¢ makes a
full revolution with respect to the standard frames when
one goes around the sources). This leads to the condition

— cosﬁl +sin£'yo €(0) (6)

—€0)= 2 2

which constraints €(0) to vanish (8<0).°

Since the only asymptotic symmetries of the fields
(A(nas¥y) are the time translations and the space rota-
tions, one can only define energy and angular momen-
tum.® In the Hamiltonian formalism, these quantities are
the generators of the corresponding symmetries and
reduce to surface integrals on-shell, as we now discuss.

Because the charges are given by global invariants,' the
choice of the coordinate system is less critical than in four
dimensions: these charges are integrals of spatial densities
[see (18b) below]. We will work here either with the form
(3) of the line element, rewritten as

ds’=—(dt'—k d @) +dr+X%dé*, @)
=A) X=2£:£'<1)X$=¢’ (8)
2 2
or with the form
ds?= —(dt')*+2k dt'd+ fp)dx>+dy?) , ©)
Flo)= |k |sinhXinp I)I;L coshX Inp ,
_ P _ (10)
x =pcosp , y=psing .
(If k =0, one has r =p%,f=Xxp* 1)
The momenta 7" are given (asymptotically) by
kXr
ré— _ (11)
m X2 — k2P 14k /O — k)] 72
in the coordinate system (8) since
X 172
N = 1+m s N¢=k, (12)

whereas the spinor field ¢, vanishes as r— . These
asymptotic values are attained as quickly as needed since,
as we have shown under natural boundary conditions,
there cannot be a “topological supercharge” that prevents
¥, from being gauge related to ¥, =0 outside the sources.

Having studied the asymptotic behavior of the fields,
we can now evaluate the charges. The canonical genera-
tors of the coordinate transformations that vanish at in-
finity are given by

Hn'¥= [ a> o +0*o6) (13)
with
H =Gy (T — PN ™ — P™) _RVg +77, (14)
%‘k=_277ks|s+%k3/2 . (15)

Here, %1 and 2" are expressions with undifferentiated
fields of fourth and second orders in the spinors. Their
explicit form will not concern us here. Similarly, we will

not need #;>/? (these can be found in Ref. 7).

When the vector fields nl,nk do not vanish at infinity
but approach asymptotic Killing vectors, one cannot use
H as a generator because it has ill-defined Poisson brack-
ets with the fields.® One has to supplement H with ap-
propriate boundary terms, so designed as to cancel the
surface terms resulting from partial integration in 8H.

These boundary terms are easy to find here, for two
reasons. (i) The only place where spatial derivatives occur
in the super-Hamiltonian is through the term RV'g,
which is a divergence in two dimensions, RV'g =9;v’. (ii)
The spinor derivatives in 53/ do not pose any problem.
Hence, the total generator of these more general coordi-

nate transformations—or better, ‘“surface deforma-
tions”—is given by
HTn k= [ d(n'ar+n*%0)
+ [ dZ (i vk 427 &7 k) (16)
with
Loomh, ot G, =, (17)
r—o ® r— o ® 8¢

where 7', and % are constant. One easily checks, using
the form (3) of the metric, that this generator has well-
defined functional derivatives within the allowed class of
8ij (Sg,j ~p_2Mlnp8,]5M) and 7Y,

When the equations of motion hold, H” does not van-
ish but reduces to the boundary terms

H'In' ¥~ [ dilpov*+275,6m5)

~ [ dx[nLRVE +25,(&'m5) 4] .
Our_purpose is to evaluate (18) for 3/0¢ (energy) and
0/0¢ —kd /9t (angular momentum—the generator is nor-
malized in such a way that a full revolution corresponds
to 2m).

The surface term related to the curvature is most easily
computed in the coordinate system (9), where

RV'g = —(3%nf /3x%+3%nf /3y?) .

(18a)
(18b)

One finds
HT |2 =E=p (19)
a |
and
HT(&) =T =—-24X (20)

since 9/0t=Nn +N¥e,. These values coincide with
those of Ref. 1. One of the advantages of the Hamiltoni-
an formalism is that one can define the Poisson brackets
of the charges.®>® In our case, they simply commute.

Let us now come back to our assumption that the
asymptotic geometry is given by g,g=gg5° with 1, —O0.
One might wonder whether a different asymptotic
behavior of the fields would not enable one to define a to-
pological supercharge Q4. If this were the case, however,
energy-momentum would also have to be meaningful, be-
cause of the relation [Q,,Qp]1=(7()Y*)4sP, with
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[P,,P,]=0. Spacetime would thus possess three asymp-
totic commuting Killing vectors. It would accordingly be
asymptotically Minkowskian (three commuting Killing
vectors imply all Poincaré generators). From this, one
should be able to infer that the fields can continuously be
related by a gauge transformation to g,g=0,1,=0 out-
side the sources—since the local “superflatness” criterion
is satisfied and spacetime obeys the correct boundary
conditions—and hence, that the conserved charges are all
trivial and equal to zero.!%!!

As a final comment, we note that the proof of the posi-
tivity of the energy in general relativity based on super-

gravity [E =5 30,42 (Ref. 12)] fails in 2 + 1 dimensions
since there is no meaningful supercharge. Positivity of
the energy and stability of Minkowski space are
guaranteed by a much simpler mechanism: on a maximal
slice (77=0)—which we assume to exist—the scalar curva-
ture R must be positive by the constraint equations.!?
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