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New one-loop counterterms for quantum gravity from Becchi-Rouet-Stora invariance
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If Faddeev-Popov ghosts are added to the asymptotic states of quantum gravity in order to
preserve the Becchi-Rouet-Stora invarianee, then new Lagrangian counterterms appear in the one-
loop approximation.

Quantum gravity is known to be unrenormalizable in
perturbation theory. This is a consequence of the wrong
dimensionality of Newton's coupling constant. Further-
more, in order to make the physical S matrix unitary, it is
necessary to introduce two vector-valued ghost fields
obeying Fermi statistics, which are called Faddeev-Popov
ghosts. Conventionally, the Faddeev-Popov ghosts are
simply discarded as fictitious, i.e., they do not appear in
the initial and final states because they go round only
internal lines. However, such a standpoint is incompatible
with asymptotic completeness. Every particle appearing
in the intermediate states of the unitarity relations must
have its own asymptotic field and state appearing in boih
initial and final states. As long as we introduce the
Faddeev-Popov ghosts, we must take into account their
asymptotic fields because they cannot decay spontaneous-
ly. It is perhaps worthwhile to mention here that the
ghost fields are unobservables and hence some subsidiary
condition (see Ref. 2) on the asymptotic physical states
must be assumed. The requirement to introduce the
Faddeev-Popov ghosts in the asymptotic states is
equivalent, in a background-field method, to the introduc-
tion of the classical fields of ghosts as Grassmann-type
background fields. Consequently, new possible candidates
for, say, one-loop counterterms could arise after multipli-
cative renormalization.

In this paper, we shall work within the covariant
background-field formalism of 't Hooft and Veltman.

The only difference from it will be the introduction, by a
background-field decomposition, of the classical (or exter-
nal) fields of Faddeev-Popov ghosts as odd Grassmann
variables. As a result we shall find new one-loop counter-
terms for quantum gravity and their effect will be to
spoil, in the case of pure gravity, the renormalizability of
the S-matrix elements already in the one-loop approxima-
tion.

The starting point is the Lagrangian of gravity interact-
ing with a real scalar field (in units with 16irG =c =itt'=1)

WE ( g)' '(—R————,
' V„pg""Vp),

where R is the scalar of curvature constructed from g&
and the metric is assumed of Lorentzian signature. Fol-
lowing the procedure of the background-field method, we
write

where the c numbers (background fields) g&„and tp are
understood as solutions of the classical equations of
motion. The one-loop Lagrangian for (1) is obtained by
expanding W~ about the classical background fields and
taking only the quadratic term in the quantum fluctua-
tions, i.e.,
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where the covariant derivative denoted by V'z contains the Christoffel symbol made up of the classical field g&„. Let us
observe that the greek indices in Eq. (2), as in the following, are raised and lowered by means of the background metric
g„„. The Lagrangian (2) is invariant under the gauge transformations induced from the infinitesimal diffeomorphisms of
the space-time, x"~x"+6'(x) with

~

d'
~

«1, »mely,

5h„(x)=[g „(x)+h „(x)]V„e(x)+[g~ (x)+h„(x)]V~ (x)+e (x)V' h„,(x),

5y(x) =d*(x)V [y(x)+qr(x)] .

To fix the symmetry (3) we adopt the so-called de Donder gauge fixing, '

(3)
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~oF= —zf pc Ca p

C =(—g)' (VP'~ —,' V„—h ~ q&v—q(p)t"

where t" is the square root of the tensor

g tahar va g Pv

(4)

Thus, the Faddeev-Popov ghost Lagrangian is obtained by subjecting C, defined in Eq. (4), to the transformations (3)
with now the gauge parameters eI'(x) set as

e"(x)=pg~(x),

where p is an anticommuting c number independent of x and g"(x) is an anticommuting vector-valued field known as
the Faddeev-Popov ghost field. We find that the Faddeev-Popov Lagrangian is given by

~g)»t —( g)'—rj)'tg [(g V Vp)g„—R, V„fV—tI']71 (&)

where q& is an independent ghost field; we may think of gz as the Hermitian conjugate of rl&. At this point, we split the
ghost g" into a classical background (or odd Grassmann variable) rj" and a quantum part g &, i.e.,

An analogous decomposition is understood for g&. So we find that the quadratic part of the Taylor functional expansion
of (5) about the background ghost fields is given by, in the more general case of complex matter fields P,

M2gb»t ——( —g)' Ih~p( ,'rl~J", —vl)tM"—)v1 "+Pl VAN"„v Fl jt+P[v)t(F1 "v V'*)]Fl,+(1"[v'„( l)tv~@)]

+h p( —,il'J", P—rj "M", P)rj„'+q)[V "(rl"V~')]rj„"+g*[V (rj V "qr)]rid +Wg)»t, (6)

where we have defined
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(7b)

(7c)
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—
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——,
' [I„+o.„+toy o, ]'jIm(D p"), —

where

We note that I "~ is the Christoffel symbol due to the
background metric g&„and Wg), ost is the ghost contribu-
tion already obtained by 't Hooft and Veltman. ' We can
rewrite Eq. (6) in terms of real-valued fields setting

v 2 g„=q(."+ig(.", (»)

0 1
[Id]'j=&'j [o ]'j=

1 ()

[oy]"=—
0 —i 1 0]'—= 0 —1

y() )+t y(2)

so that Eq. (6) becomes in matrix form (i,j=1,2)
~ ~ ~ ~

~2gh»t=( 1(i) A(jl)+'V(i) X 7(j)+h(i) D l(j))(

(Sb)

(9)

Re( A +iB):A, Im(—A +iB)=B,
B"—:V "(gpv "y),
E"=V "(g"Vpg ),
Dap -+—

(V vgpap g jtrxg yap)
2 'lpga og ya

[A "]""=[A "1""+I:A "]""
I:A )']""=—'[Id+os]'g"" =g ~V Vp,

[A,'j]&"= , [I +o ]'j(FY&"+—V "—g—*V
q ),

[W'j]"=
I [tr, ]'jRe(B")—[o„]'jim(B")j
+ [ [Id ]'jRe(E")+i [cr~ ]'jim(E )I,

where we have used the "doubling trick" for the gravita-
tional fIuctuations h p and defined It is more convenient to rewrite the ghost Lagrangian (9)

in compact form

~2gho t= I [~'( )l. '[~']" [c'(,)]b
+2[@( )l. '[~'V]"'[@(j)]b
+[~'( )]"[~"]"[@'(,)lb I( —g)'" . (10)

Here, the contraction between worM indices must be un-
derstood and the matrices A, ~, and ~ are of the form
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[~ij]sb

[~j] 0
0 0, ab =123

0 [D", ]']"= 0 0

[~Z] [X"] [D2]
0 0 0

(1 lb)

(1 lc)

—1/2
Tr[ ,' —(M'j —V ~'J+~"M~ —, R—)

+—„(VX~"+~"Xm'j)

+ ~ (R~pR P——,
' R )]

e= 167r (n —4)—+0+, (12)
T

[@(i)]a=( l(i)~f'(i)~~(i) ) (1 ld)

In this formalism, the counter-Lagrangian that eliminates
all one-loop divergences due to (10) is given in the dimen-
sional regularization scheme by

where the parameter n is the dimensionality of the space-
time analytically continued in the number of the dimen-
sions from 4 to n complex.

After some lengthy, but trivial, calculations, one gets by
Eqs. (11)

—1/2

bWsho8, ——— [—„R + 20R~pR—p+32E +TE(pv)E (" )+R""(Vpip'Vvg)+ —,R(V~pV "ip*)

+ 3'ER+4E(V„@*V"y)+ ,'(V„f—*V~)+(V "B„')(V"B„)

+(V B„"*)(VB„")+,', rj'R"—"pR„,pp7)i'] . (13)

In Eq. (13) we have defined the quantities

Ep„=gpss pV' g ~ =E(p ) +E)p„),
1

(jlv) 2 (Epv+Ev/l)&
—aP

E[yv] =
2 (Epv —Ev)J, )~ E—:g E(aP)

(14)

~E+~GF+ ~FP
with Wz, WoF, and WFp defined in Eq. (1), Eqs. (Sa),
and (Sb), respectively, read

2 gpv 2 (E(pv) gpvE ) ~

Remember that g & and g „' are odd Grassmann c-number
variables. We see that in the hypothesis g =q p ——0, Eq.
(13) is in agreement with the result obtained by 't Hooft
and Veltman. '. Moreover, for the case of pure gravity

a„[(—-)'"g ]=0,

(g"'V„V„)7) =0,
(g ""V„V„)7I*=0 .

(16)

Then, Eq. (1S) can be simplified with the aid of Eqs. (16)
and becomes

—1/2

E

+32E'+ —E E'~ '

(PQG)~~8)-( =—
—)1/2

( g)
(

18859 E2+ 7 E E(pv)
4SO 12o (p~)

+-, E,„.,E4 "l

+—'7)'R"" R p 71 ) . (17)

+ ,', 7I*R ""p R„,pp—7(I~) . (1S)

In the case of pure gravity, the field equations for the
classical background fields derived from

One recognizes that the one-loop counterterm (17) is not
of a type present in the Einstein "effective" Lagrangian
and is therefore of nonrenormalizable type. A similar
conclusion was already obtained in Refs. 3 and 7.
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