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We reexamine the two-component duality of Harari and Freund (HF) following some suggestions
that it may possibly be wrong in its present form. Assuming the dominant contributions to the
Pomeron come from multiparticle exchanges in the s channel, the Pomeron is constructed by the use
of conformal mapping and polynomial expansions. The P+f model constructed with this Pomeron
and the standard Regge poles shows good agreement with the experimental data for total cross sec-
tions and the ratios of real to imaginary parts of the forward scattering amplitudes of pp, mp, and
Ep. The analysis admits strong exchange degeneracy implying consistency with HF duality. This
Pomeron, however, represents the totality of vacuum-exchange contributions, rather than a single
exchange characterized by a simple pole in complex J plane.

I. INTRODUCTIGN

Recently there has been some controversy regarding the
validity of Harari-Freund' (HF) duality. Dash, Jones, and
Martin in a series of papers have shown that the HF du-
ality in its present form is wrong and should be modified
to read

& Imftt &
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They come to this conclusion by reanalyzing the
phenomenological fits obtained by several groups of work-
ers. However, they have stressed fits which use Pome-
rons with monotonic energy dependence, which violate the
Froissart bound. On the other hand, a pure data analysis
for KX scattering by Roberts, Roy, and Gavai shows that
the Pomeron is most likely to be nonmonotonic and hence
does conform to the hypothesis of exchange degeneracy,
which, in turn, is consistent with HF duality. They have
chosen different expressions for o.p, the Pomeron contri-
bution to the total scattering, and have shown that the one
that curves up at low energy does account for the lowest

Recently the present, authors analyzed pp and pp data
on the total cross section, the ratio of real to imaginary
parts of the forward scattering amplitude, and the forward
slope parameter on the basis of the p+f model. To ob-
tain the Pomeron part of the scattering amplitude, the HF
conjecture that the major contribution to the Pomeron
comes from the s-channel background was assumed. The
s-channel background, in turn, was assumed to get dom-
inant contribution from the s-channel branch cuts. The
branch-cut contribution was obtained by using conformal
mapping and a polynomial expansion. Imposing the
Froissart bound on this, we obtained results which were in
good agreement with the experiment. The Pomeron, so
obtained, also curves up at low energy and is found to be
consistent with exchange degeneracy and HF duality.

The purpose of this paper is to repeat the calculations
for pp, ~p, and kp processes to obtain expressions for total
cross sections amplitudes and ratios of real to imaginary
parts of the forward amplitudes and demonstrate that (i)
HF duality is correct in its present form and (ii) the
present high-energy data can still be consistent with the
Froissart bound. For pp and kp we show the existence of
strong exchange degeneracy, which is consistent with du-
ality. For mp the Regge amplitudes are extrapolated to
resonance region and compared with the resonance ampli-
tudes obtained by phase-shift amplitudes. The agreement
with duality predictions is very good.

In Sec. II, we derive the expression for the forward
scattering amplitude and obtain expressions for a T and p.
In Sec. III, numerical calculations are presented and the
results are compared with experiment.

II. THE SCATTERING AMPLITUDE

%'e assume the spin and isopin effects to be small at
high energy and normalize the scattering as

If(s t) I'

crT Imf (s,O) . ——
We also define

p=Ref(s, O)/Imf(s, O) .

The scattering amplitude consists of two parts —a
Pomeron part and a Regge part:

f(s, t)=f~(s, t)+f„(s,t) .

For f~(s, t), we adopt the form given by Collins, Gault,
and Martin
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FIG. 1. s-channel cut structure for pp scattering.

f~(s, t)=v 2Gz(se '
)

This is the contribution of an exchanged pair of Regge
poles. For pp and kp the desired pair is I" co and for—mp

it is P'-p. We also separately investigate the my case when
P' and p are not taken to be exchange degenerate.

As indicated in the Introduction, we obtain fz(s, t) by
assuming that the Pomeron gets dominant contribution
from the branch cuts in the s channel. As we are in-
terested only in the forward amplitude, we put t =0 and
write f(s) for f(s,O). For pp, f(s) has branch cuts from
s =4m to Oo and from s =4(m —p ) to —oo, where m
and p are masses for proton and pion, respectively (Fig.
1).

Now our method for parametrizing branch-cut contri-
butions is to bring the whole of analyticity domain inside
a regular region by a suitable conformal mapping and
then expanding fz(s) in a series of suitable polynomials of .

the mapped variable. This method has been used earlier
by Frazer, Levinger and Peierls, and Greenberger and
Margolis' to analyze scattering and form-factor data.
These authors used the Taylor expansion, but polynomial
expansion could also be used. In this connection, a gen-
eral result can be stated as follows: "A series of Jacobi
polynomials converge in an ellipse whose foci are at +1
and every function which is analytic in such an ellipse can
be expanded in a series of Jacobi polynomials. In the case
of Lagurre polynomials the region of convergence is a
parabola around the positive real axis with its focus at the
origin, and in the case of Hermite polynomials the region
of convergence is a strip whose central line is the real axis.
In both cases the region of convergence is unbounded and
an analytic function which is to be expanded must satisfy
certain growth conditions in addition to being analytic in
an appropriate region. " For our case we know that the
forward amplitude grows logarithmically at high energy

and we assume that it will continue to increase saturating
the Froissart bound. Such a growth rate can be incor-
porated by taking an expansion in Lagurre or Hermite po-
lynomials. For the present situation, the expansion in the
Hermite polynomials is more suitable. The corresponding
mapping which brings the whole of the analytic domain
inside a strip along the real axis (Fig. 2) is

s —4m +2pz = —l arcsln
2p

For large s,
r

(8)

This shows that the present variable is closely related to
the ususal Regge variable [(s/so)e ' ~ ]. With the map-
ping (7) we write

2

fq(s) = g a„H„(z) . (10)

Correct high-energy behavior can be obtained if we choose
the constants as purely imaginary. Then

f (s)=i(bo+b)z+bpz ),
where b s are real constants. However, we can check that
fz(s), so obtained, is not real analytic. To make it real
analytic, we can include additional terms which do not
destroy analyticity, but vanish at high energy restoring
positivity. A modified expression for fz(s) can then be
written as

fq(s) = g a„H„(z) .
n=0

However, the knowledge of the Froissart bound and Eq.
(8) restricts us to terminate the series after n =2. Then
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f~(s) = g C (~)(~~)"
n=0

In particular CIn ', C2(s) must bee dominantly imaimaginary at
a eo tainedb m applng
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or expansion:
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1/2

1 - 1z'= —+i 1—
X

fJ(s)=+Co z + i g C~ z' z
m odd m even

gc, z'
m odd

(16)

s —4m +2p
X =

2p

This, however, will have several parameters which will

spoil the beauty of the model. Thus, we restrict to the
minimum set of parameters and have

The most general form for the amplitude with all the
desired properties is given by

fq(s) =(Co) —C2tz )z +iC)oz

Correspondingly,

(16a)

Gg (1 P)—
+ Co1 —C21 y

WS
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scattering amplitude for pp.

FIG. 7. Ratio of real to imaginary parts of the forward-

scattering amplitude for m.+p. The upper curve describes the fit
without assuming P'-p degeneracy.
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TABLE I. Values of the parameters.

Processes in mb

29.17
36.25
10.8

0.99+0.01
0.12+0.01
1.0 +0.02

0.5
0.5
0.5

Col
in mb

80.
17.022
20.248

C10
in mb

—9.255
—.5539

—1.4969

C2i
in mb

—0.529
—0.1581
—0.2277

X'/DF

46/47
30/34
27/26

where we have (for s & 4m )

and

z =y i vr/2—

y =In(x++x —1) .

(19)

The corresponding quantities for pp can be obtained from
these equations by writing —P for P. These equations
also hold true for mp and Kp with different parameters
and different expressions for x.

For mp [s & (m +p) ],
s —(m+p) +2m@

X =
2Hz p

For Kp [s & (m +M) ],
s —(m +M) +2mM

2IM
where M is the kaon mass. Equations (17) and (18), along
with (19)—(22), are the main results of this paper.

At this point it will be worthwhile to note certain
features of our analytic parametrization As .our prime
suggestion in this paper is that the Pomeron gets dom-
inant contribution from the s-channel branch cuts it is
necessary that the contribution should be accurately
parametrized. The present parametrization achieves the
following objectives.

(a) It is more convergent. This has been discussed ear-
lier and had also been treated by many authors.

(b} It retains explicit analyticity in parametrized expres-
sion. (One can get a par ametrization even without

analyticity, but it will be rather ad hoc in nature. ) As a
bonus we obtain the explicit Regge-type energy depen-
dence.

As it incorporates analytic structure explicitly, the re-
sult can be easily extended to low energy although our
prime motivation has been the high-energy behavior. The
reality condition, being independent of analyticity, has to
be incorporated separately. This we do by including addi-
tional terms with proper analyticity, which restores reality
and vanishes at high energy.

Regarding the Regge part of the amplitude, we have
used a standard form. It is assumed that the Regge am-
plitude is well understood and is correct. In fact, our
motivation is to check the validity of HF duality with the
standard Regge amplitudes. Our model does not contain
poles (resonances), but their effect is being described in an
average sense by the Regge amplitude through duality.

III. COMPARISON WITH EXPERIMENT

The total cross sections for all the processes are plotted
in Fig. 3 (data from Ref. 11}. Very-high-energy (including
cosmic-ray and CERN SPS) data for pp and pp are plotted
in Fig. 4 (data from Refs. 11 and 12). For these plots we
have used data with center-of-mass energy more than 5
GeV (Ref. 13). For the parameters, the values of Gz p are
obtained from the Ao.T fits. From the particle-particle
cross-section fits the values of Gg (1—p) Co] C&0 and
C2~ are obtained. The values of the parameters are given
in Table I. The parameters for the antiparticle cross sec-
tions are the same except that p changes sign. With these
parameters, the p's for the different processes are plotted
in Figs. 5 —10 (data from Ref. 14).
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FIG. 8. Ratio of real to imaginary parts of the forward-
scattering amplitude for m. p. The upper curve describes the fit
without assuming I"-p degeneracy.

FIG. 9. Ratio of real to imaginary parts of the forward-
scattering amplitude for K+p.
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lins et al. and looks most appropriate if one observes the
Chew-Frautschi plot of these trajectories. ' However,
charge-exchange scattering suggests az(0) to be close to
0.57. Confronted with these alternatives, we first do our
analysis with P'-p degeneracy. Although this describes
data with s ~ 25 GeV quite well, the agreement below 25
GeV is rather poor. Then we repeat the ~p analysis
without P' pde-generacy and fixing az(0) from b.o fits,
but keeping a~&(0)=0.5 consistent with pp and kp pro-
cesses. This enables us to get agreement up to s =9 GeV .

We write

FIG. 10. Ratio of real to imaginary parts of the forward-

scattering amplitude for E p.

+ Gq Gp
+T — +. . . +Imfp(s), (23)

The elastic E+p and pp channels are exotic channels.
As there are no poles or resonances in these channels, du-
ality predicts that the imaginary parts of the Regge ampli-
tudes are zero, implying that P=l. The best X fits from
our analysis give P= 1+0.02 for X+p and P=0.99+0.01
for pp. Both the processes, within the error limit, agree
with duality. For mp, P=0.12+0.01. This is not an exot-
ic channel, so a simple analysis like those for pp and kp
cannot be undertaken here.

For these analyses we have taken all the trajectories to
be degenerate with a(0) =0.5. This value is used by Col-

where Gz and az(0) are obtained from the go.T fit and G,
from the o T(m+@) fit. The parameters are

Gg ——23.676, Gp
——3.683,

Cp) ——30.046,

C)p ———3.307,

C» ———0.31517,

(24)

with g /DF=46/43. The cross sections are plotted in
Fig. 11. The corresponding p curves are also shown in
Figs. 6 and 7. In Fig. 12, we plot the Regge part of
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FICx. 11. Total cross sections for pm+. Here P' and p trajectories are not degenerate.
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tained from the several phase-shift analyses. ' ' Here
also we find very good agreement with duality.
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FIG. 12. Comparison of extrapolated Regge amplitudes with
resonance amplitudes obtained from phase-shift analyses. All
the entries in this diagram except k are reproduced from the
first paper of Ref. 2.

IV. CONCLUSION

Assuming the dominant contribution to the Pomeron
comes from the multiparticle exchanges in the s channel,
we have obtained a new model for the Pomeron. VA'th
this our P+f model works very well and has very good
agreement with experiment. The model also obeys the
Froissart bound. However, the Pomeron, so obtained,
represents the totality of the vacuum-exchange phenome-
na in the t channel and is not merely a simple pole in the
complex j plane. %'e conclude that the HF duality is
correct in its present form provided that the Pomeron
represents the totality of vacuum-exchange phenomena in
the t channel.
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