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It is known that the scalar superspace in supersymmetry theory is the direct sum of chiral, an-

tichiral, and isoscalar (or linear) fields, provided that the mass of the system is not zero. However,
we show here that the situation changes drastically for the massless case. The whole superspace be-

comes reducible but not fully reducible. Moreover, it is indecomposable in a sense to be specified.
The same reducible but indecomposable property is also shared by any chiral, antichiral, and iso-
scalar spaces. However, if we accept only unitary representations on positive-metric spaces, then

only irreducible components of these spaces must be physically relevant. %'e demonstrate that these
facts are intimately connected with the structure of the commutator algebra of the little Lie su-

peralgebra as well as with a difference of Casimir invariants of the supersymmetry between the
massive and massless cases.

I. INTRODUCTION

Supersymmetry' is a Lie superalgebra ' with many re-
markable properties. It combines both fermions and bo-
sons with different Lorentz properties into a single multi-
plet. Moreover, the theory is renormalizable with fewer
divergences. The simplest way to deal with supersym-
metry is to start with a superspace formalism introduced
by Salam and Strathdee. For a review of these facts, see
the article by Fayet and Ferrara.

A theorem of Djokovic and Hochschild ' states that
the only Lie superalgebra whose finite-dimensional repre-
sentation is always fully reducible is the direct product of
semisimple Lie algebras with finitely many simple Lie su-
peralgebras of the type OSP(1,2n) (n & 1). In view of this
theorem, we may wonder whether supersymmetry in par-
ticle physics may admit some physically nontrivial, redu-
cible but not fully reducible, representations in superspace.
The principal purpose of this paper is to answer this ques-
tion. First we show in Sec. II that the so-called scalar su-
perspace is a direct sum of three irreducible spaces con-
sisting of chiral and antichiral spaces and one more space
which we call isoscalar, provided that the mass of the sys-
tem is nonzero. However, for the massless case, the situa-
tion drastically changes. We will show in Sec. IV that all
of these chiral, antichiral, and isoscalar spaces are now not
irreducible but indecomposable (and hence not fully re-
ducible). Moreover, the superspace contains an additional
subspace other than those mentioned above. The whole
superspace is also reducible but still indecomposable. In
the following sections, we show that these facts are inti-
mately related to the existence of new Lie algebras in the
superspace, as well as to different forms of Casimir invari-
ants between the massive and massless cases.

In order to facilitate our discussion in the following sec-
tions, we will briefly recapitulate notations and definitions
concermng Lie superalgebra and supersymmetry. Let L
be a Lie superalgebra consisting of a bosonic sector Lz
and a fermj. once one LF as

L =LgyLF

Setting

[x,yj =xy —( —1) '"' '«'yx,

we then have

[x,yj = —( —1) ' ' '«'fy, x j

as well as the generalized Jacobi identity

( 1) ( ) (*)[[xyj zj+( 1) («) ( )[[y z

+ ( —1) " '«'[[z,x j,y j =0 .

If a subalgebra Lo of L satisfies

[LoLj( Lo

(1.4)

(1.5a)

(1.5b)

then Lo is called an ideal of L. If L contains no proper
ideal, then L is simple. We define subalgebras L' ' and
Lk (k & 1) inductively by

[L.,L. j =L")=L,
[L'"' L'"'j =L'"+') k & 1

[Lk,L j =Lk+), k & 1 .

If we have L„=O identically for some positive integer n, ,
then L is called nilpotent, while L is said to be solvable
when we have L'"'=0 for some n. A nilpotent algebra is
automatically solvable. -,If L contains no solvable ideal,
then L is defined to be semisimple. Schur s lemma is stat-
ed ' as follows.

Schur's lemma. Let I be a Lie superalgebra in a finite-
dimensional irreducible space V. If a linear operator J in
the space V commutes with all elements of L, i.e., if

so that we have

[Llt,Ltt]C:Lz, [Lz,Lz]CLz, IL+,L+j &Ltt . (1.2)

It is convenient to introduce the signature function cr(x)
(x&L) by

0, if xELg
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[J,L j =0, then we have the following possibilities.
(i) If rr( J)=0, then J=XI where A, is a constant and I is

the identity operator in V.
(ii) If a (J)= 1, then either J is identically zero in V or

DimV& ——DimVF, and JVz ——VF, JVF ——Vz with J =XI.
Here, Dim V~ and Dim V+ refer to the dimensions of the
bosonic part V& and the fermionic part VF of V, respec-
tively.

Next, for any finite-dimensional representation space V
of L, we can define the supertrace ' by

and L0 are not semisimple in contrast to simple I ie su-
peralgebras used in nuclear theory. '

Let 8a (a=1,2) and 8 (a=1,2) be mutually anticom-
muting Grassmann variables. Then, the superspace V is a
vector space consisting of all smooth functions @(x,8,8)
of Minkowski coordinate x (m=0, 1,2,3), 8a, and 8 . If
we set

I' = —i = —iB
Bx

STrx= g && Ix I&& —X &f Ix If& «L
b f

(1.6) g +8a Ptl~
BF'

(1.13)

where b and f refer to complete orthonormal sets in the
bosonic part Vz and the fermionic part VF of. V, respec-
tively. We then have '

STrx =0 if o(x)=1
as well as

(1.7a)

S Tr[x,y j =0, x,y HL . (1.7b)

Supersymmetry in particle physics is a Lie superalgebra L
such that its bosonic part Lz is the usual Poincare Lie
algebra consisting of P, and J,b (= —Jb, ), satisfying the
familiar commutation relations

I11 I22 133 900

The fermionic part L~ of supersymmetry consists" of
undotted spinor Q (a = 1,2) and dotted spinor Q.

~ ~

(a = 1,2) obeying the commutation relations

l[J.b Q ]= (~.~b ~b~. ) —~Q—P—a ~ a 4 a

[J,b, g. ]=-—(o,ob —obo, )~ Qp,a ~ a 4 a

[P Q ]=[P Q ]=o
as well as the anticommutation relations

Q. , gpj = Ig. , g~j =0,

IQ Qpj=2o gm .

(1.10)

In this paper, we are following the standard notation
and summation conventions for Pauli matrices oa and o,
and for spinor. indices as those used by Wess and by
0vrut. Let

L =(P,Q, Q ) (1.12)

~ [Jab ~ Jcd ]= 1bcJad + ")adJbc 9acJbd ''gbd Jac

~ [Jab~Pc ] 1bcPa 9acPb

[P„Pb]=0,
where latin indices a, b, c,d assume values 0, 1,2,3 with the
Minkowski metric g,b satisfying

D(@(@2)=-(D@t)%2+(—1) ' N)(D+2) (1.14)

for two vectors @~ and Nq in V. Here, o~ and o.D are the
signatures of N1 and D, respectively, and we assume com-
mutativity of 8 and 8 with any function f (x) of the
coordinate x alone which is contained in N1. If we as-
sume ' contrarily anticommutativity of Oa and 0- with
any fermionic fields f(x) contained in N~, then we may
set 0~ ——0 in Eq. (1.14). Since the latter convention is
more convenient, we will adopt it in discussions of Secs. II
and III.

We may realize J,b (= —J,b), a, b=0, 1,2,3, in V also as

lJ,b = i(x, B—b —xbB, )+ 8(oaob —obcr.a)—.
4

+ 8( CTa CJb —CTb 0'a ) +Sab
BO

S,b (= Sb, ) are t—he spin operators which commute with
all other quantities, and which act only upon possible
Lorentz indices contained in N. However, in this paper
we consider only the case of the so-called scalar super-
space where N contains no extra Lorentz indices and
hence S,b ——0.

Let 3 be a polynomial algebra generated by derivatives
8/B8, 8/B8, and 8/Bx as well as by multiplication
operations of 8a and 8 . We denote Ap as a subalgebra of
A, generated by polynomials of Q, Q. , and P~ given by
Eq. (1.13). Clearly, Ap is a realization of the universal en-
veloping algebra ' of L0 in the superspace V. The com-
mutator algebra A p of Ap is defined then by

Ap ——IZ I [Z,Apj=0, ZeA j . (1.16)

It is not difficult to prove that A0 is generated by three
elements D, D -, and I' where

I' = —i- a
Bx

Q = . +8+ma
BO"

these offer a realization of the Lie superalgebra Lp in V.
Note that these operators are derivations in V, i.e., they
satisfy the differential rule

be a subalgebra of L, spanned by P, Q, and Q . We
evidently have [Lp L j C:Lp and [[Lp,Lp j Lp j =0 so that
L0 is a nilpotent ideal of L. Actually, L0 is the radical of
L, i.e., the maximum solvable ideal of L. Thus, both L

. +8o. J'
BO

(1.17)
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Note that our notations here follow those of Wess and
Ovrut. "They satisfy

[D,Dp] = [D,Dg j =0,
(1.18)

which are exactly the same as Eq. (1.11) with replacement
Q~~D~ and Q ~D . This proves that Ao is isomorphic
to Ap.

In passing, we briefly remark the following. The reali-
zation Eq. (1.13) is by no means unique. Instead of simple
spinors 0 and 0., we could have utilized more complicat-
ed Crrassmann variables such as 8 and 0 where
m=0, 1,2,3 is the Lorentz vector index, and a, u refer to
spinor indices. When we set

for simplicity throughout this paper. If we use the reali-
zation Eq. (1.13) based upon 8 and 8, then the dimen-
sion of V is 16. Contrarily, V will have dimension of
65536 for another realization Eq. (1.19) based upon 8
and 0 . . Also, we will not consider a physically trivial
case of p =0 for all m in this paper, which could occur
for the case M =0.

Let V' ' be any finite-dimensional representation space
of Lp. We designate its bosonic and fermionic parts by
Vii

' and VP', respectively. Then, in view of Eqs. (1.7b)
and (1.11), we calculate

O=STr[Q~, Q&] =STrjQ~, Q&] =2a &p~STrl,

where 1 is the identity. However, since we have

STr 1=Dim V' ' —Dim V' ',
and since p are not identically zero, this requires

Dun Vz
' ——Dim V~

' . (1.23)
(1.19)

a aa ~pm

as well as

a ~~~—~ a m

a (1.20)
m

a aa ~~

then we can easily verify the validity of Eqs. (1.11) and
(1.18) as well as anticommutativity between pairs (Q~, Q. )

and (D,D. ), although the isomorphism of Ao and A o is
no longer true for this case. Since the use of 0 and 0 .
will introduce many higher-spin fields in theory, we will
not consider this possibility in this paper. However, many
of our results in this paper are based only upon the use of
commutation relations, Eq. (1.11) and (1.18), but not upon
their explicit realizations, such as Eqs. (1.13) and (1.17) or
(1.19) and (1.20), so that many results given in this paper
are equally applicable to both realizations.

Since P =P P commutes with all elements of L„ it is
a Casimir invariant of L. If M is the mass, then we have

M= —P=G. (1.21)

We will consider only physically relevant cases of M )0.
As we shall observe in Sec. V, L possesses another Casimir
invariant whose form changes drastically for the two cases
M&0 and M =0.

In this paper, we are mainly concerned with finite-
dimensional representations of the subalgebra Lo defined
by Eq. (1.12), rather than infinite-dimensional unitary rep-
resentations of larger superalgebra L itself. Since the
four-momenta P commute with all elements of L, p, we
regard P to be constants p . Then, we are dealing effec-
tively with subvector space V(p) of V where P assume
eigenvalues p~. Therefore, any vector N(x, 8, 8) appearing
in V(p) must have the form

@(x,8,8)=exp(ipx)@(8, 8) .

However, we will use the same notation V instead of V(p)

In other words, the dimensions of bosonic and fermionic
parts are always the same in any representation V' ' of Lo.
Therefore, the dimension of any representation space of
L,p is always even. Especially, Lp cannot have any one-
dimensional representation space. Then, any two-
dimensional representation of Lp is automatically irredu-
cible, since otherwise it must contain one-dimensional in-
variant subspace. These facts will be useful in Sec. IV,
since these statements are valid for both massive and
massless cases as well as when V' ' is not necessarily fully
reducible. The validity of Eq. (1.23) also implies that rep-
resentations of Lq are always typical in terminology by
Kac, although L p is not simple.

II. DECGMPGSITIGN GF MASSIVE SUPERSPACE

First, we note the following proposition for later pur-
poses.

Proposition. Let Vp be a subspace of the superspace V,
such that the I.ie superalgebra Lo [see Eq. (1.12)] is ir-
reducible in Vo. If a linear operator J in V satisfies condi-
tions [J,LO j =0 and J =0, then we have either JVo =0 or
JVO is disjoint from Vo. Especially if JVo C Vo then
JVo ——0 and we find [(DD ) =—DD hereafter]

(i) D~Vp ——0 if D~VpC Vo,

(ii) D Vo ——0 if D VOC: Vo., .

(iii) (DD)VO ——0 if (DD)VOC Vo,

(iv) (DD)Vo ——0 if (DD)VoC: Vo .

The proof is simple. We first observe that LoVo(: Vo,
and Lo(JVO)= J(LoVo) C:JVo since [J,Lo] =0. There-
fore, when we set V~ ——Vp A JVp, we find I.pV& C: V&. In
other words, V& is an invariant subspace of Vp. Hence, we
must have either V] ——0 or V~ ——Vp because of the irredu-
cibility of Vp. However, V&

——Vp is impossible because of
the following reason. Suppose V~ = Vp and hence
JVp&Vp. Then, we find O=J Vp&JVp&Vp since J =0.
This proves Vp 0JVp=0. Thus, unless JVp ——0 identical-
ly, JVp is disjoint from Vp. Especially, if JVpC: Vp then
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we must have JVo ——0. We remark that we could have
used Schur's lemma for a proof of the second half of our
proposition.

We note that we have used only basic commutation re-
lations, Eq. (1.18), but not explicit realization, such as
Eqs. (1.17) or (1.20), in our proof of this proposition.
Hence, its validity is independent of any particular reali-
zation of V discussed in Sec. I. The same remark also ap-
plies to most results of this section, unless it is stated oth-
erwise.

As we may observe from the result of this proposition,
the subspaces Vo such as D Vo ——0 are important for our
discussion. We set

I+ = — (DD)=-
4m

I = —— (DD) = E~D D-1 1

4' (2.2)

I3 ——— o [D,D ]P
8M

—Dr DP ——, = — Do. DP
4M. 4M

in-the notation of Refs. 8 and 9. Using the commutation
relation Eq. (1.18), it is not difficult to verify that they
satisfy quadratic identities:

1I3I+ ———I+I3 ——
2 I+,

Vc ——{@~D @=0, NE V, a=1 and 2],
Va ——{@

l
Du@=0, &PH V, +=1 and 2],

V, ={C~(DD)C=(DD)+=0, eCV]
and call Vc, Vz, and Vz chiral, antichiral, and isoscalar
(or isotopic) spaces, respectively. In view of anticommuta-
tivity between pairs (Q, Q ) and (D,D ), each of Vc, V&.
and V~ defines a representation of L, o. The first question
we have to ask is whether they are irreducible or not. The
answer depends upon two cases of M&0 and M =0. We
shall prove that for the massive case M&0 with realiza-
tion of Eqs. (1.13) and (1.17), they are indeed irreducible.
However, for the massless case M=-O, we will show in
Sec. IV that they are not irreducible but nevertheless in-
decomposable (hence not fully reducible).

Hereafter in this section, we assume M7-0. Although
many of the results in this section are more or less known
in the literature, we will discuss the decomposition of V in
some detail here, since it is relevant for comparison with
the case of M =0, and since some results are certainly new
with some generalizations.

We first define I+,I, and I3 by

[I3,I+ ]=I+,
[I3,I ]= I—
[I+,I ]=2I3 .

(2.4)

For simplicity, we call the SU(2) a pseudo-isotropic spin
group or simply isotropic spin group. The Casimir invari-
ant ( I ) of SU(2) is given by

( I) =(I3) + , (I+I—+II+),
which is rewritten as

( & )' =3(I3)'

(2 5)

(2.6)

because of Eq. (2.3). Moreover, Eq. (2.3) imposes con-
straints

(I3) = ,'I3, —

(&) f(&)' —-„]=o .

(2.7a)

(2.7b)

Vc ——{@
~
I34= z' 4j,

Vr ——{@
~

I3@=0j .

(2.8)

Then, both V& and Vz belong to I=- —,, while Vz has
I=-0. This is the reason why we call Vz- an isoscalar here
instead of the terminologies ' ' of linear or transverse
fields used in the literature.

The projection operators P], P2, and P& for I& ———,',
——,, and 0 states, respectively, are evidently given by

P( ——2(I3) +I3 I+I = (DD——)(DD),
16M

P2 =2(I3) —I3 =I I+ =-- (DD)(DD), -
16M

(2.9)

Pr =1 4(I3) = —. —D (DD)D
8M 2

2
D. (DD)D

8M

which satisfy the orthogonality condition

Equations (2.7) imply that the total isospin I can assume
only values 0 and —,, while I3 can have values 0, —,, and

only. From Eqs. (2.1) and (2.2), we see that chiral
and antichiral fields are eigenstates of I3 with eigenvalues

and ——,', respectively. Also, since (DD )Nz.
==(DD)@q 0, the .i—s—oscalar field 4&r belongs to I =0 and
hence it has a zero eigenvalue for I3. As we shall see
shortly, we can actually prove the following stronger
statements:

I3I = —I I3 ————,I
(2.10)PJPk 6p, PJ. (j,k=——1,2, T),

(2.3)
as well as the completeness condition

(I~) =(I ) =0,
I+I =2(I3) +I3
I I+ =2(I3) —I3 .

(2.11)P] +P2+Pg ——1 .

These properties of P&, P2, and Pz- together with P+
(=I+) and P (=I ) are already well known in the
literature (e.g., see Ref. 11). The new fact is that P, , P2,

In particular, I+, I, and I3 satisfy an SU(2) commuta-
tion relation:
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and PT are projection operators for three eigenvalues
I3 p

——,', and 0 of the new isospin SU(2) group.
We now prove Eq. (2.8). In view of Eqs. (2.10) and

(2.11), the superspace V is split as a direct sum,

Suppose now that 4H V&, i.e., I3@=—,
' 4, then, in view of

Eq. (2.18b), we calculate

I3(D.@)=D N

V=V, e Vze V, ,

when we set

V) ——P) V, Vz ——Pz V, V3 ——PTV .

(2.12)

(2.13)

so that D @ is an eigenstate of I3 with eigenvalue one.
But, we have already noted that this is not possible so that
D.4 =0. This proves V~ C: Vc as before, and hence

V& ——Vc. Similarly, we find V2 ——Vz. It is interesting to
see that we have

Our task is to prove

Vi = Vc~ Vz= Vw~ V3= Vr

so that Eq. (2.12) can be written as

V=VcV~VT .

First of all, it is almost evident that we have

Vc & Vi V~ & Vz

(2.14)

(2.15)

(2.16)

since Vc, Vz, and V~ are eigenspaces for I3 —
2 2 and

0, respectively. To prove Eq. (2.14), let us first note
D.P, =O=D P2 from Eq. (2.9) so that we find
D. V&

——O=D Vz. This proves V& C: Vc and Vz C V~, and
hence V~ ——Vc and Vq ——Vz in view of Eq. (2.16). The last
identity VT ——V3 is almost self-evident. This shows the
validity of Eq. (2.14) and hence of Eq. (2.8). The decom-
position, Eq. (2.15), for V is known in the literature when
V is constructed by Grassmann variables Oa and 0.. How-
ever, since we did not utilize any particular realization for
D and D, our conclusion is also valid even when we use
0 and 0 - as in Sec. I.

Before proceeding further, we can also prove Eq. (2.14)
as follows. With this aim, we introduce F~ and F:

(2.17)

[I3,F ]= ,F-
[I3»a]= —TDa

[I+,D ]=F~,
[I,FQ ]=D

[I+ F ]=[I » ]=o
as well as

[I3,D J = ,'D—
[I3,F.]= —,F—
[I+,F ]=D.
[I,D ]=F
[I+» ]=[I-F ]=0.

(2.18a)

(2.18b)

Then, we can readily show that the two pairs (F~,D~) and
(D g ) behave as isospinors with respect to the SU(2).
Indeed, we find

IF,FpI =IF p, FBI =0,

I F~,F. I = —2o g
(2.19)

Therefore, P, F, and Fs—atisfy exactly the same
commutation relations as P, D, and D with identifica-
tion Da~Fa and D ~—I . This implies that we could
have used F and F ins—tead of D and D from the be-

ginning. Also, P~, D, D, Fp, and F& define a new type
of Lie superalgebra. For example, we have

[F~,Dpj = 2Me~p, —

t F,Dp JI
= +2M @ p .

(2.20)

However, we will not discuss this here, since a more gen-
eral case will be presented in Sec. V. We simply remark
that two isodoublets of SU(2) are related to each other by

r

pa
l gpss

F. ~ aa m Da
a

(2.21)

In view of mutually anticommuting properties between
the two pairs (Q~, Q ) and (D~,D ), we find [I3,LO]=0 so
that any of Vc, V„, and VT is a representation space of
I.o. The next question is whether these are irreducible or
not. The answer now depends upon a choice of super-
space. We consider here the case that V is defined in
terms of Grassmann variables 8~ and 8 as in Eq. (1.13)
but not in terms of more complicated variables 8~ and 8 .
as in Eq. (1.19). In that instance we can show the irre-
ducibility of V& and V2, while VT is also irreducible in a
sense to be specified shortly. For this purpose, we first
observe that any representation of Lo is fully reducible as
long as M&0. This is due to the fact that Lo is iso-
morphic to algebra I.o with the same structure as L, o but
with its four-momenta P~ evaluated at the rest frame, i.e.,
P =(M, O,O,O) because of Lorentz covariance of the
theory. However, Lo forms a basis of a Dirac-Clifford
algebra, where the full reducibility of its representations is
well established' ' with only one four-dimensional ir-
reducible representation for the present case of Lo. There-
fore, the same remark also applies to Lo.

The criteria of the irreducibility of spaces Vc, V~, and
VT is equivalent to the primitivity' of the corresponding
projection operators P&, Pz, and PT in the commutator
algebra Ao discussed in Sec. I. In other words, we have to
study whether any of these can be written as a sum of two
nontrivial mutually orthogonal idempotents (i.e., projec-
tion operators) or not. It is not difficult to verify the
primitivity of P& and Pz so that both chiral space Vc and
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PT=&i+e2

ejek 6/k——eJ (j,.k = 1,2) .

The most general forms of e i and e2 are given by

(2.22)

antichiral space V~ are irreducible with respect to L,o.
Moreover, their dimensions must be four. However, Pr is
not primitive in A 0. Indeed, it can be split into the sum of
two nontrivial mutually orthogonal idempotents e& and
e2.'

In other words, a product of two I=0 fields does not give
a pure 5=0 field but contains a mixture of I& ———,

' and

I3 ————, components. These apparently peculiar results
are due to the fact that I+, I, and I3 are second-order
(instead of the first-order) differential operators. Especial-
ly, they do not satisfy the differential rule, Eq. (1.14), as
we may see from Eq. (2.26). In other words, they are not
derivations in V, although they are elements of Ao.

In ending this section, we may impose the Hermiticity
constraint

ei ——,'D(o—I)D —P2,

e2 ——,'D(o —l~)D Pi . —
(2.23) (8) =8, (Q ) =Q.

in some sense. We can then impose the reality condition

Here, 1 is an arbitrary but fixed four-dimensional con-
stant vector satisfying the conditions

1=11 =0, /p=l p (2.24)

Such a vector l always exists. However, l can never be
proportional to p . Because of Eq. (2.22), VT splits as

VT= V&e V

where we have set

(2.25a)

VT =ei VT =D(o l)DVr,
VT"——ei VT D(o l )D V——T

(2.25b)

since P~VT ——P2VT ——0. Moreover, e& and e2 are now
primitive, since any idempotent e satisfying e PT ——PTe =e
must be expressed in the forms specified by Eq. (2.23) for
some 1 . This proves that VT is a direct sum of two
four-dimensional irreducible representation spaces with
respect to Lo. However, the decomposition, Eq. (2.25), for
VT is not Lorentz invariant, since e& and e2 are not
Lorentz invariant because of the presence of the constant
four-vector 1 . Therefore, if we insist upon Lorentz-
convariant decomposition, then VT is irreducible. More
precisely, we have to adjoin some linear combinations of
J,b to Lo, which leave the four-momenta p invariant.
The resulting algebra Lo(p) is the little Lie superalgebra of
L. With respect to Lo(p), VT is now irreducible with di-
mension eight. The irreducibility of Vr under Lo(p) will
be seen also from the explicit construction of VT which is
given in Sec. III. In Sec. IV, we show that a similar situa-
tion also exists for the massless case. In conclusion, we
find that the massive superspace V is a direct sum of three
irreducible spaces Vc, Vz, and VT with dimensions four,
four, and eight, respectively. We should remark that this
fact is more or less known in literature, although its con-
nection with the SU(2) algebra in Ao is perhaps new.

The following peculiar property of our isospin group
SU(2) should be mentioned. First, let Cii and N2 be two
chiral fields. Then, the product +~+2 is also a chiral field
as is well known. This implies that a product of two
fields with I3 ———,

'
gives another field with I3 ———,'. Simi-

larly, let N& and @2 be isoscalar fields. Then, @&@2is no
longer isoscalar as we may see from

(DD)(C iC 2)=(DDC i)C 2+4 i(DDC2)

(@T)t=@T (2.27)

for isoscalar field @T, if we wish. However, this notion of
the real isoscalar field should not be confused with the
so-called vector field ' ' used in literature, which satisfies
the same condition, Eq. (2.27). The latter is not irreduci-
ble, but a real combination of all real isoscalar, chiral, and
antichiral fields. The use of nonirreducible representation
for the vector field appears to be necessary for maintain-
ing local gauge symmetry. As we shall see in Sec. IV, it
corresponds to a indecomposable representation when it is
massless.

III. ISOSCALAR SPACE

[DD,DD] = —16M +8Do DP~

then the isoscalar space VT is defined by

(3.1)

(DD)C&T ——(DD)C&T ——(2M Do DP )NT ——0—(3.2)

for @TH VT, irrespective of M&0 or M =0.
In this section, we restrict ourselves to the superspace

constructed in terms of 8 and 8 . Then, using Eq. (1.17)
for explicit expressions for D and D, the general solu-
tion of Eq. (3.2) is found to have the form [(88)—:88 here-
after]

@T——A(x)+(Bo B)B (x) 4(88)(88)C14(x)—
+~28/(y)+v 28$(y),

where y and y™are defined by

(3.3)

y =x +ieo. 0,
y =x —iOo. 0

and where B (x) must satisfy the constraint

(3.4)

(3.5)

Although uses of the isocalar field (often called linear
or transverse) have been occasionally considered ' ' in
the literature, its systematic study does not appear to have
been seriously undertaken. We will investigate the struc-
ture of Vr in some detail, since its knowledge is important
for the proof in Sec. IV of indecomposability of the super-
space V for the massless case.

When we note

+2(D @i )(D C&2) . (2 26) In view of Eq. (3.3) with this constraint, Eq. (3.5), the di-
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Q P,(x)=— o [B~(x) iB—A(x)]

for the operation of Q~ and

Q A(x) = —v 2$ (x),

Q 8 (x)= (o oi cryo ) PQ—P(x),v'2

Q f~(x)= —. o' [8~(x)+id~A(x)],tel

(3.7)

Q fp(x)=0

for Q, from which we can again verify the validity of Eq.
(1.11).

We see that 8 (x) is invariant under the action of both
Q~ and Q, apart from the total divergence. Therefore,

f d x 8~(x) and f d x 80(x)

are invariant against the actions of the supersymmetry Lo.
Note that the latter is also Lorentz invariant because of
Eq. (3.S). The constraint, Eq. (3.5), i.e., 8 8 (x)=0, is a
direct consequence of I3@T——0. We can rewrite the latter
in the form

8 V~(x) =0,
where we have set

V ( )= ——,'( ) [D,D ]@

(3.&)

(3.9)

Inserting the explicit solution Eq. (3.3) into Eq. (3.9), we
calculate

V (x)=8 (x) e" (8cri8)d, Bg(x)—
+(8~,8)(q ' —a a')A(x)

(o o —o o )p 8 diP(y)
2

(p m~1 y I m)ap pg q (y) (3.10)

so that Eq. (3.8) is equivalent to Eq. (3.5).
As we noted in Sec. II, the space VT is not strictly ir-

reducible even for the case M&0, since we can split VT as
in Eq. (2.25). However, it is clear that the decomposition

mension of VT is clearly eight in agreement with the result
of Sec. II for the case of M&0.

Now, we operate Q~ and Q given by Eq. (1.13) to the
expression, Eq. (3.3), for @T. This induces linear transfor-
mations among these eight functions A(x), 8 (x), tP (x),
and g (x). Following the usual convention, we use the
same notations Q~ and Q for these induced linear
transformations in VT. Also, the same symbol V will be
used for similarly induced representation spaces hereafter.
Then, we can easily find

Q A (x )=~2/ (x),
Q.y,(x)= ' ~.-,[8„(x)—ia A(x)],

(3.6)
Q fp(x)=0,

is not Lorentz covariant.
Let @T and C&'T be two isoscalar fields. Then, only the

bilinear supersyrnmetric invariant is proportional to '

Lo(x)= f f d 8d 8@T(x,8, 8)C&'T(x, 8,8)

= —,[8 A(x)B A'(x) —8 (x)8' (x)]

i P—(x)o d f '(x) i f(—x)cr 8 it '(x), (3.11)

apart from some terms proportional to total divergence
If we choose @'T——@T or @'T——@T, then we see that this
represents free massless spin-0 and spin- —,

' fields. Note
that 8 (x) has no kinetic term. However, once we intro-
duce self-interactions, the theory will in general become
unrenormalizable. Although this fact is known, ' we
show that the reason for it has a simple dimensional basis.
We consider here the case of a real isoscalar field 4&, drop-
ping the subscript T. Then, we have already noted that
both @,4& and C&@N are no longer pure isoscalar fields,
and the only Lorentz-invariant Lagrangian must be ' of
the form

L (x)=f f d 8d 8( —,
' @ + —,

' g@'), (3.12)

PTN=N (3.14)

for N, since 4 is supposed to be isoscalar. Here, Pz is
given by

8
(3.15)

Therefore, the variation 5@ must obey the same con-
straint, so that it can be written as

6@=PT57

for arbitrary superfield X. Then, the variational problem,

where g is a coupling parameter. We note that de and
d8 must have the length dimension of l ~ ~here I is

length. Since the Lagrangian L must possess the canoni-
cal dimension I, the field 4 must have the dimension of
1 '. Therefore, Eq. (3.12) requires the coupling parameter

g to possess the dimension I. In other words, the cubic in-
teraction is unrenormalizable' on the basis of dimensional
counting, since it corresponds to the second-kind interac-
tion. ' We should contrast this fact with the cubic interac-
tion containing only chiral field @c,since the Lagrangian
is now replaced by '

L(x)= f fd'8d'8~c@c+go f d'8(ec)'

+go f d 8(@c)

The coupling parameter go is dimensionless, so that L is
renormalizable by dimensional counting.

In spite of the unrenormalizability, the theory described
by Eq. (3.12) is of some theoretical interest. To be defi-
nite, we assume that we are dealing with a massive field.
The equation of motion may be derived from the action
principle

5 f d xL(x)=0. (3.13)

However, we have to impose a constraint
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Eq. (3.13), for arbitrary variation 5X leads to the equation
of motion

, gP—T(@) (3.16)

+ —gcr .[(D c) C&)(D @)

when we note Eq. (3.14). Multiplying on both sides of
Eq. (3.16) and noting

C3@= ,'D——(D )D @

by Eqs. (3.14) and (3.15), we can rewrite Eq. (3.16) as

(I+g@)CI@=—
4 g(D D ~@)(D D @)

[[LO,Lo],LO]=0 identically. In view of Lie's theorem
on solvable Lie algebras, any irreducible representation is
one-dimensional, and moreover, representations are not in
general fully reducible. In particular, there cannot exist
analogs of projection operators P], P2, and PT of Sec. II,
which are based upon the simple Lie algebra SU(2).
Therefore, we have to study the problem in a different
way. We shall prove in this section that each of V, V~,
Vz, and VT is not irreducible but not fully reducible.
Moreover, V~ and Vz are indecomposable, while VT and
V are also indecomposable in a sense to be specified short-
ly. We will prove these facts in several steps below.

(D c)—4&)(D @)] . (3.17)

A. V not fully reducible

First of all, J defined by Eq. (4.2) can be written also as

A(y ) +V 28$(——y ) +(88)F(y ),
@c=A (y )+v 28$(y )+(88)F'(y )

(3.18)

for some scalar functions A (x), F(x), A'(x), F'(x), and
spinors tP~(x), P (x).

IV. INDECOMPOSABILITY
OF MASSLESS SUPERSPACE

Here, we consider the massless case M =0. However,
we exclude the trivial case where all four-momenta P are
identically zero. In Sec. II, it has been shown that the su-
perspace is a direct sum of chiral Vc, antichiral V~, and
isoscalar Vz spaces. However, the situation changes
drastically for the massless case. First, I+, I, and I3 of
Sec. II have no meaning at all. The sixnplest way to ob-
tain a new algebra for M =0 is to use the method of con-
traction. We multiply suitable powers of M to Eqs. (2.3),
(2.4), and (2.7) and take the limit M~O. Then, the SU(2)
algebra will contract to

[DD,J]= [DD,J]=0,
[DD,DD] = 16J,

where we have set

(4.1)

This is somewhat reminiscent of nonlinear realization'9 of
the chiral SUI (2)@SU~(2) theory. We should mention the
fact that the special case g =0 leads to @=0identically in
view of Eq. (3.16). For such a case, we cannot use the
present formulation. However, Ferrara and Zumino'
constructed a constraint-free Lagrangian for the free mas-
sive isoscalar field.

Concluding this section, we simply mention general
forms of chiral field @c and antichiral field @~ here for
the sake of comparison. The general solutions of
D 4~ ——0 and D @z——0 are well known tobe

J= —,Qo QP = ——,Qo QP (4.4)

when we note Eqs. (1.13) and (1.17) together with
(crP)(oP) =(crP)(oP) = P=O.—Since pairs (Q, Q ) and
(D,D )anticom. mute with each other, Eq. (4.2) implies

V= ge VJ, (4.6)

of some irreducible representation spaces VJ of Lo. We
then prove that it will lead to a contradiction. Because of
Eqs. (4.4) and (4.5), we see JVJ C VJ and [J,LO] =0.
Therefore, the proposition of Sec. II or Schur's lemma re-
quires

JV =0
for each index j when we note J =0 from Eq. (4.3). As a
consequence, we must have

if Vis fully reducible as in Eq. (4.6). However, this is im-
possible, since for example

N= (88)(8 8)G (x)E V

obeys J@&0. This proves that V cannot be fully reduci-
ble.

In the proof given above, we could have used J and J.
instead of J, where J and J are fermionic Casimir in-
variants of Lo (but not L) for M=O, given by

(4.5)

so that J is a Casimir invariant of Lo. Actually, J is also
a Casimir invariant of the larger algebra I since
[J,J,b] =0. We will return to this point in Sec. V.

Now, we suppose that the whole superspace V is fully
reducible with respect to I.o as a direct sum,

J= —, (Do D)P~ = —,
' (D cr —D)P~ .

Similarly, we find

(4.2)
& Qa tn~ &Da m~

(4.7)

J =J(DD)=(DD)J =J(DD)=(DD)J =0 . (4.3)

Let Lo be the Lie algebra defined by Eq. (4.1). Then, Lo
is nilpotent and hence solvable, since we find

We can readily verify [J~,LOI =[J.,LO] =0 as well as
(J~)2=(J ) =0, when we note (oP)(oP)=(crP)(oP)'
= —P =0. We show in Sec. IVE that V is indecompos-
able if we allow only Lorentz-covariant decompositions
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for VJ in Eq. (4.6).
We remark that any irreducible as well as any fully

reducible subrepresentation space V' ' of V must satisfy

reducible then, since L, pk'cz. C: VcT and L,per& V~T are
evident. The explicit actions of Q and Q. in VcT are
easily found to be

JV(P } J V(P } J V(P } (4.8)

by the same reasoning used in the proof of V being not
fully reducible. Examples of V~ ' satisfying Eq. (4.8) are
spaces V~T and V~T to be given in Sec. IV B. In this con-
nection, we note the validity of

IJ,J. j=O=J

Q $~(x)=Q Ao(x)=0,

Q Ao(x) =V 2$~(x),

Q. P (x) = v—2io BA. O(x) .

A similar result also holds for V~T.
Next, we define a subspace Vp of V by

(4.12)

for the massless case. Therefore, if we restrict ourselves to
consideration of only the so-called unitary representations
which satisfy the self-adjointness conditions Q =(Q~)
and hence J =J as well as (J ) =J., then any physical
subspace V must obey the same condition,

JV=J V=J- V=O, (4.8')

as Eq. (4.8), whether V is fully reducible or not. We still
see at the end of this section that V coincides, however,
with the direct sum of all irreducible subspaces contained
in V. Since Jv&0 and J~v&0, we cannot impose the
positive-metric condition to a11 of the superspace.
Presumably, we have to introduce an indefinite-metric
structure in V. Note that V contains massless particles
possibly with local gauge symmetry. Then, V will be iden-
tified with the maximum positive-metric subspace of V.

B. Spaces Vo, VCT and Var
I

In contrast to the massive case, Vc, Vz, and VT can
now have common intersections, although we still have
V~A Vz ——0, i.e., V& and Vz have no common intersec-
tion. We now define VcT and V„T by

V,„=V,n V, —= (eD~, C =(DD)C =0 q ~Vj,
(4.9)

VgT= Vg fl VT= IC
~

D. C&=(DD)@=0, @~v'j .

Vo ——I@
~

JN=Oj . (4.13)

Vp ——Vc U Vg U VT . (4.14)

Since DimVc& ——DimV&T ——2, and DimVT ——8, we have
Dim Vo ——12. It is simple to show that any state @satisfy-
ing J 4=-0 or J @=0 automatically belongs to Vp, but
the converse is not necessarily correct. Using this, it is ob-
vious that Vp cannot be fully reducible, since we will oth-
erwise have J Vp= J ~ Vp=0 by the same reasoning as in
Sec. IV A. Actually, Vp is moreover indecomposable in a
sense specified shortly. This fact will be shown in Sec.
IV E.

The quotient space V/Vo is four-dimensional, whose
basis modulo Vo consists of four representatives
(0o 8)K (x), (08)g'(x), (00)8((x), and (00)(00)G(x),
subject to constraints

a J: (x)~0, V a Px)~O, o a g(x)~0.
Since Jv& Vo in view of J =0, the quotient space V/Vo
is a zero eigenspace of J. We can prove that V/Vo as a
representation space of Lo is a direct sum of two two-
dimensional irreducible representations and is isomorphic
to VcTS VqT. More explicitly, their basis (modulo Vo) is
given by

Then, it is not difficult to show that Vp is a space generat-
ed by Vc, Vz, and Vz, i.e.,

A11 linear transformations in V spanned by D, Jp, and
DD are nilpotent, and form a Lie superalgebra. There-
fore, there exists a nonzero vector N in V, such that it sat-
isfies D C&=(DD)4&=J~C&=0 by the generalized Engel's
theorem. ' This proves the nonemptiness of V~T. We
can prove similarly that Vcz is not null. The generic ele-
ment @cTEVzT and NzTH VzT can be easily calculated
to be

@cT AO(y)+~20(t (y)

~'~T=Ao(y)+~&04 (y),
(4.10)

where Ao(x), Ao(x), P~(x), and P.(x) are some functions
of the coordinate x alone, subject to constraints

Ao(x)=G(x) ——8 K (x),

just as for V&& and

A;(x)=G(x)+ —'a Z (x),
2

P (x)= o 8 P(x)aa m

(4.15a)

(4.15b)

~,(x)=m,'(x) =0,
o .8 P (x)=o B P (x)=0.

(4.1 1)

In view of Eq. (4.11), P~(x) (a=1,2) and P (x) (a=1,2)
contain only one linearly independent component, respec-
tively, so that the dimensions of V~T and V~T are two for
both. By the result of Sec. I, both V&T and V~T are ir-

C. Indecomposability of V~ and V~

Both Vz and Vz are not irreducible but indecomposable
by the following reason. Consider V&. If it is irreducible,
then we must have J Vc ——J Vc ——0 by Eq. (4.8). Howev-
er, this cannot be correct, since we calculate

J Vc ——— o .8 [g (y)+~20 +(y)j .
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Next, suppose that Vc is decomposable as a direct sum

Vc = Vi V2 . (4.16)

C&c ——A (y)+ V 28$(y)+ (88)E(y) . (3.18)

The actions of Q and Q. on these components are well
known to be

Q~A (x)=v 2$ (x),

Since 1.0 cannot admit any one-dimensional invariant
space, both V& and V2 must be two-dimensional, and
hence irreducible by the result of Sec. I. Then, we have
J Vc ——J Vc ——0 by Eq. (4.8), since Vc would then be ful-

ly reducible. However, this has been shown to be in-
correct. The same proof equally applies to Vz, and we
conclude that both Vz and V~ are not irreducibLe but in-
decomposable. Note that we need not assume the Lorentz
covariance of the decomposition for this proof.

Now, we study in some detail the structure of Vc. The
general solution of the chiral field N& is given by Eq.
(3.18), i.e.,

The quotient space Vc/V&c is spanned by two elements
A(x) and P (x) satisfying a 8 P(x)=0 modulo V~c. It
is isomorphic to VcT discussed in Sec. IVB.

D. Indccomposability of V~

The isoscalar space VT cannot be fully reducible, since
otherwise we will have J VT J——VT 0——by Eq. (4.8)
which is not correct as we will see shortly. However, the
question of the decomposability of VT is more subtle and
requires studies of the structure of Vz in some detail. As
we shall see shortly, VT is indecomposable only if we in-
sist on the use of only Lorentz-covariant decompositions
as in Sec. II for the massive case.

The generic element C&T of VT is given by Eq. (3.3), on
which Q and Q act as in Eqs. (3.6) and (3.7). First, we
can show that VT contains two independent two-
dimensional irreducible subspaces which are designated
here by V&T and VzT, respectively. V~T is spanned by
g (x) and S~p(x) defined by

Q Pp(x)=W2e pF(x),

Q~E(x) =Q A(x) =0., (4.17) S p(x) = —(a'a —a a')~pB~&1(x),
4

(4.21)

Q,q.(x)= v xi~.,a W(x),

Q F(x)=v 2iaB~P'(x) .

Now, Vc contains the following unique two-dimensional
invariant subspace Vo, spanned by F(x) and P.(x), where

on which Q~ and Q operate as

Q~gp(x) =S p(x),

Q~Sp„(x)=Q.g (x)=0,

Q Sz (x)=io„B g (x)+ia„B~(&(.x) .

(4.22)

P (x)=ia 8 g (x)

obviously satisfies the constraint

a 3 P (x)=0.

(4.18)

(4.19)

Since g~(x) obeys

a .B~P(x)=0,

It may be emphasized that P (x) defined here is not the
same quantity given in Eqs. (4.10) and (4.15), although
we use the same symbol for both cases because of the
shortage of suitable symbols. The same remark also ap-
plies in what follows without mentioning it explicitly.

Now, we calculate

Q~F(x) =Q Pp(x) =0,
Q F(x)=~2/ (x),

Q~P (x)= v2ia B.~F—(x) .

(4.20)

Comparing this with the result of Sec. IVB, we see that
this subspace VI/ spanned by E(x) and y (x) is isomorph-
ic to VzT. Also, it satisfies J.V&c——0, and is a subspace
of Vc obeying the positive-metric condition
JV=J~ V=J~ V=0 discussed in Sec. I& A..

From the result obtained above, we can also prove the
indecomposability of Vc as follows. Suppose that Vc is
decomposed as in Eq. (4.16). Then, both V& and V2 there
must be two-dimensional. But the only two-dimensional
invariant subspace Vc of Vc is the V~c spanned by E(x)
and P.(x). Therefore, Eq. (4.1S) cannot be correct and
hence Vc is indecomposable.

it contains only one linearly independent component. The
same statement applies also to S p(x) when we note con-
straints

S p(x) =Sp, (x),

a „.8 S "(x)=0.
(4.23)

S p(x)= —(a a' a'a ) +~B—~(x) .

(4.24)

We calculate

To understand this fact more clearly, we consider a special
Lorentz frame in which the four-vector p~ assumes a
form p =(p0, 0,0,p3) with p3 ——po&0. Using the stan-
dard matrix representations for Pauli matrices o. , we see
that only S&~ is nonzero. Moreover, the helicity (i.e.,
eigenvalue of J~2) is easily computed to be 1 for S p and
—,
' for g when we use Eq. (1.15) with x, =iB/Bp, .

Next, let V2T be a subspace of VT spanned by g (x) and
S.p(x) defined by
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Q~g. (x)=Q S„„(x)=0,
Q gp(x) =S.~( x),

Q.S„„(x)=io.-„.a g,.(x)+io.„.a g„(x).
Moreover, the constraints are

(o. 8 ) .g (x)=0,
S p(x) =S~(x),
(o 8 ) „.S""(x)=0.

(4.25)

(4.26)

Again V2T is a two-dimensional irreducible subspace of
VT, whose basis consists of two states with helicities —1

and ——,', respectively. %'e may also note
lp =l p =1. (4.28)

dimensional space isomorphic to Vere& VgT The basis of
VT/VT is given by 3 (x), B(x), g (x), and g (x) modulo

VT, where B(x) is the longitudinal component of B (x)
with identification B (x)= —iB B(x) in VT/VT. Then,
—,
'

(A —B)(x) and f~(x) are the analogs of Ao(x) and P~(x)
of VcT, while —,'(A+B)(x) and g (x) correspond to Ao(x}
and P (x) in Vcr ~

The decomposition of B (x) into the transverse parts
S~p(x) and S &(x) as well as into its longitudinal part
B(x) cannot be done Lorentz covariantly. We have to in-
troduce an arbitrary but fixed constant four-vector l
satisfying

J NT ——g (y) —8~S ~(x)=V1T,
J.@T— g(y)+—O~S(x)=V2z .

(4.27)
The usual choice of l is to choose l =(p/

~ p ~,0) when

pm=(p, po). However, without assuming any particular
realization for l it is not difficult to prove the decompo-
sition

From this, we can show, for example, that any state @T
satisfying the condition J NT ——0 forms a vector space
spanned by P~(x), g (x), S~~(x), and S &(x). If the physi-
cal subspace VT must obey the positive-metric condition
J VT ——J VT ——JVz ——0 as in Eq. (4.8'), then VT is
spanned by g~(x), g (x), S~p(x), and S &(x) so that

B (x)= —,'[(ol)o o—(o.l)] pS ~(x)

+ —,
' [o (ol) (ol)o —] &S ~(x). i r} B (x—),

(4.29)

where we have set

VT= Vj.r V2T .

Then, the unphysical quotient space VT/VT is a four-

B(x)=l Bm(x) .

Now, let V& and V2 be

(4.30)

V', =( —,'(A+B)(x), [(ol)(op)] zg~(x), [(op)(ol)]~I' (x),(ol)»S '(x)},

V =( —,'(A —B)(x),[(cTp)(ol)] pp(x), [(ol)(op)].py (x} (o'l)2,„S

(4.31a)

(4.31b)

which are subspaces of VT, spanned by elements inside the
angular brackets. It can be readily verified that they are
four-dimensional invariant subspaces of 1.0 and that VT is
their direct sum, i.e.,

t

Then, for the present massless ease M=O, it is easy to
prove

(4.35)

VT ——V) V2 . (4.32)
so that K is a projection operator in V for each choice of
two possible signs in Eq. (4.34). Moreover, if we set

K = —,'D(ol)D+ —,
' k(DD+D D)—

for any four-vector 1 satisfying Eq. (4.28), i.e., imp
Here, A, is the square root of l, so that

(4.33)

Therefore, we conclude that the isoscalar space V~ is
decomposable and is a direct sum of two four-dimensional
representations which will be soon shown to be indecom-
posable. However, the decompositions, Eqs. (4.29) and
(4.31), are evidently not Lorentz covariant just as for the
massive case discussed in Sec. II. Therefore, if we insist
on the Lorentz-covariant decomposition, or if we extend
I.o into the little superalgebra Lo(p) as in Sec. II, then VT
can be regarded as being indecomposable, as will be shown
shortly.

The decomposition Eq. (4.32) can be also derived as fol-
lows. I.et us set

Y =DD+2AJ, Y=D a+2~,
we find

[J,K]=[J, Y]= [J, Y]=0,

[K, Y]= Y, [K,Y]= —Y, [Y, Y]= 16J,

(4.36)

(4.37)

which define another solvable (but not nilpotent) Lie alge-
bra in V. In passing, we remark that this algebra is iso-
morphic to the example of a quasiclassical Lie algebra
given in Ref. 21, where it possesses an invariant invertible
metric tensor gzk (j,k =J,K, Y, Y) in spite of its solvability
with the second-order Casimir invariant I2
= —,'6 ( YY+ YY} 2XJ For—the pr. esent case, we find I2 to
be

I2 ——J+ —,[(DD)(D D)+(D D )(DD)]
+(l2)1/2 l2 tml (4 34} Returning to the original problem, we note



280 SUSUMU OKUBO

YVT ——YVT ——JVT ——0, so that KVz. C: VT from Eq. (4.37).
Therefore, when we denote the restriction of A in VT by
ET, it also satisfies

(ET) =Kg . (4.38)

E. Indccomposability of Vo and V

First, we note that any of VT, Vo, and V (but not Vc
and Vz ) may be regarded as a representation space of the
solvable Lie algebra defined by Eq. (4.37). Then, both Vo
and V are actually decomposable. For instance, V can be
decomposed as a direct sum,

Hence, we can decompose VT as a direct sum V&e Vz
where V& and Vz correspond to eigenspaces of ET with
eigenvalues 1 and 0, respectively.

Since VT is not fully reducible by Eq. (4.8), at least one
of V& or V2 must be not fully reducible. We can show
that both are actually not irreducible but indecomposable.
To prove this, we first observed Dim V& ——Dim Vz ——4. If
V& is either irreducible or decomposable, then it must
satisfy J V& ——J V&

——0 by the same reasoning as in the
proof of the indecomposability of Vc in Sec. IVC. Since
the condition can be seen to be unfulfilled, we conclude
that V& is not irreducible but indecomposable. The same
conclusion is equally applicable to Vz. We can prove fur-
ther that the decomposition, Eq. (4.32), is the only possi-
ble way VT can be written as a direct sum of two nontrivi-
al representation spaces. Thus, it is the unique decompo-
sition, apart from isomorphism. However, since its
demonstration requires a somewhat lengthy calculation,
we simply sketch its proof here. Since the only bosonic
elements of VT are A(x) and B (x), we may assume
2 (x)+l B~(x) for a constant vector l to belong to V&.
Then, applying Q and Q to this, we can prove that it
will generate the whole space Vr unless I satisfies
(l P~) = l. Assuming l I' =1, we conclude that
3+1 B and 3 —I B must belong to V& and Vz,
respectively. Applying Q~ and Q to these, we recover
Eq. (4.31). If we consider only Lorentz-invariant decom-
position, then VT may be regarded as indecomposable.
The situation is very much analogous to the massive case
discussed in Sec. II, although we need not assume here the
extra condition l =0 in contrast to Eq. (2.24).

This proves JV& C V& and JVzC Vz. Therefore, if we de-

Voj Ic I
J@ 0 c + VJ j then Vo Vol+ V02.

since Vp is assumed indecomposable in a Lorentz-
invariant way, this implies that at least one of Vp] and Vpz
is zero. Suppose Vpz

——0. In this case, Vp is wholly con-
tained in V&. In particular, we must have Vp 0 Vz ——0 and
Dim Vz & 4. Since the dimension of Vz must be even, this
requires Dim Vz ——2 or 4. Moreover, Vz cannot be irre-
ducible or fully reducible since we will then have JV2 ——0
by Eq. (4.8) and hence V2C Vo& V~. This proves that V2
must be four-dimensional and reducible. But, then Vz
must contain a two-dimensional invariant subspace Vz
which must be necessarily irreducible. As a consequence,
JV2 ——0 again by Eq. (4.8). However, this implies Vq C: Vo
which contradicts Vz A Vp ——0. This proves the impossi-
bility of the Lorentz-invariant decomposition, Eq. (4.39),
for V.

We have yet to prove the analogous indecomposability
property of Vp. It is more difficult and we simply sketch
its outline here. Let Vo ——V&$ V2. Just as in the proof of
Eq. (4.40), we see J VJ C:Vl and J.VJ C: VJ for j=1,2.
Also, both V& and Vz contain only Lorentz-covariant
combinations of bosonic elements such as A (x) and
B (x). From these, we can show V, = Vo or V2 = Vo after
some calculations, proving the desired indecomposability
of Vp.

So far, we have used the same symbols Q and Q, etc. ,
both for the differential operators, Eq. (1.13), and for their
linear representation matrices as we indicated in Sec. III.
In general, this fact will not cause any confusion, since we
can readily infer their respective use for any particular
case from the context under discussion. For example, J in
Eq. (4.13) stands for the differential operator, while the
operations Q and Q in Eq. (4.12) are evidently meant to
be their representation matrices. However, some cautions
may be necessary for the precise definition of the physical
space V. In order to avoid possible confusion, we reserve
hereafter in this section the symbols Q and Q (and also
J, J, and J. ) for the differential operators as in Eq.
(1.13), while we designate their linear realizations in a rep-
resentation p as p(Q ) and p(Q. ), etc. Then, the defini-

tion, Eq. (4.8') for the physical space V is properly under-
stood to be

V= V) Vz, (4.39) p(J) V=p(J ) V=p(J ) V=O . (4A1)

when we set Vt ——KV, and V2 ——(1 E)V for the op—erator
IC defined by Eq. (4.33). Clearly, both V& and V2 are rep-
resentation spaces of V since [K,Lo]=0. However, this
example is again not a Lorentz-invariant decomposition.
We will prove here that there is no Lorentz-invariant
decomposition for Vp, and V. First, we assume that this
statement is correct for Vo, but that V can be written as a
Lorentz-invariant direct sum of some V& and V2 as in Eq.
(4.39). Let e~ and e2 be projection operators into sub-
spaces V~ and Vz, respectively. Then, since V~ and Vz are
representations of Lo, we must have [e&,Lo]= [e2 Lo) =0,
and hence

If a state 4 F V satisfies

JN= J 4=J 4=0, (4.42)

@=A (y ) + V 26$(y ) + ( 68 )F(y ) .

By definition, we have then, for example,

Q @=p(Q )&(y)+~&&[p(Q )f(y)]+(&8)[p(Q )F(y)] .

then we have clearly NH V. However, the converse may
not necessarily be true. Consider, for example, the case of
the chiral-space V~, where +H Vc can be expressed as

[eJ,J]=[eJ,J ]=[eJ,J ]=0, j=1,2. (4.40)
From this, we find Eq. (4.17) where Q~ and Q there are
now replaced by p(Q ) and p(Q ), sb that we calculate
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p(J)F =p(J )F=p(J )F=0,
p(J)gp p——(J )Pp=p(J. )PI) =0 .

Here, P&(x) is defined by Eq. (4.18). However, we have

J I v 2[8/(y)]+(88)F(y)]~0

as we see from the result of Sec. IV C or by direct compu-
tation.

The physical condition, Eq. (4.41), is satisfied by any
irreducible representation discussed so far. If we define '

~a and Fa»

m a
Q A= A+Oa8"
Q"= . +8™crJ'ae'

(5.2)

Q~ and Q by Q~ and Q", respectively, there. Although
Eq. (5.1) is not the most general extended Lie superalgebra
allowed by the theorem of Haag et aI. , a study of Eq.
(5.1) will still be of some interest especially in connection
with decomposition of its superspace. We introduce
Grassmann variables 8~ and 8 A (A =1,2, . . . , n). Then,
the generalizations of Eqs. (1.13) and (1.17) are

Wa —— ,' (D—D—)Da@p,

W = —4(DD)D Np

for some @pE V, it satisfies

JS' =JETS' =JR'. =JpS'. =0 .

(4.43) as well as

g g~A (xA

(5.3)

However, we find

J~ W = —,'6 (aP) —(DD)(DD)@p,

V. GENERALIZED SUPERSYMMETRY
AND CASIMIR INVARIANTS

We now consider the following slight generalization of
the Lie superalgebra of the previous sections. Let Q A

and Q" (A =1,2, . . . , n) satisfy

[Q~ QBB]= I Q" Q BI =0

IQ~ Q pI=2o' BP 5A

(5.1)

which replaces Eq. (1.11). However, all other relations in
Eq. (1.10) are assumed to remain intact when we replace

J W = ——,', (oP) (D D)(DD)@p .

We can prove now that a necessary and sufficient condi-
tion for the validity of Eq. (4.42) for N= W and W is to
have J@p——0, i.e., NpH Vp. Indeed, if (DD)(D D)@p=(D D )(DD)@p——0, then we have J@p Osinc——e
fD D,DD] = 16J. Conversely, assume the validity of
J+p ——0. Then @pE Vc U VA U VT by Eq. (4.14), from
which we can prove (DD)(D D)C p=(D D)( DD)C p=0.
However, possible physical relevance of this fact is yet to
be studied.

In concluding this section, we remark the following.
Since the Casimir invariant J assumes only a zero eigen-
value for any irreducible representation by Eq. (4.8), it is
useless to label the representation. Siinilarly, two fermion-
ic Casimir invariants J~ and J. of Lp (but not of L) as-
sume again zero eigenvalues for all irreducible representa-
tions. Even if another fermionie Casimir invariant of Lp
exists, Schur's lemma tells us that either it has a zero
eigenvalue or it simply interchanges the bosonic subspace
and the fermionic subspace. As the result, any fermionic
Casimir invariant of Lp including both J and J will not
help us in specifying irreducible representations Afur-.
ther discussion of Casimir invariants is found in Sec. V.

Note that pairs (Q~, Q ) and (D~,D ) anticommute
with each other. When we want to suppress the spinor in-
dices, we simply write these as QA, Q ",DA, and D ".

First, we consider the massive case M&0 and set

RA —— (D cr DA DAa D —)P~,
4M

SAB =SBA = (D„DB) = e D~DBB,Pa
2M 2M

(5.4)

S =S A= (D D )= e~BD "n .
2M 2M

These satisfy the commutation relations of the Lie alge-
bra C„corresponding to the Sp(2n) group:

[RB SCD] 5CSBD+5DSCB

[RA CD] 5C AD 5D CA
B B B

[S,SAB ]=5BRA +5ARB +5BRA +5ARB,

[RA»c] =5ARc 5cRA—
[SAB,ScD]=[S",S ]=0

(5.5)

for A, B,C,D =1,2, . . . , n.
The special case n=1 reproduces the case discussed in

Sec. II since Sp(2) is isomorphic to SU(2) with correspon-
dence 2I+ ——S", 2I =S~~, and I3 ———,R &. Clearly, Rz,
SAB, and S" satisfy many complicated algebraic identities
which are generalizations of Eq. (2.3) For, example, we
have (S„„)=0, S„BSACSAD ——0, etc These co.nstraints re-
strict possible irreducible representations of the symplectic
group, just as only I=O and I = —, are allowed for the
SU(2) of Sec. II. To find all allowed representations of the
Sp(2n), we note first that it contains a SU(2) subalgebra
consisting of R i, Sii, and S". Moreover, the latter obeys
the same algebraic identities as in Eq. (2.3), permitting
only I=O and I= —,. Therefore, when we decompose any
irreducible space of the Sp(2n) in our superspace V into
subrepresentations of this SU(2) subalgebra, it contains
I=O and I= —,

' but nothing else. Hence, by a theorem
proved elsewhere, only irreducible representations of the
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Sp(2n) to be allowed are restricted to n fundamental rep-
resentations which correspond to n completely
antisymmetric-tensor representations in the terminology
of the Young tableau.

Note that R i,R2, . . . , R„" form a Cartan subalgebra of
C„, whose simultaneous eigenvalues define a weight sys-
tem. Since any representation of a simple Lie algebra is
fully reducible and since any state in a given irreducible
representation is specified by its weight, we can decom-
pose our superspace V now by weights belonging to n fun-
dainental irreducible representations of C„. This general-
izes the result of Sec. II. The chiral state satisfying
D~@=0 for all A =1,2, ,n and a=1,2 corresponds to
the highest weight A„with R~ @=N for all
A =1,2, . . . , n, while the antichiral state D~@=0 be-
longs to the lowest-weight state with R~@=—N for all
3 = 1,2, . . . , n in the irreducible representation with the
highest weight A„.

The symplectic algebra C„can be extended to a su-
peralgebra. To demonstrate this, we set

K.= 8 g (Q~~.Q"—Q "~.Q~»
A=1

which satisfies the commutation relation

[K„Kb]= i e—,b,gp'K"

(5.9)

(5.10)

with normalization 6'p123 = 1.
We now define a modified Pauli-Lubanski operator W,

by

W, = ,
' e,b,g—p J' — (rl,bp —P,pb)K" .

p2 (5.1 1)

P'8'a =0,
[~a Q~)=[~a Q~)=0.

(5.12)

(5.13)

Note that this definition differs from the conventional
one ' ' W, [see Eq. (5.17b) below) by the last term pro-
portional to (1/P )(PK)P, . However, the present form is
perhaps more convenient since we have

=DA A

yA ( m) PDA~

) Dp~p

(5.6)

In deriving Eq. (5.13), we utilized identities

l c—d d—c
Eg~g(CT CT —O' 0' ) =CTgCTb —CTbCTg

—cd —dce,b,g—(oo' —'o' o' ) =o~crg obo~ .—'

Because of Eq. (5.13),

(5.14)

Then, we see that these satisfy

[R~ 4 c)=—5ck~
[R~ 0 ]=44
[Sxa 0 c)=[S",P ]=0,
[S",P c]=5cg +5cg", (5.7)

I=8' 8'a (5.15)

commutes with all elements of L, i.e., J,t„Q~, Q, and

P, so that it is a Casimir invariant of L. Although this
form of I appears to be different from the standard for-
mula, both are actually the same when we rewrite I
a 5, 24, 25

IN~ PpaI =Id" iT pI =o

I 0" Cps }= —25m~ g (5.8)

We note that all these operators are closed either by com-
mutation relations or by anticommutation relations.
Therefore, they define a Lie superalgebra. Although this
superalgebra is not of the type allowed by the theorem of
Haag et al. , this is not a contradiction since our algebra is
defined only on the mass shell P = —M .

Next, we will construct a Casimir invariant other than
P for our original large superalgebra L. First, we define

[Swami, g ]=5„$a+5&P~,
I0'~ NpaI =If'' ApI =o

I g~, gpj =2M' p5g,

as well as relations involving g" and f „,which can be
obtained from Eq. (5.7) with replacement p~ —+1(~
P~~P", and @~~~@&

Therefo. re, the pairs (P~,P~ ) and

(17,1t~) are tensor operators corresponding to the basic
representation of C„. We also have

2P2I =W bWab

~ab Pa ~b Pb ~a Pa ~b Pb ~a

(5.16)

(5.17a)

(5.17b)

In passing, we note that 8', satisfies also the commuta-
tion relation

[ W„$Vb ]= i e,s,gp'W— (5.18)

For the case of P = —M =0, the situation is very dif-
ferent. We can readily find n Casimir invariants of the
orm

Q ~ltlQ AP i
Q AP IllQ P

for A,B,=1,2, . . . , n. Then,

(5.19)

J=K~p'= —, g Fg
A=1

(5.20)

is also a Casimir invariant of L. We note that the Casimir
invariant J cannot be obtained from I=8"8' by the
method of contraction. If we take the limit P ~0 in both
sides of Eq. (5.16), it gives J but not J itself. At any rate,
the drastically different forms of Casimir invariants for
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the case M=O are very much different from the situation
of the Poincare Lie algebra. Also, we note (Fa ) =0 iden-
tically for P =0, so that Fa can assume only a zero eigen-
value in any irreducible representation. Therefore, these
invariants are not useful to specify irreducible representa-
tions of L

Returning to Eq. (5.5), we multiply suitable powers of
M and let M~O. In this way, the contracted algebra for
the massless case is now obtained as

[F„,G ]=[F„,Gco]=0,

F.g= ~Q~cr Qm= —~Distr Qm

then the physical space V may be defined to satisfy

F~V =F-A V=FBV=0

(5.23)

(5.24)

by the same reason as in Sec. IV.
Note added in proof. The Casimir invariant I = W W,

defined by Eq. (5.15) can be further rewritten as follows.
We first note the validity of the identities

Gwa]=4+~ +4Fa+&aF~+4Fa ~

[Fa Fc]=o
[G~a Gca]=[G" G ]=o

where we have set

Fg , (D a—t—r —Dg Dg o D—)P

GAB=GBA = 2DADB ~

GAB GBA & DAD B
2

(5.21)

(5.22)

(K,P') = g I Tga, T",
A, B=1

+ ,', P [4K—,K' 3n(n ——2)P ],
K.K'= —

+6 g [(Q~Qa»(Q "Q )1+
A, B=1

,'n (n +2—)P

where we have set

We note that Fz given in Eq. (5.22) is the same operator
as is defined by Eq. (5.19) because of Eqs. (5.2) and (5.3).
The Lie algebra defined by Eq. (5.21) is again solvable.

Finally, if we define

Tga ———Ta„=+Qg [tr'(trP) (crP)o']Qa- ,

Te = Te"=kg Q'—[oe(crP) (crP)oe]Q—

Then, I can be rewritten as

I= W, W' — (K,P')
p2

n= 8;W' ——,'K,K'+ —,', n(n —2)P —
~ g I Tga, T", I+

A, B =1
n n

=W, W'+ , n(n ——1)P+—'
Q I(QgQa), (Q "Q ))+— g I Tga, T",

A, B =1 A, B=1

For n=1, both TAB and T, are identically zero, since
they are antisymmetric in interchange of indices 3 and B.
Therefore, the Casimir invariant I has no pole at P =0
for the special case n= 1, so that it remains also to be a
Casimir invariant of L even for the massless case P =0
However, for n &2, Tza and T," are no longer zero, and
I has a singularity at P =0. The contraction of the prod-
uct P I when we let P ~0 leads to (K,P') =J as we
have already observed in Sec. V. In conclusion, there ap-
pears to be an important difference between two cases of
n=1 and n &2 for existence of nontrivial Casimir invari-
ants for the massless case.

After this paper was written, it came to the author's at-
tention that the following references also deal with projec-
tion operators of Sec. II for the decomposition of the mas-
sive superspace: (a) J. G. Taylor and S. Ferrara, in Super

Symmetry and Super Gravity I98I-, edited by S. Ferrara, J.
G. Taylor, and P. van Nieuwenhuizen (Cambridge Univer-
sity Press, London, 1982); (b) S. J. Gates, M. T. Grisaru,
M. Rocek, and W. Siegel, Super-Space Frontiers in Phys-
ics, Lecture Notes Series No. 58 (Benjamin/Cummings,
Reading, Massachusetts, 1983). The author would like to
express his gratitude to Professor J. G. Taylor for calling
his attention to these references.
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