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Ground-state wave function of linearized gravity
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The ground-state wave function for linearized gravity is calculated from the Euclidean
functional-integral prescription. The result is identical to that obtained from the canonical theory
of quantum gravity.

0'o[ three-geometry] =
four-geometries

exp( —I [g]) . (1.1)

Here, I is the Euclidean gravitational action and the sum
is over all Euclidean four-geometries which (1) have a
boundary on which the induced three-geometry is the ar-
gument of the wave function and (2) satisfy appropriate
conditions to specify the ground state.

In the case of spatially closed three-geometries the ap-
propriate condition is that the Euclidean four-geometries
be compact. Implemented in simple closed minisuper-
space models this prescription (1.1) gives a wave function
which may be reasonably interpreted as the ground state
in the sense of a state of minimum excitation. ' In models
with more complicated matter interactions it begins to ap-
proximate the features of the present universe. In the
case of asymptotically flat three-geometries the appropri-
ate class of Euclidean four-geometries for defining the
ground state are those which are asymptotically flat.
Thus one would write

where the integral is now over all Euclidean four-
geometries which are asymptotically Euclidean (flat) and
bounded by an asymptotically flat hypersurface labeled by
t on which the induced three-metric is g,j.

It would be desirable to compare the Euclidean
functional-integral prescription for the ground-state wave
function with the results of the canonical theory for this
quantity. There appears to be only one result of this type.
This is the calculation by Kuchar of the ground-state
wave function for linearized gravity. He finds for the
wave function on the physical configuration space

Po[h ~~J, t] =N exp —— I d k co-h i *(k )h '~( k )
k

(1.3)

I. INTROK)UCTION

A natural prescription for the ground-state wave func-
tion of quantum gravity can be given in terms of Euclide-
an functional integrals. ' Schematically, the amplitude
for a three-geometry to occur in this ground state is

Here, lt,z (k) is a Fourier component of the transverse-
traceless part of the deviation of the three-metric from the
flat three-metric in rectangular coordinates, to-=

~

k ~, N
k

is a normalization factor, and l=(16+6)'~ is the Planck
length in the units A=c= 1 we use throughout this paper.

In Sec. III, we shall show that the Euclidean
functional-integral prescription of Eq. (1.2) made precise
and applied to linearized gravity does yield the ground-
state wave function of the canonical theory (1.3). This is
not a surprising result. I.inearized gravity is the theory of
a spin-two field on a flat background and in ordinary
flat-space field theory the corresponding functional in-
tegral is well known to give the ground-state wave func-
tion. Still, it seems useful to set forth the construction in
some detail both to demonstrate the congruence of the re-
sult with that of the canonical theory and also to indicate
how various technical issues arising in the general theory
such as the necessity of conformal rotations and the elim-
ination of redundant degrees of freedom are treated in its
linearized version. Because of the close connection with
flat-space field theory we shall begin (Sec. II) with a brief
review of the Euclidean functional-integral construction
of the free electromagnetic ground state as a guide and
comparison for linearized gravity.

The application of the Euclidean functional-integral
prescription to calculate the ground-state wave function
for asymptotically Aat spacetimes in the full nonlinear
Einstein theory is a problem presenting greater challenges
than that for t4e linearized theory. Linearized gravity is
the theory whose action is that of Einstein's theory ex-
panded to quadratic order in deviations from flat space.
Since the action is quadratic the functional integral for the
wave function can be evaluated exactly. We cannot hope
to evaluate the functional integral (1.2) for the wave func-
tion exactly in the nonlinear theory but one can obtain an
approximation using semiclassical methods. In Sec. IV,
we consider the semiclassical approximation to the
ground-state wave function of the full theory evaluated
for three-geometries which are only slightly curved and
satisfy the linearization of the Hamiltonian constraint of
the full theory. As one might expect this approximate
wave function of the full theory coincides with the exact
ground-state wave function of the approximate theory;
that is, with the ground-state wave function of linearized
gI avlty.
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II. GROUND-STATE %'AVE FUNCTION
FOR ELECTROMAGNETISM

C=V A (2.8)

In its simplest and most directly interpretable form the
wave function is a function on the configuration space as-
sociated with the physical degrees of freedom of a system
and of the time. In the case of electromagnetism the
physical configuration space might be taken to be spanned
by the two transverse components of the three-vector po-
tential A; (x), at each spatial point. (The range of latin
indices is 1 to 3; that of greek indices 0 to 4.) Thus we
would write

/=/[A; (x),t] . (2.1)

This wave function is unconstrained and the scalar prod-
uct giving the probability interpretation could be writtel]
schematically as

where the functional integral is over the two physical de-
grees of freedom at each space point.

For some purposes it is convenient to consider the wave
function as a function of all three-vector potentials, and
write

%=%[A;(x),t] . (2.3)

Wave functions on this extended configuration space,
which now includes the longitudinal part of the vector po-
tential A; (x), would necessarily satisfy the operator form
of the constraint Maxwell's equation

( V.E)%[A;(x ),t]=0 . (2.4)

Here, I is the Euclidean electrodynamic action

I[A]= 4 f d x F~f3F ~,

with

I'
p

——V Ap —VpA

(2.6)

(2.7)

The integration is over all four-vector potentials which
match the prescribed A;"(x) on the boundary surface and
which vanish sufficiently fast at Euclidean infinity as dis-
cussed more precisely below. Included in the integration
are integrals over the components Ap(x) and A; (x) on the
boundary surface which are unrestricted by the argument
of the wave function. C=O is the volume gauge condition
to be enforced over the whole of the region to the past of
the boundary surface. For definiteness one might consider
the Lorentz gauge where

The scalar product expressed as an integral over the 3;
will take a more complicated form. Consideration of
wave functions on extended spaces of variables may be
useful in theories such as general relativity where it is not
as easy to identify the physical degrees of freedom as it is
in electrodynamics.

The Euclidean prescription for the electromagnetic
ground-state wave function would read as follows:5

Pp[A;, t] = f 5A„(detC')'~ 5[C']

X(detC)'~ 5[C]exp( —I [A]) . (2.5)

A condition like (2.8), however, does not completely fix
the gauge. For example, V 2 =0 is preserved by gauge
transformations generated by gauge functions A which
satisfy V A=O. This can be used to impose a condition
on A~ on a single surface. For example, we might choose

O'=V A=0 (2.9)

on the boundary surface. Such a condition is needed on
the boundary surface as otherwise the integration over A;
would be infinite. There is therefore a gauge 5 function
5[C'] in Eq. (2.5) acting only on the surface to enforce the
condition C =0 there and make the integration finite.

The measure for the functional integral can be made
precise by defining the integral as the limit of a multiple
integral over the Fourier components A~(t, k) of the vec-
tor potential on discrete time slices. The measure can be
thought of as

const && + Q Q dA ( r, k ) .
ak

(2.10)

Certainly only configurations whose asymptotic
behavior is consistent with a finite action contribute to the
functional integral (2.5). In rectangular coordinates this
requires the components of Az to fall off faster than 1/r
at infinity. In fact, we shall find it sufficient to impose
stronger conditions so that Fourier transforms of the 3&
exist and the familiar formal manipulations of functional
integrals can be performed. These conditions will restrict
the falloff of the prescribed A; (x) on the boundary sur-
face but not in any essential way as it would be physically
reasonable to restrict these radiative degrees of freedom to
have compact support.

The wave function %[A;,t] on the extended configura-
tion space of three-vector potentials is given by a func-
tional integral of the same form as (2.5) but without the
surface gauge-fixing 5 function, and integration over A;
on the boundary surface. The wave function P can thus
be recovered from. 4 by integrating over A; with an ap-
propriate 5 function to fix the gauge.

The functional integral which gives the wave function is
easily evaluated by translating the integration variables to
ones centered about an extremum of the action which
matches the argument of the wave function on the boun-
dary surface and which vanishes at infinity. To see this, it
is sufficient to consider gauge conditions which are linear
in the A„such as Eq. (2.8). Under translations, these are
unchanged, the measure [Eq. (2.10)] is invariant, and the
quadratic action is a sum of the action for the extremum
configuration and that for the translated variables. The
entire dependence on the argument of the wave function
then comes from the action of the extremum configura-
tion which is easily evaluated.

To be specific in the electrodynamic case let us take the
Lorentz condition (2.8) for C and (2.9) for C'. A configu-
ration which extremizes the action, satisfies the required
conditions at the boundary surface and at infinity, and
satisfies the gauge conditions is, in spatial Fourier com-
ponents,
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A()(r, k)=0, A; (r, k)=0,
(2.1 1)

the physical configuration space is thus written

tP=g[h, i (x),t] . (3.4)
A;(r, k)=A; (k)e

Here A; (k) is the Fourier component of the argument of
the wave function at time t and co»=

~

k
~

. Introducing
k

new integration variables a& by

A~ ——Ap+ap, (2.12)

we find that the a& vanish both on the boundary surface
and at infinity. The translated functional integral is

exp( —I [A]) tiines an integral of the form (2.S) over the
a&. The latter contributes only a constant factor N in-
dependent of A; . Evaluating the action for the extremum
configuration the result for the ground-state wave func-
tional is

gp[A; (x),t]=%exp ——,
' f d k co-„A;'(k)A~'(k)

(2.14)

is satisfied since %0 is independent of A; ( x). Further, the
integral connecting %'() and $0 can be explicitly evaluated.
The integral over A; ( x) of a Vo of the form (2.11) times a
gauge-fixing 5 function gives a result of the same form as
(2.11) up to normalizing factor.

(2.13)

This is the correct and classic result. Each normal mode
of the electromagnetic field is in a harmonic-oscillator
ground state.

A parallel calculation of the wave function on the ex-
tended configuration space would yield the same result up
to normalization factor. One thereby sees directly that the
constraint

g p(x)=5 p+h p(x) (3.6)

and expanding (3.S) to quadratic order in h p. For con-
structing the ground-state wave function we take BM to be
a flat slice in flat Euclidean space and M to be the region
of Euclidean flat space to the past of this surface. The
h~p of interest are those which vanish sufficiently rapidly
at infinity so that g p becomes asymptotically flat and so
that the action is finite. With these restrictions the Eu-
clidean action for linearized gravity is

&'&,[h]=-,' f, d xhJ~J+ , f d x—h pG +C„.
(3.7)

0

The constituents of this expression are as follows: G~p is
the linearized Einstein tensor

G~p: 2 ( V h~p 5pVrV. sh r +V~Vrh rp+VpVrh r~)

(3.8)

where

The Euclidean functional-integral prescription for the
ground-state wave function $0(hP, t) for linearized gravi-
ty is to sum exp[ —(Euclidean action)] over those nearl
flat Euclidean four-geometries which match the given h;J
on the boundary hypersurface labeled by t and which are
asymptotically flat at Euclidean infinity to the past of this
surface. To make this construction explicit we need first
to consider the Euclidean action for linearized gravity.
This is constructed from the Euclidean action for
Einstein's theory

I I[g]=—2 f K( g)' d x —f R(g)'~~d4x (3.S)

by writing the Euclidean four-metric as

III. GROUND-STATE WAVE FUNCTION
FOR LINEARIZED GRAVITY

1

h~p ——h~p ——,6~ph (3.9)

Linearized gravity is the field theory whose action is the
Einstein action expanded to quadratic order in deviations
of the metric from flat space. In contrast to Einstein's
theory the physical degrees of freedom of the linearized
theory are readily identified. They are the two indepen-
dent, transverse-traceless (TT) components of the three-
metric of a nearly flat spacelike surface. More explicitly,
consider a spacelike surface which becomes a flat surface
of constant Minkowski time t when the metric perturba-
tions vanish. Write the three-metric on this surface as

and the usual conventions are followed that indices are
raised and lowered with the flat metric and h =br'. ir ~ is
the linearized "Euclidean momentum conjugate to h,j." It
is

1TIJ KgJ 5gJ K (3.10)

where K;J. is the perturbation of the extrinsic curvature of
the boundary surface and K is its trace. If we use rec-
tangular coordinates where the boundary surface is labeled
by ~=t=const,

3g;~ =5;J +h~j(x) (3.1) K;1 = , (Vp;J. V;h,j V—jh„)—. — (3.11)

and decompose the deviations h,j as

hJ(x)=hj (x)+hJ(x)+hj(x),
where

V'h;j ——0, V'h;j ——0, h '; =0

(3.2)

(3.3)

The constant C is the contribution, if any, of the surface
term in (3.S) at Euclidean infinity. It is quadratic in h p,
but its exact form will not be important for us.

The action (3.7) is left unchanged by the gauge transfor-
mation

The physical configuration space is spanned by the two in-
dependent components of h,j (x). A wave function on

h p~h p+ V( gp) . (3.12)

In fact, the form of the action is determined by the re-
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+(surface terms) . (3.13)

The ground-state wave function for linearized gravity
may be constructed from a Euclidean functional integral
which has the form

g [h;J,t] = f 5h p Q (detC, )'~ 5[C, ]

Q (detCp)' '5[Cp] exp( —Ii[h]) .

(3.14)

The ingredients of this expression are as follows: Iz is the
action for linearized gravity discussed above. C and C,
are four-volume and four-surface gauge-fixing conditions,
respectively. A frequently convenient choice for the C
are the four conditions

quirements that it give the correct linearized field equa-
tions, contain no higher than first derivatives, and be in-
variant under gauge transformations including those
which do not vanish on the boundary surface. An expres-
sion equivalent to (3.7) with a more compact volume term
is'

r'r, [h]=-,' f d4x( ,'V.h-„vh» V.—h PV,h rp)

h p(x)=y p(x)+25 pX(x) . (3.18)

To fix the decomposition an essentially arbitrary condition
must be imposed on y~p. Following the guide of the full
theory we require the gauge-invariant condition that the
linearized scalar curvature constructed from y~p vanish:

for electromagnetism and would be completely so were it
not for the fact that the Euclidean action for linearized
gravity, like that for general relativity, is not positive de-
finite. One can easily verify this by calculating the action
in the form (3.13) for the particular perturbation
h~p= —,'5~ph with h of compact support away from the
boundary surface. This is not a difficulty to be resolved
by choice of gauge because the action is gauge invariant.
As in the full theory, one can construct a well-defined
functional integral by distorting the contours correspond-
ing to integrations over the conformal components of the
metric to complex values. This was discussed for the full
theory by Gibbons, Hawking, and Perry' and for the
linearized theory by Gibbons and Perry. We shall follow
their procedure here. From a Hamiltonian perspective
this procedure is simply a manipulation of the integrations
of the unphysical degrees of freedom necessary to obtain a
convergent functional integral. "

We first decompose the metric perturbations into con-
formal equivalence classes by writing

C (h)=v.h P=o. (3.15) R(y p)=v VPp p Vy=0 .— (3.19)
The four surface conditions are necessary to remove the
gauge freedom left unfixed by the conditions C~=O. For
example, the condition (3.15) is left unchanged by gauge
transformations of the form (3.12) with

V'gP=0. (3.16)

If we consider only gauge transformations which vanish at
Euclidean infinity, thereby preserving the vanishing of the
h~p at infinity, we can use this freedom to impose four
conditions on the h~p on the boundary surface. Together
with the four conditions C these reduce the ten h p to
two on the boundary surfac~the correct number of
specifiable degrees of freedom on the boundary surface.
The integral in (3.14) is over all linearized field configura-
tions h~p which match the prescribed h;~ on the boun-
dary surface and which vanish at Euclidean infinity to the
past of this surface sufficiently fast to yield finite action.
The measure may be made concrete by dividing the Eu-
clidean time up into discrete slices of constant ~ and con-
sidering the integral as the limit of a multiple integral of
the spatial Fourier components of h p on each slice. For
the measure one would write

To construct the appropriate X for given h~p, one would
solve

V X= ——,(V VPh p
—V h) . (3.20)

4
I I2[q)~p]= —,

' f k q)*p(k)gr P(k),
(2m )

where

(3.22)

A useful set of boundary conditions to make the decompo-
sition unique is to require that P vanish at infinity and on
the boundary surface. From the electrostatic analogy such
a X always exists.

As a result of the decomposition (3.19) and the boun-
dary condition for X the action splits into two parts:

/ I2[h p]=l I2[q&~p] —6 f d x(V~X)(V X) . (3.21)

The second term is negative definite. The first is positive
semidefinite on square-integrable tensors y p which satis-
fy R(y p)=0 [Eq. (3.19)] and which vanish on the boun-
dary surface. In fact, when the Fourier transform of p~p
exists

constX J J Q Qdh p(~, k) .
a, P

(3.17)

and

g~p(k)=P ryrsP p (3.23)

There are gauge-fixing 5 functions and associated deter-
minants for each mode and for each slice including the
boundary surface. On the boundary surface only hP is
fixed by the argument of the wave function; all other com-
ponents of h p on the boundary surface are integrated
over.

The construction of go given above is parallel to that

P p=5 p kkp!k— (3.24)

The form (3.22) is positive semidefinite. Put differently
but equivalently, the operator 6 ~ has positive or zero
eigenvalues on the y p satisfying the above conditions.
Although the asymptotic behavior needed for this result is
stronger than that required simply by finite action, this
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will be sufficient to construct the functional integral as we
shall now show.

Corresponding to the decomposition (3.18) we can
decompose the integration in Eq. (3.14) over the h ~ into
an integration over 7 and an integration over y p satisfy-
ing R(y ~) =0. Since decomposition is linear the Jacobian
of this transformation of variables is a constant and we
can write formally

5h p =const X5p p5X5[R (qv p) ] (3.25)

We now introduce new integration variables f p by the
transformation

0 ap 0 ap+f ap (3.27)

The measure (3.25) is invariant under this transformation
as are the gauge conditions. The action decomposes into
the sum of the action for f p and that for g p. The func-
tional integral in Eq. (3.14) is thus a factor exp( —I2[y])
times a functional integral of identical form over f p and
X. Since f p and X vanish on the boundary surface this
integral is independent of h;J and contributes only to the
normalizing factor. In fact, since we have already verified
that the action is positive on f~p and X which vanish on
the boundary surface, which are constrained by Eq. (3.19)
and which vanish sufficiently fast at infinity, the integral
is convergent and could be carried out. Evaluating the ac-
tion (3.7) on the solution (3.26) we find for the ground-
state wave function of linearized gravity

go[A;J ( x ), r]

=W exp( —I2[@])

=X exp —— I d k coI, h;~ *(k)h '~(k) . (3.28)

and integrate over unconstrained y p and X. To make the
functional integral well defined we rotate the X contour of
integration to purely imaginary values. The action (3.21)
is then positive and the functional integral (3.14) conver-
gent.

To evaluate the functional integral for the ground-state
wave function explicitly we translate the integration over
y p about a classical solution of the linearized field equa-
tions which matches the prescribed h,z on the boundary
surfaces, vanishes at Euclidean infinity to the past of this
surface, and satisfies the gauge conditions C =0 and
C, =0. For the ensuing argument to work the gauge con-
ditions must be linear and certainly chosen so the above
requirements can be satisfied consistently. The conditions
may be imposed on each conformal equivalence class (i.e.,
on the y p) since X is a gauge invariant. For example, we
might require the conditions (3.15) on y p and in addition
that y and the transverse part of y;J. vanish on the boun-
dary surface. The unique solution of linearized field equa-
tions which satisfies these requirements, expressed in
terms of the spatial Fourier components of h,j, is

yj(~, k)=hj (k)e "
(3.26)

=0.

This is the wave function for the ground state found by
Kuchar by Hamiltonian methods.

One can also use the Euclidean functional integral to
construct the ground-state wave function on an extended
configuration space. For the full theory of general rela-
tivity the natural extended configuration space is a space
of three-metrices on a spacelike surface. This is not the
case for its linearized version. This is because the linear-
ized version of the Hamiltonian constraint is not a rela-
tion constraining coordinates and momenta. Rather it is a
condition on the configuration space itself:

R(hj)=V;V'Jh'J —V h';=0. (3.29)

As argued by Kuchar, the natural extended configuration
space for linearized gravity is not the space of all slightly
nonflat three-metrics on a t=const surface but rather only
those which satisfy (3.29). We shall adopt this point of
view in this paper. The Euclidean functional-integral con-
struction of the ground-state wave function on this ex-
tended configuration space takes the same form as Eq.
(3.14) with two exceptions. First, a three-metric h;J satis-
fying (3.29) is fixed on the boundary rather than h;~
Second, as a consequence, the three gauge-fixing 5 func-
tions C, which correspond to fixing the spatial coordi-
nates in the boundary surface are omitted. There remain
the four conditions C and the one surface condition to
reduce the ten h p to five on the surface —the correct
number of specifiable functions for a three-metric satisfy-
ing one constraint.

The functional integral can be made positive definite
and evaluated by translation about a solution of the linear-
ized field equations as before. For example, suppose one
uses the gauge conditions (3.15) in each conformal
equivalence class and cp =0 as the remaining surface
gauge-fixing condition. The linearized field equations in
the gauge (3.15) are

27y p
——0, (3.30)

ro (v —t)
(r, k) = i (k.'leuk)h;J. (k)—e

co (~—t)
y„(v,k) = —h';(k)e

(3.31)

It is at this point that the assumption of the constraint
(3.29) enters the calculation in an essential way. Without
it (3.31) would not be a solution of the field equations in
the gauge chosen, the action would not be extremized, and
a translation of the integration variables about (3.31)
would lead to cross terms in the action between the in-
tegration variables and y p. With the constraint, Eq.
(3.31) is a solution and the discussion proceeds as before.
The result is that, up to a normalization factor, the
ground-state wave function on the extended configuration
space of h;J constrained by (3.29) is identical to the result
in (3.28). That is, adjusting the normalization we can
wH. te

+o[hj(x), t]=go[h~) (x),t] . (3.32)

and the solution which matches the boundary conditions
and satisfies the gauge conditions is

co~(w —t)
yj(r, k) =h;J(k)e
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From this explicit result we can see explicitly how the
constraints of linearized gravity are satisfied. The Hamil-
tonian constraint (3.29) is satisfied because it is a con-
straint defining the extended configuration space. The
constraints

5%'o
V'J. ir'J( x )40 —i—V—'&

5h;J(x)
(3.33)

which express the independence of the wave function on
the choice of coordinates in the three-surface, are satisfied
because from (3.32) %o is a function only of the gauge-
invariant combination h,j (x).

IV. SEMICLASSICAL APPROXIMATION
FOR NEARLY FLAT THREE-SURFACES

EC,JE'J—E + R =0, (4.2a)

(4.2b)

For a curved three-surface these constraints differ from
the Lorentzian ones only by the sign of the 8 term in
(4.2a). For the flat boundary surface under consideration

In the preceding section we have used Euclidean
functional-integral methods to evaluate the ground-state
wave function for the linearized theory of gravity. The
linearized theory was considered as a theory of a spin-two
field on a flat background fully independent of general re-
lativity. In this section we shall consider the semiclassical
approximation to the ground-state wave function for the
ful1, nonlinear Einstein theory evaluated on three-
geometries which are flat asymptotically and nearly flat
everywhere. One would expect these two wave functions
to be identical and they are.

Equation (1.2) displays the functional integral which
gives the ground-state wave function of the full theory
with the action in Eq. (3.5). We seek to evaluate it semi-
classically for three-surfaces which asymptotically ap-
proach a Aat plane in Minkowski space labeled by time t
on which the metric deviates by only a small amount h,J
from the flat metric,

g J(x)=5J+h J(x) .

Consistent with our earlier discussion of the linearized
theory we shall assume that the h,J are restricted by the
linearized Hamiltonian constraint of the full theory [Eq.
(3.29)].

To evaluate the integral (1.2) semiclassically one needs
first to find those Euclidean four-geometries which make
the action stationary, are asymptotically flat, and match
Eq. (4.1) on the boundary three-surface. We shall begin
with the case h;J =0 when the boundary three-surface is a
flat plane. Euclidean four-geometries which make the ac-
tion stationary satisfy the Euclidean field equations
R~p=O. These field equations imply constraints on the
intrinsic and extrinsic curvatures of the boundary surface
exactly as do the Einstein equations in Lorentzian space-
times. If K;J is the extrinsic curvature of the three-
surface, R its three curvature scalar, and D; the deriva-
tive in the surface, these constraints take the form

here the constraints therefore are identical to those in the
Lorentzian theory. '

The only solution of these constraints for a flat surface
which is asymptotica11y a plane in Minkowski space is a
surface whose extrinsic curvature vanishes everywhere:

EgJ 0 0 (4.3)

More precisely, in an asymptotically Cartesian coordinate
system the metric of an asymptotically flat solution of the
Euclidean field equations falls off as g &-O(1/r ), where
r is the asymptotic Euclidean distance. (See Ref. 13 for a
discussion. ) The induced extrinsic curvature on a surface
which asymptotically coincides with one of the coordinate
planes must therefore also fall off as X,J-O(llr ) Thi.s
is enough to ensure that the only regular solution of Eqs.
(4.2) for a flat three-geometry is (4.3). (See the Appendix
for demonstration and references. )

Suppose there were a nonflat solution of the Euclidean
field equations with a flat asymptotically planar boundary
surface and which was asymptotically flat to the past of
this surface. By the above argument this surface would
have vanishing extrinsic curvature. The "time-reversed"
solution would have a flat asymptotically planar boundary
and be asymptotically flat to its future. The two solutions
could be joined together at the boundary surface to pro-
duce a new solution of the Euclidean field equations be-
cause the junction conditions' —the matching of intrinsic
geometry and extrinsic curvature —would be clearly satis-
fied at the boundary surface. Such a solution would be
asymptotically flat in all Euclidean directions. But flat
space is the unique asymptotically flat solution of the Eu-
clidean field equations. '"' Thus flat space is the unique
stationary point of the Euclidean action which is asymp-
totically flat with a flat boundary three-surface.

The Euclidean four-geometries which make the action
stationary when the boundary is slightly curved [Eq. (4.3)]
will be small perturbations about flat space. Were this not
the case one would not recover flat space as the unique
stationary geometry when the boundary curvature is taken
to zero. The perturbations in the metric satisfy the linear-
ized Euclidean field equations, vanish at infinity, and
match the prescribed h,j ( x) on the boundary. We have al-
ready shown that there is a unique solution of the linear-
ized Euclidean field equations which matches a given con-
strained perturbation in the three-metric on the boundary
surface and which vanishes asymptotically to the past of
this surface. We conclude that the unique stationary
points of the Euclidean action for slightly curved three-
geometries are the unique perturbations of flat space al-
ready discussed in the context of the linear theory.

The rest of the calculation of the semiclassical approxi-
mation is straightforward. We have already evaluated the
action to lowest order in the h,J at the stationary solution;
it is the action of the linear theory [Eq. (3.7)]. There
remains the calculation of the functional integral (1.2)
over the fluctuations about the stationary configuration.
To obtain the semiclassical approximation we should ex-
pand the action to quadratic order in the deviations from
the stationary configuration and evaluate the resulting
Gaussian function integral. Denoting this integral by
8 [h;J ] we can write for the semiclassical approximation
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go[ht~j. , t] =P [h J ]exp( —I2[h~i]) . (4.4)

The prefactor I' can be expanded in the deviations h,J. In
lowest order it is the functional integral of the fluctua-
tions about a semi-infinite half of flat space and therefore
contributes only a normalization factor to (4.4). Thus, in
the approximation where the prefactor and the exponent
of the semiclassical approximation are expanded to their
lowest nonvanishing orders in h,J, the semiclassical
ground-state wave function for the full theory of gravita-
tion coincides with the exact ground-state wave function
of the linearized theory.

E,J.EIk —E;kEIJ ——0,
~[i+j]k =0 .

Equation (A3) implies that XJ. is of rank one, that is,

«r some V;. Inserting this in {A4), one finds

~&~&I ~i)+ +u~I]+& =0 .

Contract Eq. (A6) with V to find

(A3)

(A4)

(A5)
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APPENDIX: A FLAT SLICE IS A PLANE

Consider a slice of spacetime whose intrinsic geometry
is flat and which is asymptotically planar in the sense that
its extrinsic curvature vanishes at infinity faster than—3/2r

(A 1)

{in a rectangular system of coordinates). On such a slice
the unique solution of the initial-value equations of gen-
eral relativity has vanishing extrinsic curvature every-
where:

E,J ——0,
i.e., it is a plane. This result appears widely known among
workers on the initial-value problem' and a proof of it
has been given by Arnowitt and Deser. ' As the author
has learned from D. M. Eardley and G. T. Horowitz, a
simple proof can be given starting from the positive-
energy theorem. For completeness, the proof kindly sup-
plied to the author by Dr. D. M. Eardley and Dr. G. T.
Horowitz is sketched here.

A flat three-geometry has zero energy. From the
positive-energy theorem' ' it follows that a flat three-
geometry and any E;z satisfying (Al) must be initial data
for flat spacetime. Since the flat surface can be embedded
in flat spacetime the Gauss-Codazzi equations imply

V'= 8'Z', (A9)

where W is some function and Z' a constant vector,
V;Z~ =0. Substitute (A9) into (A6) to find

Z);V'j) 8' =0 (A10)

so that V;8'lies along Z; and 8'is a function only of the
Cartesian coordinate z in this direction, W' = 8'(z).

The argument from Eqs. (A3) and (A4) to this point has
been essentially local. To proceed further the condition
{Al) that the slice be asymptotically planar must be in-
voked because

K,J ——W (z)Z;ZJ

is a nontrivial solution of (A3) and (A4) corresponding to
"cylindrical" deformations of a flat three-surface in a flat
four-dimensional space. However, Eq. (All) vanishes at
infinity in the directions perpendicular to Z' only if
8'=0. Thus, the only solution of (A3) and (A4) which
vanishes at infinity is E,J ——0 and the result is proved.

V); VVj) ——0, (A7)

where V=(V'V;)' . In flat R this implies that VVJ is
the gradient of some function f:

VV;=V'~f .

The vector V' is therefore orthogonal to a family of
nonintersecting two-surfaces which are the level surfaces
of f. The extrinsic curvature of these two-surfaces may be
computed by projecting (A6) perpendicular to V' on the
indices i and k. One finds that V; VJ projected in the sur-
face vanishes, but, since V; lies along the unit normal, this
implies the extrinsic curvature vanishes. The intrinsic
curvature of these two-surfaces may be computed by using
the Gauss-Codazzi equations. Since ihe embedding space
is Aat and the extrinsic curvature vanishes the intrinsic
curvature is zero. Thus V' is orthogonal to a family of
nonintersecting, flat, two-planes. It must, therefore, have
the form
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