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Quadratic constraints in amplitude analysis
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The quadratic constraints among bilinear products of reaction amplitudes for a reaction with ar-
bitrary spins are discussed in terms of the experimental observables. While the specific form of
these constraints may be quite lengthy, the optimal formalism of polarization phenomena exhibits
the structure of these" constraints transparently and gives a systematic procedure to calculate them.
Some general features of these constraints are exhibited which are useful for planning experiments.
Such features can be recognized without lengthy calculations, with the help of a diagrammatic ana-
log combined with the transparent structure of the optimal formalism.

I. INTRODUCTION

Cutting information about reaction amplitudes from ex-
perimental observables is a quadratic problem, indepen-
dently of whether one uses as amplitude parameters phase
shifts or real-imaginary or magnitude-phase amplitudes of
the helicity kind, transversity kind, optimal kind, or any
other kind. For a reaction described by n amplitudes,
2n —1 appropriately chosen experimental observab1es
completely determine the amplitudes, apart from discrete
ambiguities and with an overall phase factor being arbi-
trary. Yet there are n linearly independent experimental
quantities, each being a linear combination of (some or all)
of the n bilinear products ("bicoms") of the n amplitudes.
These n bicoms or n observables are therefore nonlinear-
Iy dependent on each other, and this is why not any 2n —1

observables or bicoms picked out of the set of n form a
complete set, that is, a set which determines the n complex
amplitudes completely apart from discrete ambiguities.

We see, then, that the problem of giving prescriptions
for choosing complete sets of observables or complete sets
of bicoms is closely linked with the analysis of the charac-
ter of the nonlinear relationships among such observables
or bicoms.

Since the choice of a set of observables giving a maxi-
mal amount of information about reaction amplitudes is a
central problem in the fast increasing number of experi-
mental programs for measuring various polarization quan-
tities for various reactions in particle and nuclear physics,
considerable attention has been directed toward prescrip-
tions for complete sets of observables or bicoms. Some of
these have been ad hoc, ' pertaining to one specific reac-
tion, and using straightforward "brute-force" methods.
Some other work has aimed at solving the problem in
complete generality, in a form that is readily applicable
to any specific case. For example, Ref. 3 devised a geome-
trical method to tell if a set of bicoms form a complete set
for the determination of amplitudes, and gave a proof of
the geometrical method in terms of an algebraic discus-
sion of the nonlinear constraints among the bicoms. The
same reference also suggested a test for whether a set of
obseruables form a complete set for determining the am-
plitudes, but that prescription turned out to be incomplete.
Reference 4 independently rediscovered the prescription of

Ref. 3, using the algebraic language, and this recipe was
applied to elastic p-p scattering by Ref. 5. In particular,
Eqs. (3.8), (3.6)—(3.7), and (3.3)—(3.5) in Ref. 5 correspond
to the ru1es in Ref. 3 pertaining to two-vertexed, triangu-
lar, and square diagrams, respectively.

The nature of the nonlinear constraints on the bicoms
can be seen particularly vividly if we use a polar-
coordinate description for the complex amplitudes. Then
the n-by-n matrix of the bicoms composed of the n com-
plex amplitudes a; (i = 1,2, . . . , n ) is

I

a i I I
a 2 I

»n&21
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ai a2 cos
~ ~ ~

I
a2

I la 3 I
cosd'32

We see from this that once the diagonal elements of this
matrix are known (n quantities), then the a; I laJ I

's ap-
pearing in the off-diagonal elements are also known [cor-
responding to Eq. (2.9) or Eq. (3.8) of Ref. 5], and further-
more P;k =P,J. +PJk, so that any n —1 phases forming a
connected set and containing all i's wi11 determine all the
P,J's appearing in the off-diagonal elements [correspond-
ing to some of Eq. (2.10) or to Eqs. (3.6)—(3.7) of Ref. 5].

Since the above prescriptions, embodied in Eqs. (2.9)
and (2.10) of Ref. 5, or in the rules for the two-pronged
and the triangular diagrams in Ref. 3, respectively, give
the requisite number of constraints [namely, n —(2n —1)
of them], one wonders about the role of Eqs. (3.3)—(3.5) in
Ref. 5, or of the rules for the square diagrams in Ref. 3.
A closer inspection of the latter type of constraints reveals
that they are just another way of expressing the phase con-
straints in the polar form of the amplitudes. Whether Eq.
(2.10) or Eqs. (3.3)—(3.5) (or the corresponding triangular-
or rectangular-diagram constraints) are more helpful de-
pends on the particular set of bicoms we are considering.

Whether the algebraic or the geometric method is
preferable for expressing the constraints is, to some extent,
a matter of taste. There are, however, some objective ad-
vantages to the geometrical method. For example, Eqs.
(3.6)—(3.7) give the constraints on three amplitudes direct-
ly always only in the form which corresponds to triangu-
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lar diagrams in Ref. 3 in which the only loop in the dia-
gram is flanked by two sides each of which has both a
solid and a broken line (with the third side, opposite to the
loop, having only a solid or only a broken line). But simi-
lar constraints also hold for triangular diagrams with the
same line pattern but with the loop at one of the other two
vertices. In the geometrical language this is obvious, but
in the algebraic language this can be achieved only by fur-
ther and possibly involved algebraic manipulations with
Eqs. (3.6)—(3.7). Thus, in the geometrical language it is
much easier to see if a given set of chosen bicoms is
redundant or not. On the other hand, the exact quantita-
tive relationships between the bicoms imposed by the con-
straints are exhibited only in the algebraic language.

We see then that the quadratic constraints among the
amplitudes and the bicoms are completely understood and
prescriptions for finding them are readily formulated,
whether in a geometrical or in some algebraic language.
What has not been generally analyzed are the constraints
on the observables, because in the formalisms used so far
the relationship between bicoms and observables is com-
plicated and depends on the spins of the particles in the
reaction. In this paper, therefore, we will formulate the
constraints in terms of the observables. The analysis will
be carried out in the optimal formalism, since in it the re-
lationship between bicoms and observables is simple, tran-

I

sparent, and structurally independent of the spins of the
particles in the reaction. Furthermore, the analysis can be
carried out for all the different optimal formalisms simul-
taneously. A completely general discussion is, therefore,
possible, for all possible reactions no matter what the
spins of the particles are.

II. QUADRATIC CONSTRAINTS
GN THE OBSERVABLES

Beside the reasons mentioned at the end of Sec. I, the
optimal formalism also has the advantage that in it it is
easy to describe which observables depend on which
bicoms, and what the coefficients are in the relationship
between the observables and the bicoms. Furthermore,
these features are independent of the spins of the particles
in the reaction.

Let us therefore describe the consequences of Eqs. (2.9)
and (2.10) of Ref. S on the optimal observables. The
former equation is

(2.1)

where H,J. is a bicorn with one amplitude having index i
and the other index j. In the optimal notation this can be
written as

~
D(g, u;=U)D*((o, u;0, V)

~

=[ReD(g', u;=, U)D*(co,u;0, V)] +[ImD(g, u;=, U)D'(co, u;0, V)]

=
i
D(g, u;=, U)

i i
D(co, u;0, V)

i
(2.2)

The two bicoms in the last line of Eq. (2.2) appear in sub-
matrix 1M and each of them is uniquely connected to one
polarization observable only which depends only on that
bicorn. Thus, we see that if we have determined all the
magnitudes of the amplitudes (from submatrix 1M), then
in any other submatrix (be it 8;, 4;, 2;, or 1;), of the two
adjoint submatrices (one containing real bicoms, the other
imaginary ones), only one of the two provides new infor-
mation. This is of interest because in a well-chosen op-
timal frame (which, in the case of parity-conserving reac-
tions, is usually the transversity frame), one usually deter-

I

I

mines the magnitudes of the amplitudes first from a spe-
cially selected set of experiments of moderate size, and
then turns to the determination of the phases of the ampli-
tudes from some additional set of experiments coming
from submatrices other than 1~. In choosing this addi-
tional set of experiments, the result obtained above is of
importance.

Having now exhausted the content of Eq. (2.9) of Ref.
S, we turn to Eq. (2.10) of that reference which, in the op-
timal notation, reads

[D(g, u;=, U)D*(co,u;0, V)][D(co,u;0, V)D*(g,w;4&, W)] = [D(g,u;=, U)D*((p, w;grg, IV)][D(co,u;Q, V)D*(go, u;Q, V)] .

(2.3)

If we have already determined the magnitudes of the am-
plitudes from 1M, then Eq. (2.3) means that, for example,
of all the various 8; submatrices, we have to use only a
limited number, and the remaining ones can then be ob-
tained from this limited number of 8; submatrices by Eq.
(2.3). As we know, the total number of 8; submatrices
(each with a real and an imaginary realization) is

&
2s; 2s; —1 . Of these, we need to use only

t(gs; —i ). in particular, ii we denote the values of
one of the four indices in an amplitude by a dot, and we
connect the pairs of values appearing in an 8; by lines, we
need to consider only sets of 8 s which are represented by
connected loopless diagrams. Thus, for an index with

I

four possible values (J =2), we can have diagrams like in
Figs. 1(a)—l(d). Each of the four indices in the amplitude
has such a diagram.

The same situation prevails also for the 4; submatrices,
and the 2 s and the 1 s also.

There are some interesting consequences of the above
result. For example, we see that for particles with spins
larger than —,

' the set of measurements consisting of "sym-
metric asymmetries" (that is, measurements of the sums
and differences of the +s, and —s, states) alone do not
suffice, since such a set does not form a diagram of the re-
quisite type [see Fig. 1(e)], even if one other measurement
of a different type is added. Since such a set is experimen-
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FIG. 1. Diagrams a—d represent sufficient sets of subma-
trices for J=2, while diagram e represents an insufficient set.
For details, see the text.

tally simpler to obtain than other sets, it is regrettable but
important to know that, in itself, it does not suffice.

The form of the constraints among observables can also
be described easily though, in detail, these relationships
can be fairly messy. From an 8; submatrix (which con-
tains only coefficients which are + 1 or —1) we can form
its inverse, which will also contain only + 1's and —1's
and will give the bicoms in terms of observables. We
denote by 8;j the 8 submatrix containing bicorn H;j where
index i contains index values u, U, g, :- and j contains U, V,

co, Q. Then we denote by Iuu, UV;/co, =QI some linear
combination (with coefficients + 1 or —1) of the eight
observables with indices as in the curly brackets and with
an even number (0, 2, or 4) of Re's associated with the in-

I

or (2.4)

=ReHim ReHkj —ImHim Im Hkj

ReH, jIrnHk + IrrM, JReHk~

=ReHim ImHkj + ImHim ReH

or in the optimal notation

dices if the generating bicorn also has an Re in front of it.
Similarly, for the bicorn with Im in front of it, one takes
the same combination of observables but with an odd
number (1 or 3) of Re's. Then we get the constraint on
the observables by replacing, in Eq. (2.3), each square
bracket by the corresponding curly bracket. We see then
that on the left-hand side we have, for the case of 8 s, 128
terms and on the right-hand side 8 terms. If we start with
a 4;, the number of terms is, correspondingly, 32 and 4,
etc. We see that these relationships are lengthy in detail,
but their structure, in the optimal formalism, is simple
and transparent.

The constraints of Eq. (2.2) translated into observables
are similar: for the 8 s, there are 128 terms on the left-
hand side, and 1 on the right-hand side.

So far we considered only observables in which the po-
larization of all four particles is specified. We can deal,
however, similarly with experiments in which some of the
particles are unpolarized. Such observables can be
thought of as pertaining to a set of 2s;+ I submatrices,
where s; is the spin of the unpolarized particle. Thus,
such an averaged observable depends on 4(2s;+1) bicoms
if the original observable is in a submatrix 4;, but the coef-
ficients in this dependence of each bicorn in a group of
2s;+1 are the same. Furthermore„since Eq. (2.3) also
holds in a more general form, namely,

HijHkm Him Hkj

[D(g', u;=, U)D*(co,u;Q, V)][D(@,w;4&, 8')][D*(gz;V,Z)]=[D(g,u;=, U)D*(gz;+, Z)][D(g, w;@,W)][D'(co, u;Q, V)],
(2.5)

we can simply extend Eq. (2.3) to hold for the QJII J's in-
stead of just for the H;J's [the cross terms being taken care
of by Eq. (2.4)]. Hence, the constraints on the averaged
observables have the same structure as the ones on the
unaveraged observables.

It should be recalled that the observables in the 8 s can-
not have unpolarized particles in them at all, those in the
4 s can have at most one unpolarized particle, those in the
2 s two, those in the 1 s three, and 1~ contains the com-
pletely unpolarized cross section. Hence, the more parti-
cles are unpolarized in the observable, the simpler the
structure of the constraints becomes.

To illustrate these results, let us give some examples
from a reaction that is familiar, much used, and well
documented, namely, the reaction —,

' + —,
' ~—,

' + —,'. The
observable-bicorn relations for this reaction in the absence

of any symmetry except Lorentz invariance (which is the
case we are now considering) was given in Table III of
Ref. 8. It should be recalled, however, that inasinuch as
the 16-set, which constitutes the —,

' + —,
' ~—,

' + —,
' reaction,

is also the basic building block of any reaction, the illus-
trations here go beyond the scope of one particular reac-
tion.

Let us first take an example from the 1 s. We will use
the notation

++ ~ ++ - —+++ ~ —+ J~ ++

and use the real parts of the bicoms. Then

H;, =(++,++;++,II I )

from 1&,
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Hk=(++, ++;jy [,++)
from 12,

H,k
——(++,++;[;],~)+(++,++;[', ],I)

from 2& (here the upper and lower terms in curly brackets
I

refer to the real and imaginary parts of H„~, respectively),
and of course

H;; =(++,++;++)
from 1M. So the quadratic relationship among the observ-
ables in this case is

(++,++;++,& )[(++,++;&,& )+(++,++;I,I )] (+—+,++;++,I )[ (+—+,++;&,I)+(++,++;I,Z )]

=(++,++;&,++)(++,++;++,++) . (2.6)

We see from this example that in a constraint of the type
given by Eq. (2.3) the observables will come from different
submatrices so that the types of submatrices "balance" in
the obvious way exhibited by this example, and that the
observable notation of the optimal formalism is such that
the indices within the observables also "balance" in the
obvious way shown in the example.

For a second example, let us take some averaged quanti-
ties from the same submatrices. For this we also need

Then we have from submatrix 1&

(++,++;A,R) =Re(H;;+H„, ),
—(++,++;A,I)=Im(H~ +Hk(), .

(++,++;R,A ) =Re(H, „+H,,),
—(++,++;I,A)=Im(H, „+H,, ) .

Consider then the combination

(++,++;A,R )(++,++;R,A )

+(++,++;~,I)(++,++;I,~),
(2.8)

where b, =(++ ) —( ——), i.e., the asymmetry, in accor-
dance with the notation of the first paper in Ref. 7, Table
V. From the subtables for 1] and 1z we can express these
observables in terms of H„~'s and get

( ReH J +ReHk( )(ReHk +ReHJ( )

+ (IrnH, " In1Hk( )( I—mH;k ImHq( ) .—(2.9)

Applying to these products Eq. (2.3), and then obtaining
the corresponding observables for the resulting H „'s, us-
ing submatrices 2~ and 1~, we get finally

(++,++;A,R)(++,++;R,A)+(++, ++;h,I)(++,++;I,b )

=[(++,++;&,&)—(++,++;I,I)][(++,++;++,++)+(++,++;——,——)]

+[(++,++;&,& )+(++,++;I,I)][(++,++;++,——)+(++,++;——,++)]
=(++,++;R,R )(++,++;A,A ) —(++,++;I,I )(+ +,++;A,b ) . (2.10)

Similarly, we can work A's and 6's into the other observ-
ables also.

So far we discussed the constraints in the case when
only Lorentz invariance was imposed. on the reaction ma-
trix. When additional symmetries also hold, such as pari-
ty conservation, time-reversal invariance, or identical-
particle restrictions, the nonlinear constraints listed above
simply add to these other constraints. To give an exam-
ple, consider Table VI of the first paper in Ref. 7,
columns 1, 6, and 7 of which give some observables in the
transversity optimal frame for elastic p-p scattering with
all the relevant symmetries imposed. In it, let us take
i =a —P, j=5, and k =e. We see then that

ReH&& =Re(lx —P)5*= —
2 HSSN

ImH;J =Im(a —P)5*= —,
' CsL,

ReHJk =Re5e* = ,
'

(Dss DLL ), ——
(2.1 1)

IrnHfk Im5e~ =
8 (—HNsL —HN—Ls),

ReH;k =Re(a —p)e = —
2 HSNS

HJJ= I
&

I

= 4(~o CNN DNN+&NN)— —

I

and so our quadratic constraints yield

HSSN(DSS DLL ) CSL(HNSL +HNLS )

2HSNS(~0 CNN DNN++NN )

%'e also see from this example that different optimal
frames readily yield quadratic constraints in very different
forms. While Eq. (2.12) could be obtained very easily in
the transversity frame, it would have been extremely la-
borious to derive this particular quadratic constraint in
the helicity formalism.

III. CQNCLUSIQN AND SUMMARY

We have seen that the quadratic constraints on the bi-
linear products of reaction amplitudes (bicoms) can be
converted into constraints on observables relatively easily
when one uses the optimal formalism for describing the
spin structure of reactions. In particular, the following
general features can be established for reactions involving
particles with arbitrary spins:

(1) Once the magnitudes of the amplitudes have been
determined from observables in the submatrix 1~, then of
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TABLE I. The bicorn-observable relationship for the reaction 0+ 2 ~0+ 2 in the presence of
Lorentz invariance only, in the optimal formalism.

1M
U V ~™ 0 iaJ mb)'ici fdf'

Re Re
U V:"Qac bd*

+ +R+
——R +

A R++
R+

Im Im
U V:-Qac*bd*

++
I

A I——
I—+

Re Re
UV:- 0 ab cd

R+++
R +
R A
R

Im Im
UV:- 0 ab cd*

+++
I —— +
I A +

2]
Re Re

UV:- 0 ad*bc*

RR+ +
I I+—

2]
Im Im

UV:- 0 ad*bc

R I ——
I R+—

the two "twin" submatrices of any kind other than l~
(one of the twins containing the real parts of amplitude
products, the other the imaginary parts), only one of the
two provides new information.

(2) Of the many submatrices of a given type N; (e.g., 8;,

4;, etc.) only a limited number of them give independent
information. Sets of such independent submatrices corre-
spond to connected loopless diagrams depicting the transi-
tions in the four arguments of the amplitudes. This fact
has experimental consequences. For example, for particles

TABLE II. Same as Table I, except with time-reversal invariance in addition to Lorentz invariance.
The upper and lower signs hold for the planar and transversity formalisms, respectively.

1M

U V:" 0 iai fbi fc(2
Re Re

0 ab bd*

+ + R
R

A R

(R++)=+(++R )

(R ——)=V( ——R)
(RA) =+(AR)
(RD) =T(hR )

1& ——12
Im Im

U V:"0 ah* bd*

+ + I
I +

A I
I

(I++ )=+(++I )

( ——I)=k( ——I)
(IA ) = +(AI)
(Ia)=*(aI)

+ + 2 +
+ —2 +

(++——)=(——++)
(++A ) =(A++ )

(++~)=(~++ )

( ——~)=(~——)(~ ) =(Ah)

2]
Re

UV:- Bad*
~

b
i

RR+ +
II+ +

Im
UV:- 0 ad*

(IR )= —(RI )
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with spins larger than —,', measurements involving only
pairwise the +s, and —s, substates of a particle do not
suffice for a complete determination of the amplitudes.

(3) Although the structure of the quadratic constraints
is transparent, the actual constraints may be quite lengthy,
since in the worst case the product of two bicoms can in-
volve, in terms of the obseruables, 128 terms. In most
cases, however, especially when a number of symmetries
constrain the reaction matrix, the constraints are less
lengthy. In terms of experimental quantities, the form of
the constraints is different depending on which optimal
formalism one uses. The constraints can also be formulat-
ed in terms of experimental quantities involving unpo1ar-
ized particles.

Since the specific forms of the constraints are so tedious
and depend on the formalisms, the more useful content of
these quadratic constraints is their general features as ex-
plained above in (1) and (2).
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APPENDIX

In this appendix the results of this paper will be illus-
trated on a very simple reaction, namely, 0+ —,

' ~0+ —,',
which is amply represented among the reactions frequent-
ly dealt with such as pion-nucleon scattering.

When only Lorentz invariance is imposed, this reaction
has four amplitudes. They are, using the notation D(AL)
of the optimal formalism

D(++)=—a, D(+ —)=—b,
D( —+)=C, D( ——)—=d .

(Al)

The relationship between the observables and the bilinear
products of these amplitudes (the bicoms) in the optimal
formalism is given in Table I.

In this case the four amplitudes represent 2&&4—1=7
real parameters but there are 4 =16 bicoms, so there are 9
linearly independent nonlinear relationships among the 16
bicoms. The geometrical technique of Ref. 3, or, corre-
spondingly, the equations in Ref. 4 or 5, give many more
such relationships which therefore are linearly not in-
dependent.

Although it is straightforward to enumerate the very
large number of these relationships, it is tedious; hence, we
will now consider the same reaction but with time-reversa1
invariance imposed on it in addition to Lorentz invariance
(as is the case, for example, in elastic pion-nucleon scatter-
ing). The observable-bicorn structure for this case, in the
optimal formalism, is shown in Table II. In this case we
have only three amplitudes, that is, five real parameters,
but nine bicoms, and hence four linearly independent rela-
tionships among the nine bicoms. There are, however,
again many more ways of expressing these nonlinear rela-
tionships among the bicoms. Let us enumerate them. In

FIG. 2. Constraint-diagram types with two and three ver-
tices, in the characterization of Ref. 3. For details, see the text.

(Reab*) +(Imab*) =
~

a
~ ~

b
~

(Read* ) +(Imad') = (a ( [d
(

(Rebd*) +(Imbd*) =
]
b

) )
d

(

(A2)

(A3)

(A4)

The first of the three-vertexed diagrams in Fig. 2 corre-
spond to Eq. (3.6) in Ref. 5. The relationships are

~

a
~

(Rebd') =(Reab')(Read')+(Imab')(Imad*),

(A5)

~

b
~

(Read* )=(Reab )(Rebd*) —(Imab*)(Imbd ),
(A6)

~

d
~

(Reab*) =(Read* )(Rebd')+(Imad*)(Imbd*) .

(A7)

Similarly, the second of the three-vertexed diagrams in

the language of Ref. 3, there will be two-vertexed dia-
grams (see Fig. 2) as well as four types of three-vertexed
diagrams. There are three of the former type (since there
are three ways of selecting two vertices out of three).

Each of the first two of the three-vertexed types also
have three different diagrams, since the bubble can be at
any of the three vertices. Finally, each of the second two
three-vertexed types gives six different diagrams, since
there again the bubble can be at any of the three vertices,
and, in addition, for a given location of the bubble we
have two different diagrams, obtainable from each other
by interchangip. g the other two vertices. Thus, we have
3 + 3 + 3 + 6 + 6=21 different nonlinear relationships
among the bicoms, of which only four are linearly in-
dependent.

Let us now write out these relationships. The ones cor-
responding to the two-vertexed diagrams are those of Eq.
(2.9) of Ref. 4, or Eq. (3.8) of Ref. 5. They state that
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TABLE III. Observables for 0+ 2 ~0+ 2 with Lorentz invariance and time-reversal invariance in

the two types of optimal formalisms. The eight columns represent the following: Column 1, the tradi-
tional name of the observable; because of differing conventions there might be a sign ambiguity for
some of these observables. Column 2, notation for the observable analogous to the Argonne c.m. nota-
tion; see first paper in Ref. 8, Table VI. Column 3, name of the observable in the planar formalism.
Column 4 the planar submatrix in Table II in which the observable appears. Column 5, the expression
for the planar observables in terms of the planar amplitudes a, b, and d. Column 6, same as 3, except in
the transversity formalism. Column 7, same as 4, except in the transversity formalism. Column 8,
same as 5, except in the transversity formalism; here the three amplitudes are a, P, and 5.

0'p

PN
PL
Ps

Dxw
DLL

Dss
D
DLs
Des

(0,0)
(O,y)
(O,z)
(O,x)
(y,y)
(z,z)
(x,x)
(y, z)
(z,x)
(y, x)

(A,A)
(A,I)
(A, A)
(A, R)
(I,I)

(A, A)
(R,R)
(I,h)
(h, R)
(I,R )

1M

11

1M

11

21

21
11

11

21

I
a I'+2

I

b I'+
I
d I'

Imab +Imbd*

—Reab*+ Rebd*
Read*+

I
b

I

'
I
a

I

' —2
I
b

I

'+
I

d
I

'
Read* —

I

b
I

2

Imab* —Imbd*
Reab*+ Rebd*
Imad*

(A,A)
(A, 6)
(A, R )

(A, I)
(A, A)
(R,R)
(I,r)

(A, R)
(R,I)
(E,I)

1M

1M

1 1

1 1

21

21
1 1

21

11

I

a
I

'+2
I p I

'+
I

5
I

'

Reap' + ReP5*
—Imap" +Imp5*

I
a

I

'—2
I p

I

'+
I
5

I

'
Rea5 + IPI
Rea5* —

I P I'
Reap' —ReP5*
—Ima6
—Imap —Imp5*

Fig. 2 corresponds to Eq. (3.7) in Ref. 5. The relation-
ships are

I
a

I
Im(bd*) =(Reab')(Imad*) —(ReAd* )(Imab*),

(Ag)

I

b
I

Im(ad*)=(Reab*)(Imbd')+(Rebd*)(Imab*),

(A9)

I
d

I
Im(ab*) = —(Read* )(Imbd*)+(Rebd*)(Imad*) .

(A 10)

Now we turn to the third three-vertexed diagram in Fig. 2.
As mentioned in passing in the main body of the text, of
the four different types only two correspond directly to
the algebraic equation in Ref. 5, namely, the first corre-

sponds to Eq. (3.6) of Ref. 5 while the second to Eq. (3.7)
of Ref. S. The remaining two diagrams can presumably
be obtained from Eqs. (3.6) and (3.7) of Ref. 5 by combin-
ing the two equations so that, using the language of Ref.
3, one of the solid (or one of the broken) lines next to the
loop in the first of the two three-vertexed diagrams "can-
cel."

So far we have dealt only with bicoms. Of practical in-
terest, however, is the conversion of these two constraints
into relationships among observables rather than bicoms,
and it is here that the optimal formalism is advantageous
since in it one can easily tell which bicoms are connected
to which observables, no matter what the spins of the par-
ticles participating in the reaction are.

For the reaction we are considering, the relationship be-
tween the standard observables and the amplitudes is

TABLE IV. Same as Table I, except with time-reversal invariance and parity conservation imposed
in addition to Lorentz invariance. The product of the four intrinsic parities is taken to be + 1. This
table holds for the planar formalisms.

U V:-nIaI
=(————)

=(++ ——)

=(——,A ) =(I,I)=(++,A ) =(A, ——) = —,(A,A)

=(++,~)= —( ——,~)=(R,R)= —(~, ——) = —,(~,~)

Re Im
U V:- Q ab ah*

11' 12

= —( ——,R ) = —(R, ++ ) =(R, ——) = —
2 (R,A) =

2 (A, R )

=(——,I ) =(I, + + ) =(I, ——) = 2 (I,A ) = 2 (A,I)

(R,I)=(R,A ) =(I,R )=(I,h) =(A,R ) =(A, A) =(h, I)=(A,A ) =0
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TABLE V. Same as Table IV, except for the transversity formalism.

U V:- 0 /a/2/d/2

=(++,A ) ={++,~)=(A, ++ )=(~,++ )

+ =(--,'A) =(--,'~) =(A,'--)={~,'--)
+ ={~~)

=(A,A )

Re Im
U V:- Q /a/~/d/i

R R
R I

=(I,I )
= —(I,R)

(++,——) =(++,R )=(++,I ) ={——,++ ) =(——,R ) =(——,I ) =(R, ++ ) =(R, ——) =(R,A )
=(R,~)=(I,++ )=(I, ——)=(I,A )=(I,~)=(A,R ) =(A,I)=(~,R )=(4,I)=0

given in Table III. We can illustrate the results stated in
this paper. For example, once we measured 1~ only the
real or only the imaginary part of any other submatrix
represents new information.

In particular, for the planar formalism, once o.o, PL,
and DLL have been measured, then in the sets [P~,DLs [,
[Ps+~L j, and [Dz~+~s), only one of the two observ-
ables represents new information. Similarly, in the
transversity formalism, once oo, P&, and D~~ have been
measured, in the sets [PLQ~s ], [Ps,D~L j, and
[Dss+Ls j, only one of the two observables rePresents new
information.

Since the two experiments in a given set represent types
of experiments and degrees of difficulties which are quite
different from each other, the above results can be helpful
and in fact crucial in planning experimental programs.

Let us now turn to the constraints created by the three-
vertexed (triangular) diagrams, namely, Eqs. (A5)—(A10).
With the simple and systematic pattern of Table II, it is
now easy to substitute observables for the bicoms. We get,
in the planar formalism, for the first of these

, (oo+DLL+2P—L)(Ps+DLs)

= 4 ( —Ps+DLs)(DÃx+Dss)+ 4 (Px+DxL )DNs

(A11)

and the other five give similar kinds of relationships.
Such relationships are involved, but can be used in some

cases for consistency checks in situations when one has at

one's disposal more than 2n —1 types of experimental
data. This is the case for some reactions already, and is a
desirable goal anyway since such apparently redundant
sets help to resolve any discrete ambiguities in the ampli-
tude solutions.

As mentioned in the main body of this paper, however,
such an explicit quantitative relationship between the
bicoms is often not needed, but it is enough to know that
some observables are dependent on some others and hence
need not be measured. For that purpose, the diagrammat-
ic approach of Ref. 3, together with the transparent struc-
ture of the optimal formalism, suffice and provide the
needed information in a few seconds that would be yielded
by the algebraic method only after lengthy calculations.

For example, since a and d (or a and 5) are not adjacent
but only on next-to-adjacent levels of the amplitude
structure, the bicoms containing a and d appear in subma-
trices 2;. From the diagrams corresponding to Eqs. (A5)
and (A8) we see immediately that in fact, once the observ-
ables in l~ and 1, are known, those in 2i are superfiuous.
Since the latter are relatively complicated experiments,
this is welcome news. In this manner a set of complete
experiments, suited to a particular set of instrumental
realities, can be planned easily and transparently.

The case for the same reaction when, in addition, parity
conservation is also imposed is even simpler since there we
have only two amplitudes. The bicorn-observable relation-
ship is given in Tables IV and V and with them the quad-
ratic constraints can be obtained immediately.
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