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The structure of M matrices, or scattering amplitudes, and of potentials for off-shell processes is
discussed with the objective of determining how one can obtain information on off-shell amplitudes
of a process in terms of the physical observables of a larger process in which the first process is em-
bedded. The procedure found is inevitably model dependent, but within a particular model for
embedding, a determination of the physically measurable amplitudes of the larger process is able to
yield a determination of the off-shell amplitudes of the embedded process.

I. INTRODUCTION

Off-shell processes play an important role in many
areas of atomic, nuclear, and particle physics. All of nu-
clear physics is based on the two- (and perhaps three-) nu-
cleon interaction off shell. Similar off-shell situations
abound in problems of atomic physics. To learn about
such off-shell processes, various special reactions have
been suggested, a prominent example for the nucleon-
nucleon case being proton-proton bremsstrahlung. Some
reactions cannot be directly reproduced in a laboratory for
technical reasons, e.g., neutron-neutron scattering, and to
study such reactions we use a composite target (e.g.,
deuteron in the above example), in which case the primary
reaction we want to study is likely to be off shell. In
very-high-energy physics, special dynamical processes
proposed to explain the features of certain types of parti-
cle reactions are applied in off-shell contexts, and the
study of inclusive reactions also implies off-shell process-
es.

In view of this widespread attention it is of importance
to explore the amplitude structure of off-shell processes,
especially since it has been suggested in some instances!
that the difference between the on-shell and off-shell am-
plitude structure can be used to obtain off-shell informa-
tion in an isolated manner, uninterfered with by on-shell
dynamics. Although the exact way to carry out such a
procedure is still in the process of formulation and in fact
may present some difficulties,? this formulation can be
greatly facilitated by a more detailed investigation of the
difference between on-shell and off-shell amplitude struc-
tures.

In Sec. II we will therefore analyze in greater detail
what is meant by “off shell.” Armed with that
knowledge, we then investigate, in Sec. III, the off-shell
scattering amplitude or M matrix, and the off-shell poten-
tials. In Sec. IV, we discuss some applications and draw
some conclusions and in Sec. V we summarize the main
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results of the paper.

We will attempt to keep our discussion as general as
possible. In particular the conclusions of Secs. II and III
depend only on general considerations of spin structure
and Lorentz, time-reversal, and parity invariance and not
on any procedural assumptions such as the validity of per-
turbation theory. Such matters may become more
relevant when specific ways of implementing the general
prescriptions are chosen or in Sec. IV when specific
models are considered.

II. WHAT DO WE MEAN BY “OFF SHELL””?

Consider the amplitude for a process 1 +2—3 + 4
where one of the particles, say number 3, is off shell. By
“off shell” one means, roughly speaking, virtual, or with
energy and momentum which do not satisfy the free parti-
cle relation E’=p2+m? For physical processes one
clearly has some other additional interaction amplitude
which puts the particle back on shell, for example, a re-
scattering, a ¥ or m emission, or a weak vertex. It is not
necessary at present to specify, or even consider, this latter
reaction; instead we will discuss the off-shell amplitude in
isolation, with the understanding that later it must be
joined with some other amplitude to produce a measurable
quantity.

There are two major approaches leading to off-shell
amplitudes. One, starting from relativistic field theory,
leads normally to off-mass-shell amplitudes while the oth-
er, originating in nonrelativistic scattering theory, leads to
off-energy-shell amplitudes. Some of the confusion sur-
rounding off-shell considerations arises because of the
difference in these two approaches. Hence as a pedagogi-
cal introduction to the main part of the paper we want to
discuss these two approaches and their differences.
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A. Relativistic-field-theory approach

Consider again the process 1 + 2—3 + 4 described by
the four-momenta p; which satisfy four-momentum con-
servation p+p,=p;+p4. The on-shell particles satisfy

pit=mj, E;=(3 +m?*'"?,
while the off-shell particle, say number 3, satisfies
piP=m3’£my?, Ey=(2+m3iH)/2.

The magnitudes of the initial and final center-of-mass
momenta are given by

_,c.m. kl/z(s,mlz,mzz)
l Pi | - 2\/5 ’
(2.1)
| _cm. AY2(s,m3*? my?)
prol= 2Vs ’
where s =(p; +p,)*=(p3+ps)? is the square of the total

center-of-mass energy and
Mx,p,z)=x>4y>422—2xy —2xz—2yz .

Thus | B;™ |54 |P 5™ | off shell even for elastic process-
es having m;=mj; and m,=my,. In this approach an
off-shell process conserves three-momentum (though the
magnitude of the center-of-mass three-momentum
changes) and also conserves energy. However, the mass,
defined essentially by the square of the four-momentum
associated with the off-shell leg, changes, and so one
sometimes says ‘“mass” is not conserved and speaks of
“off-mass-shell” amplitudes. In this approach the transi-
tion or M amplitude would normally be expressed in a
manifestly covariant way in terms of four-vectors, the
metric tensor g#¥, ¥ matrices in the fermion case, etc.

B. Nonrelativistic-scattering-theory approach

In this approach as applied to elastic scattering the off-
shell amplitude is usually generated by starting with a
nonrelativistic T operator T(& ) which is a function of an
energy parameter &. Matrix elements are then taken be-
tween plane waves of definite three-momenta P; which
satisfy three-momentum conservation p;+ p,=DP3+ D4

For the fully off-shell amplitude there is no particular
relation between & and the initial and final center-of-
mass momenta P; " and PF™. For the half-off-shell
amplitude (just one leg off shell) which we have been dis-
cussing, one would choose & as the center-of-mass energy
corresponding to P ;™ and the off-shell condition would
be given by |P{™ |54 | PF™ |. In this approach one de-
fines an energy associated with each momentum state as
E=(32+m?!”? or nonrelativistically m +p 2/2m. This
is a logical way to proceed since the T matrix contains the
free Hamiltonian H|, in terms involving (& —H,)~!, and
this choice of energy makes the wave functions which are
used energy eigenstates of this free Hamiltonian. The en-
ergy defined in this way is not conserved, though now the
masses do not change. Hence we get an “off-energy-shell”
amplitude. This amplitude conserves three-momentum
and has the same free masses, but does not conserve ener-
gy E as defined and has |B{™ |5 | %™ |. One could,

however, still define an “energy” as in the relativistic ap-
proach via E*=P2+p?=9 2+m*? which would be con-
served. In the nonrelativistic approach one would nor-
mally construct the M amplitude from the available
three-vectors, and in the fermion case from the Pauli spin
operator o as well.

III. OFF-SHELL M MATRICES

In this section we will investigate how the structure of
the transition or M amplitude changes as we go off shell.
Such changes might manifest themselves in three major
ways.

(i) The amplitudes may depend on additional scalar
variables or degrees of freedom which enter in the off-
shell case.

(ii) There may be additional amplitudes, i.e., new struc-
tures which vanish on shell.

(iii) The various symmetry constraints such as parity
and time reversal may lead to different restrictions in the
on- and off-shell cases.

We want to consider each of these possibilities in turn
in both the relativistic-field-theory and the nonrela-
tivistic-scattering-theory approaches.

A. Scalar variables

In the relativistic approach an n-particle process will be
described by n —1 independent four-vectors. These four-
vectors and the independent scalars (or pseudoscalars
when r is large enough) which can be formed from them
are the same whether the amplitude is on or off shell.
The only difference in the off-shell case is that for each
off-shell leg there is now one variable, namely, the square
of the four-momenta, which is not evaluated at m2. This
means in effect that there is one additional scalar variable
for each off-shell leg, and the amplitudes can depend on
this variable as well as on the usual ones necessary in the
on-shell case. Thus for the case 1 4+ 2—3 + 4 with parti-
cle 3 off shell which was discussed above, we could natu-
rally choose as variables s =(p; +p,)? t=(p;—p;)?, and
m3%?=p,;? with m% reducing to m on shell.

In the nonrelativistic-scattering-theory approach there
are also n — 1 vectors, three-vectors in this case, and again
we can form exactly the same scalar variables in the on-
and off-shell cases, except for the addition of a single sca-
lar variable in the off-shell case. The natural variables are
different from those in the relativistic approach, i.e., for
two-particle elastic scattering one would normally choose
1BE™ |, p™p5™, and |Py™ | with |y | reduc-
ingto | B¢™ | on shell.

Thus for both approaches the vectors available to form
M amplitudes are the same in on- or off-shell cases and
the number of scalar variables on which the M amplitudes
depend is the same except for the addition of a single new
scalar variable in the off-shell case for each off-shell leg.
The additional variable can then be interpreted as a mea-
sure of the extent to which the amplitude is off shell.

B. New amplitude structures

While the vectors available to form amplitudes are the
same in the off- as in the on-shell case, it is clear that
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there will be additional off-shell amplitudes because some
of the structures one can form in general vanish on shell.
A simple example of this occurs for spin +. An ampli-
tude proportional to (p —m) vanishes when the particle
corresponding to the momentum p is on shell. Hence
such an amplitude appears in the off-shell case but not in
the on-shell case. In this section we want to describe how
one counts the number of amplitudes, which is well
known in the on-shell case, but apparently not in the off-
shell case, and to give examples in both the relativistic-
field-theory and the nonrelativistic-scattering-theory ap-
proaches.

Let us start with the relativistic approach and consider
primarily the reaction 1+ 2—3 + 4 where the particles
have spins S1,S,,53,5S4. In the on-shell case it is well
known (see, e.g., Refs. 3 and 4) that the number of in-
dependent M amplitudes is just the number of helicity
amplitudes, ie., N=]](2S;+1). These can be divided
into two different parities, with N+ and N~ amplitudes,
respectively. For boson-fermion or fermion-fermion
scattering N*=N/2 while for boson-boson scattering
N*=(N+1)/2 as can be determined by examining the
behavior of helicity amplitudes under parity transforma-
tions.

Generalizing this counting procedure to the off-shell
case involves a careful specification of what is meant by
the wave function or field operator for the particle which
is to be taken off shell. Recall that in the usual pro-
cedure’ a wave function for a particle of spin S can be
constructed from S four-vectors in the boson case or S
four-vectors coupled to a spin-3 spinor in the fermion
case, where Sy is the largest integer in S, i.e., S=So+ 7.
On shell, a number of subsidiary conditions must be im-
posed on such wave functions so as to remove extra de-
grees of freedom which are present. Thus, for example,
for a spin-one wave function of momentum p and polari-
zation vector €, we have ¥,(p)~¢€, and the subsidiary
condition €,p#=0. This condition reduces the four in-
dependent degrees of freedom of a four-vector to three, as
is appropriate for a spin-one particle. In fact in general,
at least for bosons, what the constraints actually do on
shell is to project out the spin-S component of the wave
function which initially contained components corre-
sponding to spin S, S —1, §—2,...,1,0. Thus the ques-
tion which must be addressed is whether or not any or all
of these subsidiary constraints apply off shell, and thus
what should be taken as the spin content of an off-shell
particle. Once the component spins have been determined
one can obtain the number of independent amplitudes by
calculating the number of helicity amplitudes separately
for each spin component of the off-shell particle and add-
ing up the results.

As long as the off-shell particle is considered to be ele-
mentary, in the sense that it is described by a field opera-
tor of well-defined spin, the specification of spin com-
ponents is fairly straightforward and is a consequence of
covariance which requires that the field operator
transform according to an irreducible representation of
the homogeneous Lorentz group either on or off shell.
For composite systems, however, the transformation prop-
erties off shell involve the constituent field operators and

thus the way in which the overall spin structure is most
appropriately described depends on the context. As an ex-
ample of the latter, the A(1236) field can be considered to
transform as a pure spin-+ particle on shell at rest, but
off shell it may be more appropriate to think of it as the
product of 7 and nucleon fields making up a system with
nonresonant spin-% partial waves. Hence for the purpose
here, namely, to write down the most general off-shell
amplitude, we will always assume that the fields to be tak-
en off shell are “elementary,” i.e., that they are described
in some approximation by a field operator of definite spin.
We realize of course that in a physical sense what is ele-
mentary and what is composite is sometimes difficult to
tell in an absolute way, since the result of the determina-
tion may depend on the state of our knowledge at that
time, on the theoretical or phenomenological framework
used and perhaps on other factors. For example, for low-
energy pp bremsstrahlung one would usually consider the
protons as elementary whereas at high energies for hard-
photon-emission processes in large-transverse-momentum
pp scattering, constituents of the proton become relevant
and then the fields of consequence are the elementary par-
ton fields, quarks, and gluons, in terms of which off-shell
amplitudes could be defined. Our statements here there-
fore apply to whichever framework is being used in a
given application as long as it allows in some approxima-
tion a description in terms of particles of definite spin
structure.

To proceed further we first briefly review some of the
elementary theory of representations of the Lorentz
group. Irreducible representations of the full homogene-
ous Lorentz group O(3,1) can be classified according to
representations of an O(3)’®O(3)” subgroup.’ Such repre-
sentations may be denoted in general by [(j,])®(/,j)]
where the first index in (j,/) refers to the ‘“spin”-j repre-
sentation of the O(3)' subgroup and the second index to
the “spin”-I representation of the O(3)" subgroup. The
doubling up is required for j=£! in order that the discrete
operations of space and time inversion be represented.
Since the dimension of the j representation of O(3) is
(2j4+1) the [(j,D®(l,j)] irreducible representation is
2(2j +1)(21 +1) dimensional. For j =/ no doubling is re-
quired and the representation (j,j) has dimension
(2j +1)%. Now ordinary space rotations correspond to a
nontrivial O(3) subgroup of O(3)'®0O(3)" such that (j,1)
reduces to [ + D& (j+I—1)® - - &(|j—1]|)] where (])
is the spin-/ irreducible representation of O(3). To illus-
trate, the ordinary four-vector transforms according to
(%,%) which has four components and reduces to (1)®(0)
under space rotations. Similarly the Dirac spinor belongs
toa [(%,O)EB(O,%)] four-dimensional irreducible represen-
tation of O(3,1) and reduces to (+)®(5) under rotations.
Using the four-vector and four-spinor representations all
other representations can be formed. It is this approach
which will be followed below.

Consider first the elementary boson field associated
with a spin-S particle. Such a field, which we denote by

Dy ,... .us(P), can be constructed as a product of S four-
vectors. On shell at least the conditions of symmetry

under the interchange of any pair of indices and also
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tracelessness in any pair are imposed and ensure that the
result transforms like an Sth-rank symmetric traceless
four-tensor irreducible representation. The symmetry and
tracelessness conditions reduce the original 4° components
of ® to (S +1)? independent components corresponding
to the ordinary spins S, S —1, §—2,...,1,0 in the rest
frame. This is precisely the dimensionality of the
(S/2,S/2) irreducible representation in the O(3)'® O(3)”
notation. The Sth-rank symmetric and traceless four-
tensor is equivalent to (S/2,S/2), and is the appropriate
representation for an off-shell particle.

For an on-shell particle there is an additional subsidiary
condition

PPy, (p)=0 3.1)

which projects out of the (S/2,S/2) irreducible represen-
tation the (S) representation of O(3). This condition thus
eliminates the S2 components of the full representation
which are associated with the spins S —1, ..., 1,0 leaving
just the (2.5 4 1) components of the free spin-S boson at
rest. Hence in summary we expect that in a reaction in
which a spin-S boson is off-mass shell the boson will be
represented by a symmetric traceless tensor and will have
spin components S, S—1,...,1,0. This amounts to
(S +1)? possible helicities or spin projections rather than
the (25 +1) values obtained for on-mass-shell particles.
An elementary fermion field associated with a spin
S=S,+ 5 particle is somewhat more complicated. Such
an object can be constructed by the procedure of Rarita
and Schwinger®® as an outer product of a spin-+ Dirac
four-spinor and an Sgth-rank symmetric and traceless
four-tensor constructed from the product of S, four-
vectors as was done for bosons and subject to some addi-
tional constraints. This generalized spinor, which we

denote by @, ... '”So( p) with a=1, . . ., 4 the spinor in-

dex and p,...us, the vector indices, is thus symmetric

and traceless in any pair of the u indices and satisfies the
additional equation

Vg P, ..as (P)=0 . (3.2)

Without this last equation there are 4(S;+1)* com-
ponents which is the dimensionality of the reducible rep-
resentation [(3,0)®(0,~)]®(S,/2,S,/2) corresponding to
the outer product of tensor and spinor used to construct
®. Equation (3.2) reduces that number by 2S,(So+1)
conditions to 2(Sy+ 1)(So+2) independent components.
(See appendix.) This latter number is the dimensionality
of the equivalent irreducible representation

[(F(S+ 1), HS—ENS(H(S—3), 4 (S+4N]. (3.3)

Under space rotations this reduces to the sequence
2[(S)®(S —1)® - - - ®(1/2)]. The doubling simply re-
flects the independence of particle and antiparticle degrees
of freedom.

For on-mass-shell fermions there is an additional con-
straint, one of

(PFm)apPpp.. s (P)=0, 3.4)
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where p=p,y". This reduces the number of components
to the requisite 2.5 + 1 of a true spin-S particle. Note that
the further constraint equation

pucha,ul...yso(P):O (3.5)

follows from Egs. (3.2) and (3.4) and so does not lead to
further independent conditions. The Dirac-type equation
(3.4) projects out particle (or antiparticle) spinors, thereby
eliminating the doubling. Furthermore it [actually the
condition Eq. (3.5) which follows from it and Eq. (3.2)]
eliminates all the auxiliary spins (S —1), (S —2), .. .,%.
Thus the result is that an off-shell spin-S fermion corre-
sponds to the irreducible representation of Eq. (3.3) ob-
tained by imposing the symmetry, tracelessness, and y,
constraints on the wave function. It has spin components
S, S—1, .. .,%, each appearing twice which reflects the
fact that an off-shell fermion may propagate either as a
particle or an antiparticle.

To summarize then, for either bosons or fermions the
number of independent amplitudes off shell can be calcu-
lated by (1) determining the spin content of the off-shell
particles, which is just S, S —1, S —2, ..., (2) calculating
the number of helicity amplitudes separately for each pos-
sible combination of the various spin components of the
wave functions and adding the result, and (3) multiplying
by a factor of 2 for each off-shell fermion, which comes
from the particle/antiparticle degree of freedom. The
number of amplitudes of the two different parities works
out as well; simply calculate N* separately for each case
using the on-shell formula and sum the results.

Before looking at some examples we digress to see what
happens in the three-particle case, 1--2 + 3. There on
shell one gets>* the number of independent helicity ampli-
tudes by coupling S, and S3 to S,3 in all possible ways
and taking N = (25, +1) when the sum is over all the
S53; and where S;, is the minimum of S; and the partic-
ul'%r S,3. The numbers of the different parities are given
by

NE¥=(28,+1)(2S5+1)/2—j(j+1)/2
for fermion-fermion-boson couplings and
N*E=[(2S,+1)(2S;4+1)*£1]1/2—j(j +1)/2

for three-boson couplings where j =S, +S3—S, or zero if
this is negative. The generalization to the off-shell case is
the same as for the scattering situation, i.e., add together
the number of amplitudes for each of the spin com-
ponents of the off-shell particle, and multiply by 2 for
each off-shell fermion.

To make these rules more concrete we now consider
several examples of the rules, and see how we can con-
struct the appropriate number of amplitudes from the
available vectors in each case.

Example 1(a): p(1/2)4+p,(0)—p3(1/2)+p4(0), ie.,
spin-zero—spin-4 scattering. According to the rules there
are 2 X2 =4 helicity states for an off-shell spin-+- particle.
Hence we should get 4X4=16 amplitudes if both fer-
mions are off shell, 2XX4=38 if only one is off shell, and
2XX2=4 if both are on shell. To construct such ampli-
tudes take pi,p,,p; as the independent vectors. We can
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then construct the following amplitudes:
A1+ A9+ Aspr+ Agps+Aspop

+ Aep s+ A7pp 1+ AP PP -

There are eight additional terms of the opposite parity ob-
tained by multiplying each of the above by ys. Different
orderings of the vectors can be reduced to these by com-
mutation relations. Thus for the fully off-shell case there
are 16 amplitudes as expected. For p; on shell the
A,,As,A7,Ag terms do not contribute, i.e., as actually
written are not independent of the others, leaving a total
of eight amplitudes when one spin-5 particle is off shell.
Finally for p; on shell 44,46 do not contribute, leaving a
total of four amplitudes for the fully on-shell case. At
each stage N* =N /2 as appropriate for this case.
Example 2(a): pi(1)+p,(0)—p3(1)+p4(0), ie., spin-
zero—spin-one scattering. According to the rules the off-
shell spin-one particle has components of spin 1 and spin
0. Hence we have to calculate the number of amplitudes
by summing (in the fully off-shell case) the number of
amplitudes for 04+0—-0+0, 1+0—-1+0,
1+0—-0+0, 0+0—1+0. Thus we get
149+ 3 + 3=16 amplitudes in the fully off-shell case,
9 4+ 3=12 when only one of the spin-1 particles is off
shell, and 9 when all particles are on shell. To see how
this works take again p;, p,, and p; as independent vec-
tors. The amplitude must be a two-index tensor to con-
tract with the two spin vectors (€;)*(€3)” corresponding to

il
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the two spin-one particles, and this tensor must be con-
structed from the available vectors, the metric tensor g**,
and various contractions with the completely antisym-
metric tensor €,,,5. The obvious candidates for such a
tensor are

g, (pt.ph.p5)®(p1,p3.p3) ,

e(ﬂ,V)Pl’PZ)’ E(.U,V,Pl’lh ), €(u,v,p2,p3) ,
3.7

E(IU"pI’pZ,PZi )® (PY,PS:PK) ’
€(v,p1,02,P3)® (Y ,ph,p%) ,

where for example e(u,v,p 1p2)=eﬂm3p‘fp§ and where ®
means the product of any pair of elements of two sets.
There are a total of 19 structures, three more than ex-
pected. This illustrates a problem which arises very regu-
larly when the spins are other than O or %, namely, that it
is very easy to construct more invariants than necessary.
Scadron and Jones* have discussed this in detail. It turns
out that there are highly nonobvious and nontrivial rela-
tions among some of the amplitudes, particularly those in-
volving e(uvaf). In the present case one can show that
the set e(v,p;,p,2,p3)® (p4,ph,p5) can, for example, be
expressed in terms of the e(u,v,p;,p;) and
€(u,p1,p2,03)®(p1,p5p3). Hence we can eliminate three
of the above structures and obtain the fully off-shell am-
plitudes as a function of 16 independent structures:

Ag*+ A,piipT + Aspips + Aupiips + Asphp + Aephps + A7php3 + Aspip T + Aophps

+A10p5p5 + A1, v,p1,p2) + A€, v,p1,p3) + A13€(u,v,p2,p3) + A14€(pt,p 102,03 )P

If, say, particle 1 is on shell then using the subsidiary con-
ditions the terms A,,A43,A4,A 5 do not contribute, leav-
ing 12 amplitudes as expected. If particle 3 is also on
shell then in addition A45,4,9,4;¢ do not contribute re-
sulting in 9 amplitudes in the fully on-shell case. The
prescription for N7 leads to (N+,N~)=(10,6), (7,5), and
(5,4) for the two off-, one off-, and none off-shell cases,
respectively, which agrees with the explicit amplitudes
calculated.

Example 3(a): pi(3)—p,(3)+p3(0), i.e., spin & decay
into spin + plus spin 0. Here the off-shell spin-3 particle
contains spin-+ and spin-3 components. Thus we need
to consider the pairs (3,7) and (3,5 ). In each case + is
the minimum spin, so the fully off-shell case has
(2 +2)X2X2=16 amplitudes. If the spin-3 particle is
on shell we get (2)X2=4 amplitudes. The spin 5 on and
spin + off shell gives (2 + 2) X 2=8 and both on shell give
2 amplitudes. To calculate the amplitudes explicitly we
take p; and p, as independent vectors. The amplitudes
can then be written as

A1pi + A4, p5 + Asphip + Asplip+ Asphp,

+ Aephp 1+ A1pipw+ Asphpow, . (3.9)

+A15€(v,p 102,030 + A16€(,p1,02,03)p3 . (3.8)

f

Each of these can be multiplied also by ¥s, for a total of
16 amplitudes. If the spin-3 particle is on shell, then A4,
A;, Ay, Ag, A7, Ag all do not contribute, leaving just A4,
and A5 giving 4 amplitudes. For the spin-% on shell, 4,,
As, A;, Ag do not contribute, for a total of 8 amplitudes.
Finally for both particles on shell only 4, survives for a
total of 2 amplitudes, all as predicted.

We now consider the same problem from the nonrela-
tivistic scattering theory approach. As observed above,
the vectors available for forming amplitude structures are
the same in the on- and off-shell cases. The number of
amplitudes is again given by the number of helicity ampli-
tudes. There is a major difference here, however, from
the relativistic-field-theory approach in that the context of
nonrelativistic scattering theory does not admit the possi-
bility of particles changing their internal quantum num-
bers. Thus a spin-J virtual particle in a nonrelativistic
context is just spin J, not a mixture of particle and an-
tiparticle. (These extra degrees of freedom are often in-
cluded in nonrelativistic theories, but as separate contribu-
tions. An example would be the so-called virtual pair
contribution to pp—d or pn—dy.) This means that in
effect in the nonrelativistic case the restrictions, which in
the field theory case remove the extra degrees of freedom
on shell, are present both on and off shell. Thus one con-
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cludes that in the nonrelativistic-scattering-theory ap-
proach the number of amplitudes in the off-shell case is
the same as in the on-shell case (before imposing any sym-
metry restrictions) and is just the number of helicity am-
plitudes calculated in the usual on-shell fashion. The
number of amplitudes of the two parities N¥ would then
be calculated as in the relativistic on-shell case above.

To see how this works, consider the same three exam-
ples discussed above. It is natural in a nonrelativistic
theory to work in the center of mass, and to construct the
independent vectors from the center-of-mass momenta.

Example 1(b): pi(3)+p,(0)—p3(+)+ps(0). The
number of helicity amplitudes in this case is 2X2=4. To
see how this actually arises we take as independent unit
vectors

m.

_1’,\ )
_._1’;‘. m ]

~ (p
m ’ k= I/’\
i |p

m.

o |™~0

m .m. ’

c.
S
c.
f

-.

The most general amplitude constructed from these vec-
tors and the spin operator ¢ is then

A11+A2€’H+A33'§+A43'E .

This contains four terms with N*¥*=2 as expected. It

which has the required 9 amplitudes with N+ =35 (terms
A;—As)and N~ =4 (terms Ag—Ay).

Example 3(b): pi(3)—p,(+)+p3(0). Here the number
of helicity amplitudes is just 2. There is just one vector
available in the center of mass, say q, the relative momen-
tum of particles 2 and 3. The amplitude must be a vector,
contracted with the spin-one-vector € which is part of the
spin-+ wave function. Thus we find

A13'€+A26'2 (3.13)
which has N=2, N¥=1 as predicted.

Thus to summarize this section we have found (assum-
ing always no constraints of symmetries) that in the rela-
tivistic field theory approach there are always additional
amplitudes in the off-shell situation. These originate in
the additional degrees of freedom in spin and particle-
antiparticle nature which are allowed for a virtual particle
in a relativistic theory. They vanish on shell by virtue of
the subsidiary conditions imposed on on-shell wave func-
tions. On the other hand, in the nonrelativistic-
scattering-theory approach the number of amplitudes and
their structure is the same in the off- and on-shell cases,
since these additional degrees of freedom are precluded by
the theoretical context, or more precisely, if put in, are
put in by hand as separate contributions.

(3.10)
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holds on or off shell, the only difference being that off
shell the A’s are functions of the additional scalar vari-
able.

Example 2(b): pi(1)+p,(0)—p;3(1)+p4(0). Here, the
number of helicity amplitudes is 3 X3=9. The amplitude
must be a tensor, contracted with two spin vectors €, and
€3;. Using the same vectors as in the previous example
and multiplying the €’s in so as to avoid vector indices in
the notation we find the following 13 simple structures
which may be expected to enter the amplitude:

—

€.k, (B,k,®), €€,

M

)®

=)

(3.11)
€ X &l

1X €3 ’k,

=]

),

ol

where the notation means, for example, €; dotted with
any of the vectors in parentheses times €5 dotted also with
any of the vectors in parentheses. As in the relativistic
case there are too many simple structures, and hence they
must not all be independent. Here it is clear, however,
since P, K, and & are mutually orthogonal unit vectors,
that the nine pairs span the full space and hence that the
€€, and € X&(P,K,f) terms are not independent.
(For example, €-€;=¢€, P€s' P+ €1'kKey'K +e&°nes1.)
Therefore we can write the most general amplitude on or
off shell as

C. Restrictions arising from symmetries

So far amplitudes have been constructed without regard
to constraints imposed by symmetry principles such as
parity and time reversal. In this section we want to dis-
cuss what effect these constraints have and in particular
any differences between the relativistic and nonrelativistic
cases or between the on- and off-shell cases.

Parity. In the discussion above the amplitudes were al-
ways separated into N* and N~ amplitudes of different
parities. If the scalar variables on which the 4; depend
are all scalars rather than pseudoscalars, then the A4; will
be scalars and parity conservation will eliminate either
Nt or N~ amplitudes depending on the intrinsic parities
of the particles involved. In more complicated cases when
there are enough vectors to form pseudoscalar variables
then the A4; will have both scalar and pseudoscalar parts.
Then parity conservation will not reduce the number of
amplitudes but will enforce particular transformation
properties (either scalar or pseudoscalar) for the 4;.
These restrictions are essentially the same for relativistic
or nonrelativistic approaches and for on- or off-shell
cases, though the resulting number of amplitudes will
vary, since the unconstrained number also varies.

Time reversal. In the usual on-shell case and for elastic
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scattering time-reversal invariance of the interaction im-
poses certain constraints on the scattering amplitude
which reduce the number of independent amplitudes. It is
appropriate then to ask if there are analogous constraints
on the off-shell amplitudes arising from time-reversal in-
variance.

We suppose throughout that the physical system is in-
variant under the time-reversal operation .7, that is, the
Hamiltonian H satisfies .7 HZ7 "'=H. As a conse-
quence”® in either field-theory or nonrelativistic-
scattering-theory approaches the 7-matrix operator T or
the S-matnx operator S satisfies T~ =% or
TST =51, respectively. Now consider the process
P1+Pp,—p3+ps with p; off shell and take matrix ele-
ments of, say, the T-matrix relation in a helicity basis
| pi,A;) with A; the helicity. This gives, as the conse-
quence of time-reversal invariance of the interaction (see,
e.g., Refs. 4,7, or 8),

(P3:A3,04,24 | T | p1,A1,02,A2)

=n7{—p1, A, =P A | T | —p3,A3, —pa,Ag)
(3.14)

where we may set the phase 7y=1. Thus time reversal
changes the signs of the momenta and spins (but not heli-
cities) in the matrix elements and interchanges initial and
final states. (If parity is also conserved one can reverse
the signs of momenta again and also reverse the helicities.)

For elastic processes on shell the initial and final states
are the same so that the interchange of initial and final

states is unimportant and thus there are relations among.

various matrix elements which in effect reduce the num-
ber of independent amplitudes. In particular time reversal
in this case requires that the 7 matrix be symmetric.

For an off-shell process, however, the interchange of in-
itial and final states is crucial since the two are not the
same, i.e., incoming on-shell scattering to outgoing off
shell is not the same as incoming off-shell scattering to
outgoing on shell. Thus time-reversal invariance of the
interaction relates matrix elements of essentially different
processes and so does not reduce the number of off-shell
amplitudes. It will, however, force some of the ampli-
tudes to be proportional to something like p>—m? which
vanishes on shell since on shell there will be relations
which will eliminate some of the amplitudes.

This result is quite analogous to that for on-shell reac-
tions (i.e., nonelastic processes) where the time-reversal re-
lation relates matrix elements for one process to that for a
different process. This is as expected, at least in the
relativistic-field-theory approach, since there an off-shell
particle is essentially like an on-shell particle with a new
mass m*s£m, and so an off-shell amplitude can be con-
sidered as an on-shell reaction amplitude involving a
change from a particle of mass m to one of mass m*

To make these ideas more explicit consider the example
of spin-0, spin-5 elastic scattering which was discussed
previously. In the nonrelativistic-scattering-theory ap-
proach the most general T matrix, corresponding to the
left-hand side (LHS) of Eq. (3.14) above, can be written as
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LHS=4 (f)’,z,fifz,cose)l+A2(f)’,~2,_ﬁf2,cos6)a 0
+ A3(B; ,pfz,cose)o-ﬁ

+ 448285 cos8)0k , (3.15)

where we have used the unit vectors p, l/c\, 7 defined above
and have taken B, =P;™, Py=P§" and cosd=p; Py
and have suppressed helicity or spin indices on the o”s.
The right-hand side (RHS) of the equation can be ob-
tained from the above by reversing initial and final states
and changing signs of momentum and spin operators and
is

RHS=A4,(B% ;% c0s0)1+4,(B % B:% cosO)o A

+A3(pf ,Bi%,cos0)op
—A44(B % B cosO)ok . (3.16)

Time-reversal invariance thus implies for the off-shell
process that

A;(B,%,B % c080) =+ 4,(B ;2 B cos6)

with the plus sign for i=1,2,3 and the minus sign for
i =4. If we define

+ +) =
AN =4{(p

% B s7cos6)

[ A;(B,%B % c080)+ 4;(B ;% B, cos0)] (3.17)

we can write the most general off-shell amplitude which
explicitly satisfies time-reversal invariance as

AN+ A om+ A op+ AT ok . (3.18)
On shell B,>=P,* and AY =0 so that on-shell time-
reversal invariance reduces the number of amplitudes
from four to three. In thlS partlcular example parity con-
servation eliminates 45"’ and 4~ terms both on and off
shell so one gets, for example, for 7-nucleon scattering
just the usual two amplitudes on or off shell, but in gen-
eral parity and time reversal would eliminate different sets
of amplitudes.

One additional restriction on the amplitude can be ob-
tained if the interaction being considered is sufficiently
weak to be treated in first order, i.e., in Born approxima-
tion. In that case T is Hermitian. For a Hermitian T'
operator there is the additional constraint

(P3:A3p4ha | T | p1,A1,p2,A2)
=(—p3,A3, —PasAa | T | —p1,A1, —pa,Ap)*

which now relates the T matrix to itself even in the off-
shell or reaction cases and thus puts constraints on the in-
dependent amplitudes. In the example dlscussed above
thlS constramt requires that A} ), 45, 457 be real and
ASH) pure imaginary. In the general case then deviations
from this must come from second- or higher-order in-
teractions.

Thus the situation as regards time-reversal constraints
and matrix elements can be summarized as follows. In
the general case of elastic scattering with one leg off shell,
just as for on-shell reactions other than elastic scattering,
time reversal relates matrix elements of different reactions

(3.19)
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and thus does not reduce the number of independent am-
plitudes. Constraints which reduce the number of ampli-
tudes are obtained in the on-shell limit and additional
constraints which determine the phases of the amplitudes
are obtained in the approximation of a Hermitian 7 ma-
trix as is obtained in Born approximation. All of these
considerations hold both in the relativistic-field-theory
and nonrelativistic-scattering-theory approaches.

A somewhat related question deals with the form of the
potential and the constraints on that potential imposed by
symmetries, particularly time reversal. Since the potential
is part of the Hamiltonian and is Hermitian we have
T VI ~'=V. The off- or on-shell matrix elements of the
potential are constrained just as for the 7 matrix by both
the general condition and the one appropriate for Hermi-
tian operators as given above. Thus in general there can
be terms in the potential which are present only in off-
shell matrix elements.

To understand this it is easiest to look at our example
of spin-O—spin- scattering. The most general potential
which satisfies time-reversal invariance can be written, in
exact analogy with the most general T matrix, as

vit4ivit e a+vitep+viTdk, (320
where the V; are real functions of p; and p, with V;, V5,
V3 symmetric and ¥V, antisymmetric in the interchange
pi<>ps. Thus V, vanishes on shell and the usual nonrela-
tivistic potential would consist just of the V', V,, and V;
terms. ’

To first order the usual nonrelativistic potential will
contribute only to the 4,, 4,, and 4; terms in the T ma-
trix, i.e., to first order one cannot generate the extra term
in the off-shell T matrix which vanishes on shell from the
part of the potential which survives on shell. However, to
second order, the V|, V,, and V; terms are sufficient in
general to produce a contribution to the 44~ term of the
T matrix. This can be easily seen by straightforward,
though tedious, calculation, in particular in the special
case when the V; depend only on the magnitudes of p;
and ps. An analogous situation was well known in early
attempts to look for time reversal violating correlations in
reactions.” There a second-order process, e.g., Coulomb
corrections to a weak interaction or other final-state in-
teraction, can generate a nonzero coefficient of a correla-
tion which in first order vanishes because of time-reversal
invariance. This occurs even when both interactions (and
the overall process) are time-reversal invariant and satisfy,
for example, detailed balance. On the other hand, if the
V4 term is nonzero then there will be a first-order contri-
bution to A4 off shell. There will also be second-order
off-shell contributions to A4 and to A, A,, A; from V,.

The situation illustrates an ambiguity in the usual non-
relativistic considerations of off-shell amplitudes. Given
a potential one can calculate the off-shell T matrix and in
general one will get new, but calculable terms as well as
variation in the amplitudes present on shell. However, in
general there can be additional contributions to the poten-
tial which vanish on shell and thus which cannot be deter-
mined from on-shell processes alone. These contributions
affect the off-shell behavior of the usual on-shell ampli-
tudes as well as the new amplitudes which are present off
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shell. In particular situations one may be able to rule out
such additional contributions to the potential for physical
or simplicity reasons. Thus, for example, the required an-
tisymmetry of V, under the interchange Di<>Dy means
that this potential term cannot depend only on |p; —py |
and thus is nonlocal. Also it cannot take the usual sepa-
rable form which is symmetric in p;<>p;.

IV. HOW TO MEASURE OFF-SHELL AMPLITUDES?

In this section we will discuss the ways in which infor-
mation about off-shell amplitudes can be obtained from
actual laboratory experiments. Such experiments, of
course, always deal with some on-shell process, so that
off-shell processes cannot be directly measured. They
can, however, be embedded into an on-shell process which
is larger than the process we want to study off shell, and
then this larger process is measured on shell. The ques-
tion then is how we can conclude something about the
off-shell process by looking, on shell, at the larger process.

There are many examples of this situation. The study
of nucleon-nucleon bremsstrahlung!® has been done with
the aim of learning about off-shell elastic nucleon-nucleon
scattering. The study of pion production in pion-nucleon
or nucleon-nucleon scattering involves off-shell elements
of pion-nucleon or nucleon-nucleon elastic scattering.!!
Radiative capture (into a d) in neutron-proton collisions'?
contains the off-shell union of a neutron and a proton into
a deuteron.

The procedure most often used in the past was to use
some model for the off-shell contribution of the embedded
reaction and join this model with the treatment of the rest
of the larger reaction to make predictions for the measure-
ments of that larger reaction. There is, however, consider-
able advantage in reversing this procedure, and trying to
determine, in a phenomenological way, the off-shell am-
plitudes of the embedded reaction from the measured ob-
servables for the larger reaction. This is the procedure
that we will discuss in particular in this section.

The conclusions can be summarized as follows.

(1) It is not possible to make a phenomenological deter-
mination of the off-shell amplitudes of the embedded pro-
cess from the measured observables of the larger process
in a way which would be model independent. In particu-
lar, what enters is the model we have to assume for the
process of embedding itself, and the relationship between
the observables of the larger process and the off-shell am-
plitudes of the embedded process will depend on the de-
tails of this model. For example, if we assume that the
embedded process is described by a purely local potential
we are specifying in part the model to be used for the
embedding, e.g., such an assumption excludes particle
emission from the interior of the potential. In the usual
nonrelativistic potential approach the model assumed is
normally some variation of the two-potential formula, i.e.,
the interaction which puts the off-shell leg back on shell is
taken in first order only. Hence the off-shell amplitude
separates out and appears as a factor of the overall ampli-
tude or in the worst case appears only twice, in a “double
scattering term,” in such a way that it can be clearly
separated from the second interaction which brings the
process back on shell.
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(2) If we assume a process of embedding which satisfies
a simple factorizability, that is, if we can write the M ma-
trix of the larger process as a product of the off-shell M
matrix of the embedded process times an off-shell M ma-
trix of the remainder of the larger process, which is as-
sumed known, then, if we carry out a sufficient number of
experiments to determine completely the amplitudes of
the larger process, we can also determine completely the
off-shell amplitudes of the embedded process, since the
latter are well defined though complicated functions of
the former.

(3) If the remainder of the large process is a photon
emission, that is, if we consider bremsstrahlung processes,
then gauge invariance and the usual soft photon theorems
indicate that all off-shell effects appear, in general, only in
the third-order term in the photon momentum k in the
observables.!> With a judicious choice of the observables
to be measured we can change this to the second order by
suppressing the leading term, but in any case the off-shell
effects will be down? from the on-shell effects by an order
in k.

(4) If the remainder involves a weak interaction instead
of an electromagnetic one as in (3), then conserved vector
current will have the same effect on the relative suppres]
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sion of the off-shell contributions as gauge invariance had
in the electromagnetic case.

(5) If the remainder involves some strong interaction,
for example, pion emission, then such suppression mecha-
nisms are not in effect. In that case, however, the model
for the process of embedding (namely, the off-shell pro-
cess followed by one-pion emission) is likely to be less reli-
able.

These conclusions as well as the results of the previous
sections will now be illustrated using a spin-4—spin-zero
scattering (3 +0— 5 + 0) with the final spin- particle
off shell which will be embedded in a larger process by
tacking onto the final spin-+ leg an emission of a scalar
particle.

First we will write down the terms, in the relativistic
formalism, which the off-shell process will have in the
most general case when both spin-+ particles are off shell.
For later use we will write the terms in such a form that
they have definite time-reversal properties and their
behavior on shell is easily traceable. There will be 16
terms, which are simply constructed of linear combina-
tions of the amplitude originally written down in Eq.
(3.6), and which are given as

T~ai"1+a57'@ +a$ [A(p) +Ap3)1+ai7 [Alp)) —Ap3)]+a$T [A(p3)@ +@Ap,)]
+ag7 [A(P)@ — @A) ]+a T Alp3)A(py)+ast Alp3)@A(p,)

+7vsXsimilar terms with coefficients b; .

Here we have taken the momenta to be
p1(1/2)4p,(0)=p3(1/2) + p4(0) and defined Q =p, +py,
A(p)=p—m. The coefficients a; are functions of, say,
the scalar variables (p +p,)?, (py1—p3)? pi1%p;% and so
can be written as a;(p3,p;). On shell this would be taken
between free spinors #(p;) and u(p;). These spinors
satisfy A(p;)u(p,)=a(p;)A(p3)=0, so for an on-shell
particle A(p)—0 and the term does not contribute.

The amplitude has also been written so that it is invari-
ant under time reversal. The time-reversal condition, as
used earlier, is 7 T.7 ~'=T". The operator .7~ takes com-
plex conjugate of all ¢ numbers, changes t— —¢t and mul-
tiplies Dirac operators by iy!y? using the notation of
Ref. 14. Thus

TYT =iy =iy =y° or -7,

T 18,7 '=idy or —id

and hence p7 "!'=p so that S T.7 ! is equal to T
with @;—a}. The additional adjoint in T=(7 T )
then reverses the order of noncommuting operators,

4.1)

r
changes a—a; and in effect interchanges initial and fi-
nal momenta. Thus under the full transformation the
coefficients of a, and a? change sign while the others do
not. Hence aff) and aﬁ_) must be antisymmetric under
the interchange p,<»p3, p,<>ps whereas a,-(+) must be
symmetric for invariance under time reversal. The
transformation properties of the b;’s can be obtained in a
similar way.

We will now embed this process into a physical (on-
shell) one in which the outgoing fermion line in the above
process (the p; line) emits a scalar meson of mass m,
with coupling g, and thereby gets itself back on shell. We
will assume that the off-shell process is parity conserving,
so that all of the b; terms vanish. With p; on shell
A(p;)—0 so that there are only four independent terms
surviving corresponding to a{*’, at), aj=alt’ —al),
and as=a$"+a§). Let us reserve p; for the momen-
tum of the outgoing (on-shell) fermion in the larger, actu-
ally observed process and replace p; in the above off-shell
amplitude by p3 =p;+k, where k is the momentum of
the outgoing scalar boson that is tacked on to the outgo-
ing fermion line. We have then for the M matrix of the
larger, actually observed reaction

0+—* a‘1+’+a‘2+’Q] u(py) . 42)

_ Ps+m)
M~a(pslgo_ o 5 lai" +a37 0+ A3 a5 +ai@)lu(p)
$2_
— 2m (+) ’ 2m (
=gott(p3) | |[————ai" +a —==—a{t) 4 q:
2k-p3—*—m02 ! 3 2k'p3—|—m02 2 +as

2k ‘P3 +m02
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Since the larger reaction is a five-particle reaction, it
will have four independent amplitudes even if time-
reversal invariance and parity conservation hold. Hence
we have four measurable amplitudes at our disposal which
depend on four off-shell amplitudes as given in Eq. (4.2).
Thus measuring a sufficient number of observables to
yield the four measurable amplitudes will also yield, in
principle, the four off-shell amplitudes.

In arriving at the above result, we have made a number
of assumptions.

(1) The embedded process is embedded into the larger
process in only one way, namely, the one we considered.

(2) The embedding process is such that we can consider
the M matrix of the larger process as a product of the
off-shell M matrix of the embedded process and the prop-
agator of the external final fermion line (the vertex func-
tion in this case being 1). This restriction excludes, for ex-
ample, processes in which the extra scalar boson is emit-
ted from somewhere inside the embedded process rather
than from one of its external lines.

(3) We definitely know the M matrix of the remaining
part of the larger process (in this case, the emission of the
extra scalar boson).

These assumptions make the extraction of the off-shell
amplitudes from the observables for the larger process
definitely model dependent.

As another example, let us consider the case when the
extra emitted boson has spin 1 rather than O and is mass-
less, i.e., we are considering the prototype of the brems-
strahlung process. In that case the M matrix is given by
an expression like the first part of Eq. (4.2) with the cou-
pling go—¢ where €, is the polarization vector of the
spin-one particle. After some algebra the M matrix
reduces to

2e'p3+ek (a(+

Tp3) | =gy (@1 +a57'@)

+ ¢lay+as@) (ulp;) . 4.3)

In this case the larger process has eight amplitudes, since
the “photon” has two polarization states also, so again in
principle a complete measurement of the larger process
gives within the assumed model a determination of the
off-shell amplitudes. For a real-photon process additional
terms involving radiation from other charged legs would
be necessary for gauge invariance, so that the formulas
would be much more complicated. The general result
would be the same, however.

The above procedure rests on carrying out a sufficient
number of experiments on the larger reaction so that all of
its amplitudes can be observed. Such a determination of
the amplitude need not be carried out in terms of the par-
ticular set of amplitudes which appear in the second half
of Eq. (4.2) or in Eq. (4.3). Once the amplitudes are
known in terms of one basis set of amplitudes, any other
set of amplitudes can be obtained from that by a simple
mathematical procedure. Thus the actual determination
of the amplitudes in the larger reaction should be done in
terms of a set of amplitudes which make such a deter-
mination the easiest from an experimental point of view.

The amplitudes suitable for this purpose are an optimal
set of amplitudes in the sense of Ref. 15. Which optimal
set is to be used depends on many factors, including the
repertoire of the experimentalist who does the actual mea-
surements. This problem has been amply discussed in
connection with various reactions in Refs. 15 and 16.

To carry out an experimental program to determine
completely the whole set of amplitudes is, however, in
most cases a substantial undertaking. The question arises,
therefore, whether one could get at least some partial use-
ful information about the off-shell amplitudes from just a
few measurements of observables, from a set that is small-
er than what is needed to determine all amplitudes com-
pletely. We see from the above considerations that one
cannot give a model-independent answer to this question.
For any particular way of embedding, one can calculate
the relationship between any particular observable and the
off-shell amplitudes, using the above connections together
with the connections between the amplitudes and the ob-
servables of an on-shell process, something that has been
discussed in Refs. 15 and 16. In general, each observable
will contain a complicated mixture of off-shell ampli-
tudes, since these amplitudes are not optimal in the sense
of Ref. 15 and hence have no simple relationships to ob-
servables.

As discussed earlier, there are two types of off-shell
amplitudes, those which are present in the off-shell limit
and simply change numerically off shell, and those which
vanish in the on-shell limit and hence are not included in
usual on-shell descriptions. We turn now to a study of the
relative possibilities of getting useful information from
these two types. In our previous example a(1+) and a(2+)
belong to the first group which are present on shell and
ay and a5 belong to the second which vanish in the on-
shell limit. In order to get some information on off-shell
behavior, it may be preferable to deal with the second
group, since if we find an observable that depends on
those amplitudes linearly, the experiment detecting them
will be a “null experiment” in that on shell that observable
vanishes. Hence to measure such off-shell effects we mea-
sure a deviation from zero rather than a change in a quan-
tity that has a finite on-shell value. Whether this is really
a practical advantage depends, of course, on how fast the
observable changes off shell, e.g., a large deviation from a
finite value could still be easier to measure than a small
deviation from zero.

We see, however, from Egs. (4.2) and (4.3) that the par-
ticular combinations appearing make our task difficult.
In Eq. (4.2), a3 and a5 appear only in the first two terms
and there only together with a{*’ and a$*’ which in turn
are multiplied by a factor containing a pole. For suffi-
ciently small mg? this pole and hence the a{*’ and a}*’
terms may dominate near the on-shell point making it
hard to extract a3 and as. This is in fact a fairly general
situation since the terms which vanish on shell will always
have an inverse propagator factor A(p) which will cancel
the pole coming from the propagator. For the spin-1 pro-
cess of Eq. (4.3) the same situation prevails though here
the two groups of amplitudes appear in different terms of
the M matrix and hence one might hope for a more dis-
tinguishable effect from the a3 and a5 amplitudes.
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For a real bremsstrahlung process with all terms includ-
ed so that the result is gauge invariant one can make a
somewhat stronger statement, as has been previously em-
phasized.? In such a situation one can generalize!’ the
Burnett-Kroll theorem!® to spin observables and thus
show that a spin correlation in a bremsstrahlung process
can be given through O(1/k) and O(k°) by a simple
operator acting on the same spin correlation in the elastic
on-shell process.!” Since the first term of this operator is
just a constant factor, a spin correlation which vanishes in
the on-shell elastic process will vanish in O(1/k) for the
bremsstrahlung process. The second term, however, does
not vanish necessarily, since it depends on derivatives of
the correlation. The off-shell terms enter only in the third
term which is of O(k). Thus for such a bremsstrahlung
process one can choose a particular spin observable which
vanishes on shell and thus suppress the leading term and
ensure that the interesting off-shell contributions such as
those arising from amplitudes like a3 and a5 are
suppressed by only one, rather than two, powers of k. For
bremsstrahlung processes at least this seems to be about
the best one can do in terms of choosing a particular ob-
servable so as to isolate or emphasize the contribution of
the off-shell amplitudes.

V. SUMMARY OF RESULTS

It might be helpful to the reader if, after this somewhat
extensive discussion, we summarized the principal results
of this paper.

In this paper we have discussed the spin structure of
off-shell processes and the related question of how such a
structure can be determined from actual laboratory exper-
iments. The first task was to analyze the meaning of “off
shell.” In general, “off shell” refers to a process in which
energy and momentum do not satisfy the usual relations
which hold for a reaction with free particles. In relativis-
tic field theory such a situation is often referred to as
“off-mass shell.” In that case the four-momenta of a
four-particle process satisfy four-momentum conserva-
tion, but the relationship between the momentum and the
energy of at least one particle involves not the free mass
of that particle but an “effective” mass. Both momentum
and energy are conserved, but the magnitude of the initial
center-of-mass momentum is not equal to the magnitude
of the final center-of-mass momentum. In contrast, in
nonrelativistic scattering theory, we talk about “off energy
shell.” There the relationship between energy and
momentum is defined using the real free mass of each
particle, but the energy thus defined is not conserved,
though three-momentum is conserved. As in the previous
case, the magnitude of the initial center-of-mass momen-
tum is not equal to the magnitude of the final center-of-
mass momentum.

In view of these definitions, the off-shell M matrices
will differ from on-shell matrices in that each amplitude
will depend on additional scalar variables, there will be
additional amplitudes, and the amplitudes will show dif-
ferent simplifications under symmetries. In particular, in
both the relativistic-field-theory approach and the

nonrelativistic-scattering-theory approach the amplitudes
will depend on one extra scalar variable for each off-shell
particle. The number of additional amplitudes depends
on the approach. In the relativistic-field-theory approach,
if the particles involved are composite, the spin structure
becomes somewhat ambiguous. If, however, the particles
can be considered “elementary,” the number of indepen-
dent amplitudes can be calculated as follows. (1) deter-
mine the spin content (that is, S, S —1, S —2, etc.) for
each off-shell particle in the reaction; (2) calculate the
number of helicity amplitudes for each combination of
spin components and add these numbers; (3) for fermions
multiply the result in (2) by a factor of 2 for each off-shell
particle. These additional amplitudes vanish on shell due
to the subsidiary conditions. In the nonrelativistic ap-
proach, in contrast, the number of amplitudes off shell is
the same as the number of amplitudes on shell, as long as
there are no additional constraints from symmetries other
than Lorentz or rotation invariance.

Finally, consider the restrictions arising from the impo-
sition of additional symmetries. The constraints of parity
conservation are imposed in the same way on off-shell
amplitudes as on on-shell amplitudes. The constraints of
time-reversal invariance, however, are qualitatively dif-
ferent for on-shell and off-shell processes. Both in the
relativistic and nonrelativistic approaches, the time-
reversed off-shell process is different from the original
off-shell process (except for a tiny class of “pathological”
cases). Hence time reversal imposes no constraints at all
on the original off-shell process and thus does not reduce
the number of amplitudes. On shell, when the time-
reversed process is the same as the original process (which
is the case for a large class of reactions), there are con-
straints on the M matrix which reduce the number of am-
plitudes. In addition, if one uses the approximation of a
Hermitian T matrix, as, for example, in the Born approxi-
mation, one gets yet more constraints for the on-shell
case.

After establishing the structure of the amplitudes for
off-shell processes, the measurement of these amplitudes
is discussed in the context of real (on-shell) laboratory ex-
periments which ‘“embed” the off-shell processes. We
find the following. (1) It is not possible to make a
phenomenological determination of the off-shell ampli-
tudes embedded in a larger process without making some
model-dependent assumptions. (2) If one assumes a fac-
torizable embedding process and measures a sufficient
number of polarization quantities in the larger process,
one can completely determine the amplitudes of the em-
bedded off-shell process. (3) If the remainder of the large
process is soft photon emission, then the off-shell effects
appear, in general, only in the third-order term in the pho-
ton momentum, though for a judicious choice of experi-
mental observables this can be changed to the second or-
der, but not beyond that. (4) The situation is similar when
the remainder of the large process is a weak interaction.
(5) If the remainder is a strong interaction, the above
suppression is not in effect, but in that case our
knowledge of the embedding process is less reliable.

The above results are not only established in the paper
but also illustrated in a sizable assortment of examples.
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APPENDIX

The reduction of Rarita-Schwinger® fermion wave func-
tions under various constraint equations is herein ex-
plained.

The wave function @, .., us,
(=1,...,4) and S, four-vector indices u; (=0,...,3).
It is assumed to be symmetrized in the .S four-vector in-
dices, thus forming an Syth-rank symmetric four-tensor
coupled to a Dirac spinor, and therefore has

4X[(So+3)So+2)So+1)/6]
components. The traceless conditions eliminate
4X[(So+1)Sp(So—1)/6]

components leaving 4(.S,+ 1)> components, corresponding
to the reducible representation

(p) has Dirac index a

So So

[(3,0)8(0,5)]® )

To form an irreducible representation the auxiliary con-
ditions of Eq. (3.2) are imposed. The set of conditions,

(yﬂl)aﬁ(pﬂ,yl, . ’F‘SO:O ’ (A1)

is equivalent to

ga;O,pz, ooy =+(oy )abnb;k,y.z, by

(A2)
Na;0,p,, . .. ’”SOZ +(o% )abgb;k,pz, ek
where
Euy i,
Lo} (A3)

N

with @®..., a four-spinor, decomposed into the two-

spinors £... and 7..., and a,b=1 or 2. Hence the time

components ¥, ., are eliminated. Without the
0

traceless conditions there are
4X[(So+2)So+1)S,/6]

of these time components leaving
4X[(So+2)Se+1)/2]

independent space components; the latter is precisely the
number of components in the irreducible representation

So+1 Sp So So+1
2 72 27 2
Hence (A2) imposes 2S3(So+1) conditions on the

4(Sy+1)? components of the traceless D, , as stat-

Seeabs,

ed following Eq. (3.2). The trace conditions need not be

counted separately since the symmetry of Dy, g
0

under interchange of four-vector indices and condition
(A1) imply the trace conditions, viz.,

g#luz(bmvﬂz, ... ,l"s(,: %{yﬁ‘l,y"Z}q)“ppz’ eobsy
_ %y’uly“z(pﬂz'#l’ “obs,
+ %7’”27#1¢#1»ﬂ2’ reobs,
—0. (A4)

The on-shell conditions are one or the other of

(pFm)P 0, (AS5)

#l,-.-,us():
which relate the upper and lower two-spinors in the
manner well known from the Dirac equation

Euy . oms, - (A6)

Mey - .. :l‘s0=
Then half of the 2(Sy;+2)(Sp+ 1) space components are
eliminated. However, (A6) implies further restrictions on
the time components, and since the latter are already
dependent on space components there are further restric-
tions on the remaining (Sy+2)(Sy+ 1) space components.

With (A2) and (A6) used to eliminate 7, .., altogeth-
er we obtain two relations 0
_ P
§o,y2, ce ,pso— +o potm gk,pz, ks ’
(A7)
o' p
(otm) 50,»2,...,,15(): +0k§k,y2,,..,ﬂso .

Eliminating the time components leaves one relation
( Ff’f)))Pkgk,pz, . ,uso =P()(p0 tm )okgk,pz, e ,p.so . (A8)

Calling Z the direction of P we see that (A8) relates the up

(down) z or longitudinal component £,,, ... ., toacom-
0

down (up) transverse components
Since there are (So+2)(Sy

bination of
gx»l‘z: ce :#Soilgy:#z, ce )IJ’SO'
+ 1) space components before (A8) is imposed, there are

[(So—D+2][(So—1)+1]=(Spo+1)Sp
longitudinal components leaving
(So+2)Sp+1)—(So+1)So=2(Sp+1)

or [2(So++)+ 1] independent transverse components.
This latter is precisely the number of spin-(Sy+ 3 ) states
required for the on-shell fermion as claimed. The final

condition, p“‘q)#l,“_“us =0, of Eq. (3.5) gives no addi-
0

tional restrictions since p# =3 [y*(p£tm )+ (g Fm)y*] and
so it is not independent of the conditions (A1) and (AS5).
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