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Intermediate mass scales and electron —muon —tau-lepton universality
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Intermediate mass scales m and m& associated, respectively, with the violation of
electron —muon —tau-lepton universality and the parity restoration within the framework of Pati-
Salam groups SUt (2) XSUs(2) XSUc(4) and SUt (2) XSUs(2) X [SUc(4)] are discussed, assuming
that m & m& & m~, where m& is the usual partial-unification mass scale for Pati-Salam groups. It is
shown that, with m =8)& 10 GeV (a lower limit from the EI.-Es mass difference),
m~-m~ ——8)&10 GeV for the first case and m~ —m~-9&&10 GeV or m~ —m =8)&10 GeV,
m& ——10"GeV for the second case.

I. INTRODUCTION

If there are no gauge forces except those associated with
the group SUL (2) X U(1) X SUc(3), then there are only two
mass scales: the mass scale of the electroweak unification
mL —100 GeV and the grand unification mass scale
m~-10' GeV. There are two important questions: Is
there a "desert" between these two mass scales or are there
intermediate mass scales? If there are such mass scales,
how they can manifest themselves?

The parity violation characteristic of low-energy weak
processes may not hold up to the grand unification mass
scale of 10' GeV. The parity restoration may occur at an
intermediate mass scale mR « I&. If this is so, then the
weak group is enlarged' to SUL(2)XSU~(2)XU~ L(1);
the gauge forces associated with this group will give both
V —2 and V+A currents. The vector bosons associated
with V+A currents will be very massive and this interac-
tion will be effectively suppressed at low energies. Now,

M3g —
2 6(8 L) implies th—at the breakdown of parity

and the breaking of local (8 L) symmetry —are related
and occur at the mass scale of IR. In such a case, this
mass scale may manifest itself in the AS=2 and ~1.=2
transitions, in particular n-n oscillations. For free n-n
oscillations, t„„-)10 sec implies intermediate mass scale
mR)10 GeV.

If the Abelian group U(1) is embedded in SUc(4) as in
the Pati-Salam group, then one can define a partial-
unification mass m~ associated with the partial-
unification group Gps =SUL (2) X SUg (2) X SUc(4). With
fractionally charged quarks, the proton is stable in this
model. The model gives ' nz~ ) 10' GeV for sin

0~ &0.25. As such, this model has no observable conse-
quences. However, if the residual color symmetry is
[SUc(3)] =SUFI. (3)XSUc~(3), then it is natural to ex-
tend Gps to

Gps SUL (2) X SU~(2) X [SUc(4)]

Recently we examined this model. In this model, we get
300&IR & 10 GeV for 5&10' &mz) 3&10' GeV.
Such a model has observable consequences.

So far we have assumed that e-p-~ universality holds
up to rn&-10' GeV. It is conceivable that this univer-
sality may not hold up to such a high energy. In this
case, we have another intermediate mass scale associated
with the violation of this universality. The purpose of
this paper is to consider such a possibility. For this pur-
pose, we consider the partial-unification groups
Gps =G k XSUc(4) or Gps ——G k X [SUc(4)], where

G k
——+ [SUL (2) X SUg (2)];

i gLi

and i is the generation index (i =e,p, r, . . . or 1,2,3, . . . ).
We shall assume the discrete symmetries

e+-+p~+,

gLe gLp gLr r

gRe gRp gR& ~

and I.~R symmetry

gLi =gRi =gP

The partial-unification symmetry is spontaneously broken
by the following chains:

Model A: Gps + [SUL (2)XSU~(2)];XU (1)XSU (3)
i

Q[sU (2)xU(1)];xSU (3)
m&

~[SUt. (2) X U'(1)] X SU, (3)—+UEM(1) XSUC(3) .
mL
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Model B: Gps~ Q [SUL (2) X SU@(2)];XUg I (1)X [SUc(3)]

~ + [SUL(2)XU(i)];X[SUc(3)]'
m&

~ [SUI.(2) XU'(1)] X [SUC(3)]

ml
UFM(1) X [SUc(3)]' .

The mass scale for the violation of e-p-w universality is
determined by the flavor-changing currents associated
with the P vector bosons (see Sec. III). The KL -Kz mass
difference gives the following bound on mz (m, being the
mass of the charm quark):

GF(GFm, ')
Gg 2my 16m.

my )4)&10
mp

It is therefore reasonable to take m =8&(10 GeV.
With this value of m, we find the following results (nu1n-
bers of generations f=3):

C 2 2
I 3

Qp2;= 4
( —", f+ ', f),——

gp„=p =
4m

P1= ( —f—»4 2
3 3

For model A: (mx=m~)=7. 8X109 GeV .

For the model 8: (mz ——mz)=8. 7X10 GeV .

Another interesting possibility is to take mz —m =8 Q 10
GeV. This is possible for model 8 only since for model
A, this choice would make m& much larger than the
Planck mass. Thus for model 8, there is the possibility
that.

mz —m =8&10 G-eV, m&-10" GeV,

With respect to the third equation above, note that for
each generation (i.e., for each i)

p2;= ( ——, + —, )
22 4

4m.

and we take sin 8~——0.23, a '(ml. ) = 128, a, (ml. )
=0.14, mi ——80 GeV, 0~ being the weak mixing angle. e
is the fine-structure constant, 0., is a similar constant for
QCD, and f is the number of generations.

From Eqs. (1) and (2), we obtain

independent of the number of flavors. —1 2 a(mL, )
a (ml ) (1—2sin 011 ) —C, a, (ml )

a(ml )a (mL ) (1—2S111 gp ) —Ci a, (mL~

= —2C1 p3ln
mg m~+2p1ln
mI mg

mg fPl—2 g (P2; —P1; )ln —2(Pq —P')ln-
m mL

where

Using the renormalization-group equations, as shown in
the Appendix, we have for model A

11 mxma
ln . (3)

m~'m f-'
This is the basic formula for intermediate mass scales

for model A. We shall use it for the case m~ ——m~. In
this case, we have one intermediate scale m related to
violation of e-p-r universality and partial unification
occurs at the same mass scale at which parity restoration
is set in. This is an interesting case. For this case

a(ml )a '(ml ) (1—2sin 011 ) —C1 a, (mL)

m ~f+'
ln , . (4)mf mI
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For model B (cf. the Appendix), the mass scales are given
by

a(mL )a-'(m, ) (1—2 sin'e~) —2C, ' a, (mL )

For model 8, we get

f=3: (m~ ——mR ) =8.7 X 10 GeV,

f=4: mx-4X10 GeV, (10)

=2(pi —2Ci p3)ln

where

11+ ln f=S: mx=2. 3X10 GeV .

If, however, we take mR ——m =8X10 GeV, Eq. (7) gives
mz-10" GeV.

P'3= ( ", + —,' f—) . -
4m

From Eqs. (5) and (6), we have

—1 2 a(mL )a (mL ) (1—2 sin 8~)—2Ci
a, (mL )

11 mx mz
ln

m f-'m~3

Again for the case mz ——mR, we have
1

—1 2 , a(mL)a (mL ) (1—2sin 8~)—2C, a, (mL )

(6)

(7)

III. INTERACTION LAGRANGIAN
AND SYMMETRY BREAKING

+3
~(1)

d2 d3
(2, 1, 1, 1, 1, 1,4),

L

C1 C2 C3 Vp
(1,1,2, 1, 1, 1,4),

$1 $2 $3 P

The fermions in this model are assigned to the follow-
ing representations of the group ops ——6~i, X SUC(4):

m f+'
3~ mf —1 3

(8)

The results obtained from Eqs. (4) and (8) for m~/mL
for models A and B are given below with m =8X10
GeV. For model A,

f=3: (m~=mR)=7. 8X109 Gev,

f=4: mx-1. 23X10 GeV,

f=5: m~-3. 64X10 GeV.

t1 t2 t3 V

IL '
b b b

(1,1, 1, 1,2, 1,4) .
1 2 3

Similar expressions hold for right-handed multiplets ex-
cept that v~N. We have exhibited the fermions for three
families of generations. In this section we will confine
our discussion to families of three generations only.

The interaction Lagrangian for this group (omitting the
QCD terms which remain unchanged), is given by

~int g(JLp ~Lp+JRp IIRp+H c )+ g(J3 ~3Lp+J3RpII 3Rp)

~ y (u „"ypu„"+d"ypd,")&p+ y (vL'ypvL'+N R'ypNR'+e "ype")&p

g (i) (i) —(i) (i) (i) (i)$ (unL YpvL Jtnp+u nRypNR +np+d n Yp +np+H. C

n, i

Here i is the generation index and n is the color index.
Dropping the subscripts for the moment, we define the physical weak vector bosons as

3 2 6

In terms of the above vector bosons, the weak-interaction Lagrangian is given by

~illt ~ y (JLp ~Lp+ JRp ~Rp+H c ) + y (J3Lp~3Lp+ J3Rp~3Rp)

—gi —, g (u n"ypun" +d «"ypd«") —, g (v L'yp—vL'+N R'ypNR'+e "ype") B
n, i

+ (JL„" JL„")YZ p+(L ~R)+H. C—. + [(J3Lp J3Ip ) I'3Lp+ (L~R)1p p p 2 2



2592 FAYYAZUDDIN AND RIAZUDDIN 29

+ [(Jg+p' 2—Jg+„'"'+Jg+„")YI q+(l. ~R)+H.c.]2 6

+ — - [(J3'II 2J—Pi'I, +J'3'II »'3I.„+(I~&)] .v2 v6 (13)

Here we have put g&
———,g and

+(i) ~ (i) (i) —(i) (i)
JLp ~ ~ +nL7pdnL++eLj peL

(i) ~ (i) (i) (i) (i) (i) (i) (i) (i)31' ~ g (unL YpunL dnLV pdnL )+(vt. YpvL el. 1 pej

i =e,p, ~, and similar expressions hold for the other
currents.

Redefining g2/v 3=gL, the first three terms give the
usual weak-interaction Lagrangian in a left-right-
symmetric model involving &L, 8'&, ZL, and Zz. The
terms involving Y, Y' bosons violate e-p-~ universality.
These are new terms.

We now brieAy discuss the spontaneous symmetry
breaking of Gps. For model A, we introduce a set of
Higgs bosons as follows.

Case (i) (Majorana neutrinos):

Sg"=(1,3, 1, 1, 1, 1,10),

SR '=(1,1, 1,3, 1,1,10),

S~ '=(1, 1, 1, 1, 1,3, 10),

+ 2 2 2 2 2 2m~ - g2 Ic
& my g2 v

L R

+ 2 2 2-g2 V

2 2 2 2 2 2mx -g v ~ mr~ -g2&

Thus we have the symmetry-breaking pattern as in Sec. II:

(m~=mz) &&m &&mI

with u »v »~ (m here refers to the lightest of Y's,
i.e., YL).

For case (ii), viz. , Dirac neutrino, replace Sz'I by Nz'L,
where +z'L belong to the following representation of Gps..

@g ' ——(1,2, 1,1, 1,1,4)

and similar expressions for 4& ', Nz ', and NL' with

and similar representations for SL', with (SAN+44' ) =0:

P' '=(1,1,1,1,2,2, 1),

The above Higgs system is the usual one for Gps general-
ized here to

The other Higgs fields remain unchanged.
For model 8, we introduce the following Higgs sys-

tem'

X=(1,1, 1, 1, 1, 1,4,4), (X ) =c;
S~"=Sg'——(1,3, 1,1, 1, 1, 1, 10)

and similar expressions, for Sz ' and S~ ' with (S~ 44 ) =u

and (S,+~~'
& =0;

~'"=(2,2, 1, 1, 1, 1,4,4)

and similar expressions for ~' ' and ~' ' with

G k
——+ [SUI (2)XSUR(2)]; .

We now introduce a new Higgs multiplet XL', Xz' be-
longing to following representation of Gps.. and

m") 0
~la

L

XL"——(2, 1,2, 1,1, 1,1),
X~~

' ——(2, 1, 1,1,2, 1,1),
Xl"——(2, 1,2, 1, 1, 1, 1, 1)

and similar expressions for XL ', XL ', and Xz' with

In this way, we get the masses of vector bosons as

(X,")=, , (X'. ) =o.
V2 01

This Higgs-field system will reproduce the symmetry-
breaking pattern for model 8 discussed in Sec. II. For the
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possibility mR —m in this case, we can make mz higher
by making c »v .

IV. CONCLUSION

%'e conclude that by taking into account the possible
violation of e-p-~ universality, it is possible to reduce the
partial-unification mass scale mx. But the mass scale mR
is greater than or equal to m, viz. , mR )8X 10 CieV. On
the other hand, mR can be made as low as 300 GeV for
model B, if it is assumed that e-p-r universality holds all
the way to m~-5&10' GeV.

mR
aL; '(m ) =a2 '(mR )+2p2;ln

m
(A 1 1)

couplings are

al (ml )=a (ml )s111 8g (mL )=a s111 8gr
(A10)

a' '(mL ) =a 'cos 8~,
the relations implied by Eq. (A4). To relate the unknown
couplings in Eq. (A3) with the known ones, we make use
of the renormalization-group equations
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APPENDIX

a' '(ml ) =a' '(m )+2P'ln
mL

(A12)

In this appendix we give the derivation of Eqs. (1) and
(5) of the text. Note first that in the symmetry limit we
have the independent coupling constants

where P functions are given in Eqs. (2) of the text. Equa-
tions (A12) and (A10) then give

a '(sin 811 cos 8—11 )=aL '(rn) —a' '(m)

g4=g) gi.i) gRs ) (Al)

where for the latter two we shall use the discrete sym-
metries mentioned in the text. Now note that we have the
following relations for the electromagnetic coupling con-
stant e:

a '(mR)= gal; '(mR)+ yaR; '(mR)

+2(p2 —p')ln
mL

Now from Eqs. (A7) and (All) we have

aL '(m)= gaL; '(m)

(A13)

+a1 '(mR ), =fa1 '(mR)+2+ p1;1n (A14)

a '(m)= gaL; '(m)+ gai; '(m); (A3) while Eq. (A6) gives

a '(ml ) =aL, '(ml. )+a' '(mL, )

with

g aRi (mR )+al (mR ) g ali (mR )

(A4)

(A5)

a' '(m)= ga1; '(m)

= g ai; '(mR )+2+p1;ln

where

a„—' m =a'-' m

Al m =cxI m

(A6)

(A7)

Using Eq. (A9), this gives

mRa' '(m }=fa2 '(mR )+a1 '(mR )+2y p];in

.2 2
gr i gRs

Rl

2 2
gL, gi, g'

Qy= ) Q
4~ 4m 4~

Using the discrete symmetries mentioned in the text, Eqs.
(A2) and (A5) become

so that from Eqs. (A13), (A14), and (A15) we have

a '(sin 8R —cos 8R )

—1 mR= —a1 (mR )+2g (p2; —p„)ln

(A15)

a '(mR)=2fa2 '(mR)+a1 '(mR),

y a$; '(mR ) =fag '(mR )+a1 '(mR ),
(A8)

(A9)
+2(p2 —p') ln

mL
(A16)

where f is the number of generations. Now the known
The only unknown coupling now is a1 '(mR). To elim-
inate this, we have for model A,
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a, '(ml ) =aG '+2P3ln a(mL )a '(mL) (1—2sin 0~)—2Ct
a, (mL)

a) '(m~)=Ct aG '+2P, ln
m~

where we have made use of the fact that in the symmetry
limit g3(mx) =g, (mx) =g and gt(mx) =C~ jg. From
Eqs. (A16) and (A17), we get Eq. (1) of the text.

For model B, as shown in Ref. 7, we have to simply re-
place Ct by 2Ct and P3 by P3 in Eq. (A17) so that Eq.
(A16) then gives in this case

mz mx= —4C& P3ln +2P~ln
mL mg

mg m—2(Pp —P')1n
m mL

(A18)

Substituting the values of P functions in (A18) we get Eq.
(5) of the text.
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