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The quantum fluctuations of the relativistic quantum scalar plasma (i.e., a system of spin- 2 fer-

mions interacting through the exchange of scalar particles via a Yukawa-type interaction) are con-
sidered within the context of the covariant signer-function approach studied elsewhere. The usual
infinities occurring in the conventional many-body theory appear as a consequence of a vacuum

Wigner function. They are removed in the Hartree-Vlasov approximation for thermal equilibrium.
Results previously obtained by Chin are recovered. The effect of these quantum fluctuations on ab-
normal matter is briefly discussed. For the sake of illustration, numerical results are given and
compared to those first obtained by Kalman.

I. INTRODUCTION 4m', = P+ —P'+ ~P'+ P4 .— (2)

The relativistic quantum scalar plasma (an expression
due to Kalman see also Ref. 3 for the classical case) is
the many-body system characterized by the Lagrangian

~=4(iX.d ~)4+g4f4

where P is a spin- —,
' field, P is a scalar field, and W,

represents the most general counterterms that can be in-
troduced within the context of perturbation theory (we
come back to this question below), i.e.,

Although such a system is not supposed to represent
any actual physical system, it is, however, extremely use-
ful as a "laboratory" where methods and techniques can
be used. Furthermore, if one insists on a possible physical
role, one may think either of the SLAC bag model or
"abnormal nuclear matter, " etc. However, particularly in
this paper, it will be considered merely as a useful model.

In other papers ' (and references quoted therein) we
have developed new techniques —somewhat reminiscent of
plasma physics techniques —for the study of relativistic
dense matter, based essentially on the use of a covariant
Wigner function which, for fermions, reads6

F(x,p)= f d R exp( ip R)(—f(x.+R/2)8$(x —R/2)),
(2m. )

(3)

where the angular brackets denote a quantum-statistical-
mechanical average (i.e., ( . . ) =Tr[p ], p being the
density operator). From Eq. (3) one can derive, for in-
stance, the fermion four-current

J"(x)=Tr f d p y "F(x,p)

and the momentum-energy tensor

T& (x)=Tr f d py "p"F(x,p) .

As a result of this forinalism, soine nonperturbative ap-
proximation schemes suggested by plasma physics have
been studied ' and, in particular, the Hartree-Vlasov ap-
proximation of the relativistic quantum scalar plasma in
thermodynamical equilibrium. As expected, the usual. in-
finities of quantum field theory show up and hence the
model has to be renormalized (see Sec. III). However, the
conventional renormalization procedure (i.e., absorption of
infinities by appropriate counterterms) has been devised
within the context of perturbation theory so that it
remains to show that it may also be used (or possibly
modified) within other approximation schemes which are
not analytical in the coupling constant. For instance, if

t

we deal with some cumulant expansion then the
Hartree-Vlasov approximation is the simplest approxima-
tion, dealing with collective effects only, while the next
one also contains two-body correlations. Therefore, if one
succeeds in getting rid of the infinities of the Hartree-
Vlasov approximation —which is the main purpose of this
paper —is this procedure consistent with the next approxi-
mation (two-body correlations) and the following ones
(three-, four-, etc. body correlations)? While such a con-
sistency can be proved in perturbation theory it is a priori
not so for other approximation techniques.

In this paper, our aim is more modest since we only
want to explore the source of the infinities occurring in
the simplest approximation (Hartree-Vlasov) and the way
they can be removed.

In Sec. II a brief summary of the results already ob-
tained is given while in Sec. III the various infinities are
removed within the usual procedure (regularization of
divergent integrals and absorption of infinities in counter-
terms). Section IV deals with the determination of arbi-
trary constants occurring in the renormalization process
while a brief discussion and a comparison with the semi-
classical case ' is provided in Sec. V.
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II. THE HARTREE-VLASOV APPROXIMATION

In this section we briefly recall some previous ' results
on the relativistic quantum scalar plasma in the Hartree-
Vlasov approxixnation and show how infinities come into

I

play.
Using the equations of motion implicitly derived from

the Lagrangian (1) and the definition (3) of the covariant
Wigner function, one easily arrives at '

5

[iy 8+2(y p —. m)]F= — f d"x'd p'exp[ 2i—p' (x —x')](F, (x,p —p')P(x')),
(2~)'

(CI+pz )(P(x)) =4ng Tr f d pF(x,p),

(6)

(7)

and another equation similar to Eq. (6) but connecting F
to (PF») where F» is defined as F in Eq. (3) except that
the average value is not taken (note that F= (F,z ) ).

The Hartree-Vlasov approximation is obtained by fac-
torizing (F»(() ) as

&F.,y&-F&y& (g)

M=—m —g(P) . (1 1)

Equations (9) represent the relativistic and quantum
analog of the Liouville equation for free quasifermions
endowed with the effective mass M, while Eq. (10) is
nothing but the Klein-Gordon equation (7). The equilibri-
um Wigner function F,q(p) has the general form

as in conventional plasma physics (without such a factori-
zation we would have to solve an equation connecting
(F»P) to (F»PP), etc.; such a hierarchy has to be
closed in some way and the Hartree-Vlasov ansatz is the
simplest one).

The above ansatz, joined to the fact that in thermal
equilibrium the system is invariant under spacetiine
translations, once introduced into Eqs. (6) and (7) leads to

F, (p)= f(p),

where f (p) is given by

g 0

(2n. ) + exp[ P(p +e&)]+1

X &(p' —M'),

(12)

(13)

and

(y.p —M )F,q(p) =0,

F,q(p)(y p —M ) =0,

pz (m —M ) =4m.g Tr f d p F,q(p),

where M is an effectiue mass for the fermions:

(9)

(10)

8 being the Heaviside step function and EI the chemical
potential of the fermions while P=(kT ) '. Equation (13)
contains two terms, a term representing the thermal
equilibrium of matter, which vanishes in the limit T~O
and ey —+0, and a vacuum term which remains in this lim-
it [the second one on the right-hand side of Eq. (13)]. Dis-
carding provisionally this vacuum term and inserting Eq.
(13) into Eq. (12) one gets the "gap equation"

M ~ ~ /de 1

m + o (I+)' )' expIP[M(1+/ )' +@i]I+ I
(14)

i.e., a self-consistent equation for the effective mass M. In
Eq. (14) one has set

'2
4 2 mI =—g

pg
(15)

2

2 (M —m) g"
8mg

(16)

This is essentially a mean-field approximation and we
would like to examine the effects of quantum fluctuation
on the thermal properties of the scalar plasma. Indeed,
while in this approximation (Hartree-Vlasov —mean-field)
the scalar field appears to be classical (i.e., (P")—(P)";
this means that the quantum fluctuations of the scalar
field can be neglected since they would imply considering

Once M is known then the pressure and the energy den-
sity of the fermions is obtained via Eq. (5) while the same
quantities for the scalar field are given through '

2

7 pv (y)2 IMv

Sm

F„„(p)= — (y.p+M )8( —p )5(p —M ),
(2m. )

(17)

which expresses the fact that the negative-energy states of
the quasifermions of effective mass M are uniformly occu-
pied.

III. REMOVAL OF THE INFINITIES

The introduction of the vacuum Wigner function (17)
into Eq. (10) or (14), besides the matter part already in-
cluded in this last equation, gives rise to a divergent in-
tegral. Furthermore, introduced in Eq. (5) for the
momentum-energy tensor of the fermions it also leads to
another infinity. Consequently, we have to remove these
infinities and we shall do it in the spirit of current renor-
malization procedures: regularization of divergent in-
tegrals and absorption of infinities in suitable counter-

I

terms like (P(t )&(P) (P)), yet there exist the quantum
fluctuations of the fermion field itself. They are imple-
mented in the vacuum Wigner function corresponding to
the last term of Eq. (13), i.e, in
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terms. Although this can be done successfully (see below)
this was not a priori obvious owing to the fact that we use
an approximation scheme quite different from perturba-
tion theory.

Adding now the counterterms W„deriving the field
equation for the scalar field P, taking the average value of
this latter, and using the Hartree-Vlasov approximation,
one gets the following new equation for the effective mass
of the fermions:

2m'
t 3

1 —eln A +O(e),M

where use has been made of'

3
M f d p 8( —p )5(p —M ),

(2m )

is evaluated in 4—e dimensions as' (see Appendix A)

(20)

(pg +5p )(m —M )+ag+ (m —M ) + (m —M )~

2g 6g 2

=4rrg Tr f d p[F „(p)+F„,(p)], (18)

where F „(p)is nothing but the "matter part" of Eqs. (12)
and (13). Next, the integral involving F„„(p),i.e.,

f 4
"k „/2I (p n /—2) 1

(k2+b2)P I'(p) (b2)p —n/2 (21)

In Eq. (20) A is an arbitrary constant, as usual. The pole
term of Eq. (20) can clearly be absorbed into the counter-
terms in the left-hand side of Eq. (18) so that, finally, the
gap equation (18) can be rewritten as

g/IF+(B~+pz )(m —M )+ (m —M ) + 2 (m —M ) =4mg Tr d pF „(p)— ln A
CF 2 DF 3 2 4 2m g
2g 6g 2 m m

(22)

where AF, BF, CF, and DF are arbitrary finite constants
occurring in the regularization/renormalization process
(see Appendix A) and have to be related to the experimen-
tal renormalized constants pz, a~, and yz, and A,z (see
below). Note that A is a redundant constant which could
be absorbed into AF, BF, CF, and DF,' it is, however, more
convenient to keep it at this stage. Nevertheless if we
demand that our vacuum be normal, i.e., (P) =0, in the
absence of matter, and hence that m =M, then one must
have

{23)

So far we have dealt with only one infinity, namely, the
one occurring in the gap equation (18). However, there
still exists another infinity that occurs in the momentum-

I

energy tensor of the fermions,

Tf io, Tr f——d'p[F .t{p)+F-.{p)]p"y (24)

also due to the vacuum term F„„(p),and it is a priori not
obvious that this new infinity can also be absorbed in the
same counterterms as aboue In fact, .the same kind of cal-
culation as above -dimensional regularization of the
divergent integral and absorption of the pole term into
T~ (the contribution of W, to the momentum-energy
tensor) —shows immediately that the infinite part of
T~~, ;,„,not only can actually be absorbed into T", but
also, what is more important, with the same counterterms
(see Appendix 8).

Finally, the renormalized momentum-energy tensor of
the system reads

M
A exp( —

~ )
1

g& AF +F 2 PR 2 CF 3 DF 4=T&"„+ (m —M )+ (m —M )2+ {m —M )~+ (m —M )3+ (m —M )~
4m g 2g2 2g2 3tg3 4tg4

ln A exp( ——„)2~ m
(26)

IV. DETERMINATION OF THE ARBITRARY
CONSTANTS

We now have to determine the arbitrary constants AF,
B~, C~, D~, and A (we emphasize once more that A is
redundant and can be absorbed in AF, Bz, CF, and D~)
and, to this end, suppose that our scalar plasma does
represent an actual physical system. Then through vari-
ous physical experiments (diffusions, measures of binding
energies, etc.), we could, at least in principle, determine
the numerical values of the renormalized constants a~,
pR, yz, and A,~ (of which some of them could possibly
vanish).

How are they related to, say, AF, BF, CF, and DF.
First, we fix A in such a way that in a normal vacuum
where (P) =0, or m =M, T~z" 0. This is achieved b——y
choosing

A=exp( —,
'

) . (27)

Next, we remark that the "experimental" constants az,
pz, yz, and Az are, by definition, the coefficients of
P/I!, P /2!, P /3!, and P /4!, respectively, in a renormal-
ized Lagrangian and that the coefficient of g&" [in Eq.
(25) or (26)] is nothing but an effective Lagrangian that
takes account of quantum fluctuations in the Hartree-
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Vlasov approximation (rather it is an effective potential
since there is no kinetic term in this coefficient, owing to
the spacetime translational invariance of our equilibrium
state). In this effective Lagrangian the coefficients of
(y), ((()), (y)', and (y) ~re not AR, &p, CR, and DF
since the term -M lnM also contains such terms when
expanded in a power series of ((!)). The Taylor formula
up to fourth order in (P ) for the function

m4
q((y) )= — ln

8 m

1s

~F gm3
1! 1! 2m

(30)

BF0=
21

7g m
4m

(31)

3 R

3f

CF 13g m

3I 6m.
(32)

where 8 is an unknown constant such that 0 & 8 & 1. Iden-
tifying now the various renormalized constants with the
corresponding coefficients of (P), . . . , (P), one obtains

q(&y&)=&y)', , -&y&'„g' '

+ ((!))',mg' —(P)'
24~ 96~

3g5(y ) 5

m~m[1 —(g/m)8(P)] 5.'
(29)

DF
4I 4f

25g'
24m

(33)

Finally, the renormalized gap equation and the renormal-
ized momentum-energy tensor can, respectively, be written
as

gm
g 2m'

and

7g m+ PR+ (m —M )+ yR—2'
13g m (m —M)

&
25g (m —M)

2g n.6g2
+ ~R+

2 M=4ng Tr f d pFm«(p) — ln e'~
m m

(34)

TPv TPv + Pv
4n.

gm
2m

2 2 13 3m
&p&+

' + g ((()&'+
2~ 4m 3I 6m.

25g'
4l 24~

)« -g&(()))',„,g&((l)
m

(35)

oo oo
TR =Tm+t+

4m ,", &(! &'+,", &(()&'+,", ((!)&'

3g'&(() &'

n m[1 —(g/m)((())8]5!
(37)

Note that, owing to Eqs. (23) and (30), aR =0.
Finally, a further determination of Eqs. (34) and (35)

demands the "experimental" determination of pR, yR,
and A,R. However, since we want to compare these "renor-
malized" results with the semiclassical ones ' we have to
take the same finite constants in both cases, i.e., pR given
and

(36)

Doing so, results first obtained by Chin"' in an in-
teresting article are then recovered exactly. Numerical re-
sults with the values (36) are given in the next section and
compared to those obtained in Refs. 2 and 8.

Let us look at the effects of the quantum fluctuations in
the Hartree-Vlasov approximation on the state of "nu-
clear" matter, i.e., whether in a normal or abnormal state.
To this end we consider the energy density TR of the sys-
tem, 0.0

T"(0)

(

/~Y

/'

/

r
/

&p)
m/g

FIG. 1. The energy density is plotted as a function of (P&.
The various continuous curves correspond to various Fermi en-
ergies. On the dashed line lie the minima of the continuous
lines. At T=O K the equation providing these minima is the
gap equation: (a/a&(()))T~(&P))=0. At T+0 K we should
plot the free energy.
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where use has been made of Eqs. (29)—(33) and (35). The
effect of quantum fluctuations is twofold: (i) it leads to
the observable values of the various constants p~, gg,
and A,R, and (ii) it adds to the total energy density T g a
vacuum contribution, i.e., the last term on the right-hand
side of Eq. (37}. It is not difficult to realize that this con-
tribution is always positive since m —g (P ) & 0 and
0~8& 1.

First, we note that the minimum (or minima) of the en-

ergy density Tz with respect to (P), i.e.,

(38)

leads to the renormalized gap equation (34} (see Agpendix
C) as it should be. The qualitative features of Tz ((P})

are shown on Fig. 1. Next let us discuss the effect of the
vacuum contribution to the energy density [see Eq. (37)].
When the various constants p~, y~, and kz are such that
matter is in a normal state (only one minimum in Tz),
then the vacuum energy term does not change the general
shape of the energy density curve: it only displaces the po-
sition of the minimum and also the numerical value of the
corresponding energy density, which is increased since we
add a positive quantity.

The situation is, however, not so simple in the case of
abnormal matter. In such a case, depending on the values
of the constants )MR, y~, and A,~ (a detailed discussion of
the various cases has been given by Lee and Margulies ),
there are two minima (separated by a maximum) corre-
sponding to two possibilities: either the lowest minimum

T"(&e») ( b )

0.0
rn /g

0.0
m/g

T"{&y&) ( c )

)1/
f

1

0.0
m/g

FIG. 2. The effect of quantum fluctuations on the energy density T~((P) ) at T=O K and for a given value of pf is represented.
The quantum term in T ({P})has two effects: (i) it increases the energy density (the larger (P }and the larger the increase) and (ii)
it shifts the minima in the direction of decreasing (P}. Various cases are shown in diagrams (a), (b), and (c). (a) Normal matter
remains normal. (b) The degenerate ground state becomes nondegenerate and the first minimum is the lowest: matter becomes nor-
mal. (c) In the semiclassical case (continuous curve) matter is in an abnormal state; the effect of quantum fluctuations may a priori
be represented by one of the dashed lines labeled (1), (2), or (3): (1) Matter remains abnormal, (2) the ground state becomes degenerate,
and (3) matter becomes normal. The existence of these various cases depend on the possible value of m/g.
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is obtained for the smallest values of (P } (in such a case it
corresponds to a stable normal state while the other mini-
ma is metastable and the maximum unstable) or it is ob-
tained at a larger value (P} [in this case, the first
minimum (see Fig. 2) is metastable while the second is
stable and represents abnormal matter]. Moreover, wheth-
er these two cases (shown on Fig. 2) exist or not does de-
pend on the possible limiting value of (P), i.e., of m/g
(see Ref. 5). What is now the effect of quantum fluctua-
tions on this situation? In fact, it is easy to realize that
the term brought by the vacuum fluctuations is not only
positive but also monotonically increasing with ((I}). This
means that the value of the energy density corresponding
to the first minimum to the right of (P) =0 is less in-
creased than for the second one, corresponding to a larger
value of (P). It follows that several cases have to be con-
sidered. For the sake of the discussion we label p& and pz
the minima corresponding to (P) I and (((})z,respectively,
and take 0& (P)I & (P)z, let us also call VI and Vz the
corresponding vacuum contribution (pi refers to the
quasiclassical case}. Therefore, we examine the following
different cases:

(i}pi &pz (metastable abnormal state: pq', stable normal
state: pi). In this case p~+ VI &pz+ Vz and hence the
quantum fluctuations enhance the stability of the normal
state; also they can possibly suppress the second (metast-
able) minimum depending on its depth relative to the
maximum (the energy density of the maximum is less in-
creased than is the one of the metastable minimum).

(ii) pt ——pz (and (P) ~ & (P)z). In this case, the quasi-
classical degenerate normal state is split into a normal
state (state 1) and possibly a metastable state 2 (or no state
2 at all).

(iii) p» pq (normal metastable state and abnormal
stable state). This is the most complicated case since there
are several possibilities: (a) pi+ V» pz + Vz, (b)

pl+.VI p2+ V2~ an (c}pl+ Vl &p2+ V2i of
various cases depend on the values of the constants at
hand.

Finally, it should be mentioned that all these cases have

to be reconsidered according to the value of m/g, since,
e.g., when (P )z & m /g there is no physical second
minimum.

V. DISCUSSION AND CONCI. USION

(1) In Sec. III we have shown that the Hartree-Vlasov
approximation could be renormalized with the same kind
of counterterms as in perturbation theory, i.e., with a po-
lynomial of fourth degree in the scalar field. This is hard-
ly a surprise since this approximation can also be obtained
by summing the so-called tadpole diagrams of the many-
body theory, " at least formally. Nevertheless, this possi-
bility does not prove that the next approximation (i.e., the
one that retains two-body correlations and, of course,
three-, four-, etc. body correlations) can also be rendered
finite with such counterterms.

(2) In order to compare our renormalized equations to
the previous semiclassical ones, ' the various constants
az, yz, and A,~ have been chosen to be zero. As was
pointed out above, they should be determined by high-
energy-physics experiments; however, since this scalar
plasma is not. intended to represent a real physical situa-
tion but is only a "laboratory" useful to test techniques,
these constants can be chosen freely as far as comparisons
have to be made and also for the sake of numerical calcu-
lations.

The effects of quantum fluctuations can be inferred
from the renormalized gap equation (34) and from the ex-
pression of the renormalized momentum-energy tensor
(35). Apart from providing finite coupling constants
(y~, A,~) and mass p,~, the renormalization process modi-
fies these two basic equations by terms of order (P} and
(P},respectively. It follows that, at low densities where
(P ) —0 (we consider the case where yz ——A,z ——0) the
modifications brought by renormalization are certainly
weak.

On the other hand, in the high-density case (where

pf »m &M) where M tends to zero (or, equivalently,
where (P } tends to m/g), the gap equation (34) can be ap-
proximated by

g m 7g fPl+ pg+ 13 2 2S
(m M) 1~™

(m 2Mm)+" (m 3m M)2' 6m.

2g ~f +Pf
Mefpf —M ln

M
+O(M '), (39)

1+ 6 I 1+—I2'
+ 4 I +ppf /2~ I pf

while the corresponding equation in the semiclassical case
is

2p7z
cl 2 (41)

where the M lnM term has been dropped and where only
terms linear in M have been kept. Similarly, the last term
of this equation should be dropped. Finally, Eq. (39)
Ieads

This shows (i) that M and M„both vanish at high pf,
(ii) that —still at high pf—the quantum mass M can be ob-
tained from M, ~ simply by scaling the coupling constant
I [i.e., M(I ) =M,~(l

'
) with I"=I /(1+ —,I )], and (iii)

that the ratio M/M, I tends to a definite limit at large pf.

lim = 1+—,IM
Pf ~ Ml

A similar scaling can be obtained for the energy density
and for the pressure, although with a different I '. In fact,
one has pq „,or P~ „,(I ) =p,I or P,~(I'" ) with

I
1+I /16
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another one (at higher densities) where it is higher. This is
shown in the various figures. The pressure versus the Fer-
mi momentum is plotted in Fig. 4 at T=O K for two
values of the coupling constant I =4g m /mpz, i.e., for
I =100 and 10. The continuous line (quantum fluctua-
tions included) and the dashed line (semiclassical case)
cross at a given value of pf for I = 100 while this is not
apparent for I =10. In fact, there is also such a crossing
but outside the figure. In Fig. 5 a plot of the energy per
particle versus the Fermi momentum, still at T=O K and
for I = 10 and 100, has been drawn: in these two cases it
is lower than 1 (in units of I) and hence this corresponds
to a collective bound state. In conclusion, there is not
much difference (other than quantitative) between the
semiclassical case and the quantum case. This is reflected
in Fig. 6 where we have drawn a phase diagram for the
case T=O K, where the various possible regimes (depend-
ing on I and pf ) have been indicated, in the semiclassical
(dashed lines) case first given by Kalman and in the
quantum case. We refer to Refs. 2 and 8 for a more de-
tailed discussion of this diagram.

(3) A direct comparison with the interesting work by
Chin (who dealt with a similar model) cannot be made for
the following reason: besides the scalar field, Chin also
considers the effect of a massive vector field (supposed to
take account in a phenomenological way of the short-
distance repulsive forces between nucleons); technically,
the effect of this field is to shift the chemical potential ef
to

ef g„A =—e& 4mgz —n/p. ~

where A is the zeroth component of the vector field
whose mass is p~, the coupling constant with the fer-
mions is g~, and n is the fermionic density; it follows that

0.6

a direct comparison is not feasible. However, as far as the
scalar field and the fermions are concerned, our gap equa-
tion (34) is identical with Chin's similar equation once
identical Lagrangians' are dealt with. Thus, we think
that both approaches, which are very different (i.e.,
Wigner functions/Green's functions), are mutually il-
luminating.

(4) We would like to emphasize that our approach to
the relativistic quantum scalar plasma is valid as well at
T+0 K as at T=O K. There is no particular difficulty in
dealing with the effects of temperature: it is sufficient to
replace the Fermi distribution function at T=O K by the
corresponding expression at T&0 K. For the sake of il-
lustration we have calculated the effective mass of the fer-
mions [see Fig. 3(b)] for I = 10 and for various tempera-
tures ranging from 0.01m to 0.2m, still with A,z ——yz ——0.
The other thermodynamical quantities —all of them do de-
pend on M "an be easily obtained and, in the absence of
a particular physical problem do not present much in-
terest: they are quite similar to those obtained in the semi-
classical case.

(5) We have not considered in this paper the interesting
case of abnormal nuclear matter; this would require a par-
ticular study which is in the course of active investigation.
Also the important question of the restoration of a broken
gauge theory through a Higgs mechanism has been left
aside and necessitates a particular consideration within the
context of the standard big-bang cosmology.

(6) Finally it is worth mentioning that our procedure for
extracting finite results from the infinite vacuum terms
cannot be considered as a full renormalization. Though it
is a renormalization of the Hartree approximation, yet it
would remain to show its consistency with a similar pro-
cedure for higher-order approximations that would take
account of N-body correlations. However, this is far from
trivial the more so since our approximations (cluster ex-
pansions) are typically nonperturbative. '
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APPENDIX A: REGULARIZATION
OF THE GAP EQUATION

0.2
U)D It is necessary to indicate the origin of Eq. (19): it

comes from Eq. (18) with

8OUND y.@+M
+vac(P) =

4M fvac(P) ~ (A 1)

1.0 Pf 1.5

FICx. 6. The phase diagram I '/pf of the scalar plasma with
quantum fluctuations (continuous lines) and without [dashed
lines; see Kalman's diagram (Ref. 2)]. The "metastable regions"
correspond to the metastable states of the first-order phase tran-
sition corresponding to a given I . In the "nonphysical" zone
the Maxwell's construction is not feasible at T=O K (see Ref. 8).

f...(p) = — 8( —p')5(p' —M') .
(2m. )

Indeed, only those primary expressions that enter into
various equations have to be written in n dimensions rath-
er than derived quantities such as Eq. (18).

Owing to the fact that in n dimensions one has
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Try "y =p(n)g~, TrI„=p(n), (A3)

I'„,.(p) = f...(p),ynM

f„,(p)= —X(n) &( —p )&(p' —M'),(2'�)'

(A4a)

where y(n) is an arbitrary function with a continuous
derivative, such that p(4) =4, F„,(p) has to be generalized
as

hand side of this last equation with a redefinition of the
various constants appearing in the left-hand side. This is
of course possible since the pole term is a polynomial of
degree 3 in (P), (M =m —g(P)), as is the left-hand side
of Eq. (Al 1). Doing this, one is led to

2 6mg
6p = — +BI (A12)

(A13)

where X(n) is still a continuous function with a continu-
ous derivative and such that X(4)= 1. In fact, p(n) does
not play any role since by taking the trace of F„„(p),it is
eliminated. Furthermore X(n) can always be taken to be 12g +Dp,

(A14)

(A15)
X(n) =(const)" (A5)

as is made clear below.
Let us now look at the integral (19) in n dimensions

which, omitting multiplicative factors, we write as

n —&

I 1 dP & g/2 —1P 1 ~ 2(n/2 —1 )

Po 2

(A6)

where use has been made of Eq. (21).' With n —4= e, —
it reads

I= —,
'

mM exp( ——,@in~)exp( —elnM)I ( —1+e/2) . (A7)

Using the well-known functional relation
I (x + 1)=XI (x) for defining I ( —1+@/2) and expanding
the various terms of the right-hand side of Eq. (A7) in
powers of e, one gets

mM

+-,'~M'(ln(~M') —inIexp[i+r'(1)]I)+O(e) . (A8)

where AF, B~, C~, and Dz are arbitrary finite constants to
be connected with the renormalized parameters pz, a~,
yz, and A,z in Sec. IV. From Eqs. (All) —(A15) one easily
obtains the "renormalized gap equation" (22).

APPENDIX 8 REGULARIZATION
QF THE MOMENTUM-ENERCx Y TENSGR

where T~
„

is the finite-temperature- and density-
dependent part of the momentum-energy tensor of the fer-
mlons;

„~,=Tr f d p p y"I'„,(p) (82)

and T"„,l is the momentum-energy tensor of the spin-0
particles

The total momentum-energy tensor of the scalar plasma
is given by

T mat+ T vac+ T seal ~

Similarly, for X(4 e)I one obta—ins

X(4 e)I = — — +~M ln A +O(e)mM q iM

gpv
T seal 4m.

(83)

with

A/m: V7r/exp[ —,
' + —,

'—I"(1)—X '(4)]

[X being arbitrary, so is X' and hence A is an arbitary con-
stant; moreover, since only the first derivative of X is in-
volved in this calculation, then 7 can always be chosen as
in Eq. (A5)].

Let us now introduce Eq. (A9) into the gap equation
un th those count'erterms that come from W, . One obtains

X=—Tr I d pp. yF„„(p),
where use has been made of'"

(85)

(86)

which includes the various counterterms.
Qnly T

„„

is infinite and owing to Lorentz invariance it
is necessarily proportional to g I',

T =Xg

so that X is given by

I 1
=4vrg f d p f „(p)+

2m'

Finally, using Eqs. (Al) —(A4) one is led to

IX(n),
(2m) n

(87)

(Al 1)

We now suppress the pole term M /2m e in the right-
where I is the same integral as the one occurring in Ap-
pendix A [i.e., Eqs. (A6)—(A9)], so that
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M
(2n. )

wM 2l M ~ mM

m 4

APPENDIX C: THE GAP EQUATION
AS A MINIMUM CONDITION

(B8)

[Note that the last term in this equation stems from the
factor n '=(4—e) '- —,'(1+ e/4) occurring in Eq. (B7).]
Since the pole term M /8vr e is a fourth-degree polynomi-
al in P, it can be absorbed in the counterterms, themselves
a polynomial with the same degree.

An elementary calculation leads exactly to Eqs. (A12)
and (A15) once again. In the above pole term there is also
the constant m /8m e which cannot be eliminated with a
corresponding counterterm. However, it can be eliminat-
ed on the ground that the energy is defined up to a con-
stant. The final form of T""is thus given in Eq. (25).

In this appendix it is briefly shown that the gap equa-
tion expresses the fact that the free energy density is
minimum in thermal equilibrium (at T=O K the free en-
ergy density reduces to the energy density). We start from
the usual thermodynamical relations.

a =p —Ts, (Cl)

e/ (p —T——s +P) /n, q, (C2)

where a is the free energy density, s is the entropy density,
n, q

is the fermion density, and e/ is the chemical poten-
tial. Explicitly, one has

2

m 7m 13m&y&+' ', &y&'- " ', &y&'+'", &y&',
8m 16m 24m 96m.

(C3)

2

P f d 4( 2 1)—I/2( ++n —
)

+
&y&2

~
&y&3

+
&y&4+

o 8m 24m 96m- 8ir m

m 2 2 13m 4+' &y&-™g&y&'+" ' &y&'-'" &y&'
8 16 24 96

(C4)

M
n, q

—— de@ (n+ n) . —
0

(C5)

In Eqs. (C3)—(CS) n
+—are the usual Fermi factors: n +—= [exp[P(E —e/)] + 1) '. From Eqs. (Cl) and (C2) one gets

a =nqqEy —P

and we write that, in thermal equilibrium, one has

Ba

r,.
„

Ba=0=
&M Tn

(C7)

Qn the other hand it is not difficult to check that

M f der (e +1) '~'(n++n )
BM

BE/ ao

+ f"des'(n+ n )—-
f, d«'(~'+ I)-'"(n++n )+n„- (C8)

which has been obtained with various integrations by parts and also using the properties of the Fermi factors n —.In Eq.
(C8) P

„

is the pressure of the fermions, i.e., the first term in Eq. (C4). Finally, Eq. (C7) yields
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(C9)

=n, —g doe (e +1) (n++n ) —n, q
f M "

2 —in

r

1

7T Pl 7T

13mg (~)2 2Sg (p)3
2& 6a

(C10)

which is nothing but the renormalized gap equation.
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