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We consider the possibility that the bag radius of the nucleon is of the order of the proton Comp-
ton wavelength. We explore this possibility for the cloudy-bag-model Hamiltonian when the in-
teraction between the intrinsic isobar source and the pion field is turned off. Because of the large
pion-nucleon coupling for a small bag radius, we apply the strong-coupling approximation to this
model. Unlike other models of the nucleon with a small bag radius, our approach emphasizes the
quantum-mechanical behavior of the infinitely many degrees of freedom of the pion field in the
dressed nucleon wave function. Considerable attention is given to the approximate analytic solution
of the strong-coupling part of the cloudy-bag-model Hamiltonian, which is a collective Hamiltonian
involving nine coupled quantum-mechanical oscillators. An important feature of the model is the
existence of collective excitations of the dressed nucleon which are rotational and vibrational excita-
tions in spin and isospin space. The lowest-lying collective state is a spin and isospin rotational exci-
tation which is identified with the 6, while the N is a vibrational excitation. The approximate ana-
lytic expressions for the low-lying baryon wave functions facilitate the actual calculation of some
static properties of the baryons such as masses, magnetic moments, charge radii, etc. We find for a
bag radius R =0.32 fm that the average number of pions in the dressed nucleon state is roughly 6.
Furthermore, the overall agreement between the model and experiment is roughly 30%; however,
the charge radius of the proton is too small. Some speculative ideas for improving the model are
discussed.

I. INTRODUCTION

Over the past few years, chiral bag models' have been
a testing ground for improved models of the nucleon
which incorporate quark, gluon, and pion degrees of free-
dom. The models presumably simulate at short distances
the perturbative behavior of quantum chromodynamics,
and at intermediate and large distances features of pion
dynamics such as pion exchange, which is important for a
proper description of nuclear-physics phenomena. While
the pion is known to play an important role in the
nucleon-nucleon force, its role qualitatively and quantita-
tively in nucleon structure is unclear at present. Conse-
quently, there are several models which attribute more or
less dynamical significance to the pion in nucleon struc-
ture.

At one extreme, the original version of the MIT bag
model neglects explicit pion contributions to baryon spec-
troscopy. While the model does reasonably well
phenomenologically, there are conceptual and practical
problems in connecting this picture with the conventional
approach to nuclear physics. The nucleon and pion have
large bag radii in this model, say 1 fm, so that for a
description of nuclear systems the individual nucleon and
pion bags melt and the nucleus is an interacting system of
quarks, gluons, and quark-antiquark pairs. Presumably,
the single-particle nature of nuclear systems is a conse-
quence of the strong color-singlet clustering of quarks
within the nucleus. However, an important feature of this
picture is the large number of explicit degrees of freedom
and hadronic channels which are dynamically involved.

In contrast, the conventional approach starts from the
nonrelativistic Schrodinger equation in which the nucleon
degrees of freedom are explicit and the interactions are
described by two- and three-body potentials. The reason-
able success of this approach indicates that a model
description of nuclear systems based upon quark and
gluon degrees of freedom should involve a smooth con-
nection with the conventional approach to nuclear phys-
ics. A way of incorporating this feature is to suppress the
quark and gluon degrees of freedom by shrinking the bag
size. This choice attributes more dynamic significance to
the meson degrees of freedom for a description of the
long- and intermediate-range part of the nucleon-nucleon
force and for a quantitative understanding of nucleon
structure.

At an intermediate level, the cloudy bag model (CBM)
assumes that the bag size is smaller than in the conven-
tional MIT model, say 0.8 & R & 1.0 fm, and that the pion
coupling to quarks can be approximately described by a
local pion field. It is unclear at a quantitative level when
a local-field approximation is valid, but presumably if the
low-momentum components. of the pion degrees of free-
dom couple to the quark core of the nucleon, the internal
structure of the pion can be neglected. The role of the
pion in this model can be understood by considering the
dressed nucleon wave function. For sufficiently large bag
sizes, the strength of the meson-baryon interaction is
weak, and truncation at the one-pion level in perturbation
theory is valid for the nucleon self-energy and wave func-
tion. The lowest-order approximation to the nucleon state
is a quark-shell-model state or bare nucleon state, and the
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small corrections correspond to a bare nucleon plus a pion
and a bare 6 plus a pion. These small corrections change
both the quantitative and qualitative description of the
proton and neutron magnetic moments. For example, in
the conventional MIT bag model, the ratio of the proton
and neutron magnetic moments is fixed by group proper-
ties. However, their magnitudes change with the bag size.
In the CBM, both the ratio and magnitudes of the mag-
netic moments change with the bag size. Furthermore, as
the bag radius decreases, the magnetic-moment contribu-
tion from the quark core decreases and the pion contribu-
tion increases.

While the CBM model has had reasonable success
phenomenologically, the validity of perturbation theory
for bag sizes such that R & 0.9 fm has been recently ques-
tioned.

At another extreme, the little-bag model (LBM)
developed by Brown and collaborators, assumes that the
bag size is of the order of the proton Compton wave-
length. This choice has the desirable feature of a smooth
connection with conventional nuclear physics and treats
the quark core of the nucleon and the pion both as small
systems. According to Brown and collaborators, a
classical-field approximation to pion dynamics for chiral
bag models is valid for a small bag radius. In their treat-
ment, the lowest-order approximation to the nucleon wave
function does not depend upon the infinitely many
quantum-mechanical degrees of freedom of the pion field.
However, in reality one wants to approximately solve the
Schrodinger equation. And if a classical approximation
to the pion-field energy of the system makes sense, then
the behavior of the wave function should be such that the
quantum pion field is well localized about the classical
field. For example, the wave function should depend on
the quantum pion field in such a way that the field fluctu-
ates in a narrow Gaussian manner about the classical
field. However, the wave functions of Brown and colla-
borators do not exhibit such behavior and therefore do not
satisfy requirements one would expect for a system whose
pion-field energy is approximately classical.

Unlike Brown and collaborators, we have found' for
small bag sizes or strong coupling that the dressed nu-
cleon wave function must depend on the infinitely many
degrees of freedom of the meson field. In fact, the classi-
cal approximation is inadequate for a quantitative discus-
sion of static-source meson field theories, such as the
CBM and LBM, when the bag radius is small. It is essen-
tial to employ a nonperturbative quantum-mechanical
computational scheme. As we have pointed out, ' for
strong coupling the average number of mesons which
dress the bare nucleon can be large, and the bare-4-plus-

I

meson-clo"d component in the dressed nucleon state can
be substantial. Furthermore, the meson cloud can be col-
lectively excited so that excitations of the dressed nucleon
exist. These features reflect the important role the meson
degrees of freedom play when the bag radius or source
size is small.

The basic idea of the strong-coupling approximation is
to choose a basis expansion for the pion field such that
the full Hamiltonian separates into a strong-coupling part
which is treated precisely and a weak-coupling part which
is treated perturbatively. While the essential idea behind
the strong-coupling approximation is not new, " ' we
have been able to treat the unperturbed Hamiltonian
quantum mechanically for strong coupling and show
quantitatively that the perturbations from the weak-
coupling part are in fact small. Furthermore, we have
been able to solve the meson-nucleon scattering problem'
by employing the reaction theory of Feshbach.

In this paper, we extend the application of the strong-
coupling approximation to the CBM Hamiltonian when
the interaction between the intrinsic isobar source and the
pion field is turned off. We do not present precise numer-
ical consequences; however, we discuss results which can
be verified semiquantitatively. This has an advantage;
namely, we can obtain analytic expressions for strong-
coupling wave functions and energies from the model
Hamiltonian. In addition, we outline a systematic method
for correcting the strong-coupling approximation to wave
functions and energies and we analyze qualitatively the ef-
fects produced by the small perturbations. Finally, we
discuss the consequences of the strong-coupling wave
functions and energies by calculating some static proper-
ties of the low-lying baryons.

The plan of this paper is as follows. In Sec. II, we de-
fine the Hamiltonian and briefly discuss the strong-
coupling approximation. In Sec. III, we discuss the ap-
proximate treatment of the strong-coupling part of the
Hamiltonian and we verify our results semiquantitatively.
In Sec. IV, we outline a systematic method for correcting
the strong-coupling approximation, and we discuss quali-
tatively the effects produced by the small perturbations.
In Sec. V, we present results for some static properties of
the low-lying baryons. In Sec. VI, we present our con-
clusions and a discussion of future work on improving the
model.

II. THE HAMILTONIAN
AND THE STRONG-COUPLING APPROXIMATION

Since the strong-coupling approximation has been
described elsewhere, ' we will be brief in setting up the
problem. The Hamiltonian of interest is of the form

H =Ma+ —,
' g f d rtvr (r)+P (r)( —V' +m )P (r)]—g' 'go;~ f d r U(r)B;P~(r),

at
(2.1)

where Mo is the bare mass,

g"'=&4~f~~ ~m

l

is the pion mass, and U is the source function given by

(2.2)
with f~z„ the bare pion-nucleon coupling constant, the o';
and ~ are the usual Pauli spin and isospin matrices, m where V=4m'. /3. The fields obey the usual commuta-
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J = g f d r Pa(r)(r X V')ma(r)+—
2

(2.4)

and isospin rotations with total isospin given by

I= f d'r P(r)X~(r)+ —.
2

(2.5)

These operators will become important when we construct
approximate eigenfunctions of the Hamiltonian in Sec.
III.

An essential feature of the model Hamiltonian in Eq.
(2.1) is the dependence of the interaction energy on the
bag size, namely, as the bag size decreases the interaction
energy increases so that the coupling is strong. The basic
idea of the strong-coupling approximation" ' is to ex-
tract the largest part of the interaction energy by choosing
a basis expansion for the pion field such that the fu11
Hamiltonian separates into a strong-coupling part which
is treated precisely and a weak-coupling part which is
treated perturbatively. This is accomplished by decom-
posing the field and its canonical momentum into two
orthogonal parts, namely,

tion rules given by

[m. (r),Pp(r ')]=—i5 p5'(r —r ') . (2.3)

Note that the model has three free parameters, Mo, fg&
(see Ref. 14), and the bag radius R. In the discussion to
follow, the model Hamiltonian in Eq. (2.1) and the source
function in Eq. (2.2) correspond to CBM when the in-
teraction between the intrinsic isobar source and the pion
field is turned off. In terms of CBM, the quark states are
restricted to the bare bag proton and neutron subspace.
This implies that the underlying currents, say, the elec-
tromagnetic currents, contain quark and pion contribu-
tions. We will make use of this fact in Sec. V of this pa-
per.

It is important to note that the Hamiltonian in Eq. (2.1)
is invariant under SU(2)JSU(2)l rotations, where the
group factors describe spatial rotations with total angular
momentum given by

ables in Eqs. (2.6) and (2.7) are canonical, so that

[pai ~ q pj ] i 5ap ij (2.11)

and ma(r ) and P' (r) satisfy nonlocal commutation rules
given by

[~'(r),pp(r ')]= i5—p 5 (r —r ') —g i);F(r)Q,F(r')

8;F(r)=N 5; U(r), (2.13)

(2.12)

Some comments are in order regarding the expansion in
Eq. (2.6). As a consequence of the derivative coupling in
Eq. (2.1), only the p-wave components of the pion field
P ( r ) participate in the interactions. The first term in Eq.
(2.6) reflects the importance of the p-wave component
since d;F(r) is proportional to a spatial unit vector. It is
important to note that the field P (r) by definition in-
tertwines the isospin degrees of freedom denoted by a and
the angular momentum degrees of freedom which arise
from the dependence of the field on r. This statement
means that for a given functional form and a fixed point
in space the Pa(r) specify a vector in isospin space. If we
perform a spatial rotation on r, then the new field speci-
fies a different isovector. This feature is manifested in the
dependence of the nine quantum-mechanical variables q;
on the isospin and spin degrees of freedom. As we shall
see later, these variables will play the role of oscillator
variables in the strong-coupling part of the Hamiltonian.

The arguments which motivate the choice of basis func-
tions BiF(r) have been presented elsewhere' for the case
of a SU(2)-symmetric static-source model. Roughly
speaking, the basis functions 8;F(r) are chosen such that
they have a large overlap with the source function U(r),
given by Eq. (2.2), while the basis functions for the field
P' ( r) in Eq (2.6) a. re chosen to have a small overlap with
the source function.

The 5;F(r) are proportional to the derivative of the
field produced by the source so that

P (r)=g&;F(r)q;+P'(r) where the field U(r) is determined by
(2.6)

( —V' +m ) U(r) = U(r) =
V

(2.14)

n.a(r) = g d;F(r)p;+~a(r), (2.7)

where the basic functions i);F(r) are normalizable func-
tions such that

and N is a normalization constant fixed by Eq. (2.g).
analytic solution to Eq. (2.14) is given by

3m~
U(i')=, [1—io(x)( 1 ~y)e «]g(y —x)4'

f d r i);F(r)BjF(r)=5;j, (2.8) + —e "[coshy —io(y)]8(x —y) (2.15)

f d rP'(r)B;F(r)=0, (2.9)

f d rm'(r)B;F(r)=0. (2.10)

and the fields P'(r) and m.'(r) obey constraint conditions,
namely, where x =m r and y =m R. This completes the deter-

mination of the basis functions i);F(r). The remaining
basis functions for the weak-coupling part of the field
P' ( r ), will be discussed in Sec. III B.

Upon substituting the expansions in Eqs. (2.6) and (2.7)
into the Hamiltonian in Eq. (2.1), we obtain

It is straightforward to show that the p; and q; vari- H =Hc+H +H (2.16)
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where H, is the collective Hamiltonian defined by

H, = —,
' g [p,'+n'q, '+2g"'X~, r q, ],

ai
(2.17)

where the collective frequency squared 0 is defined by

n'= —,
' g f d'r a,F(r)( —V'+m ')a;F(r) (2.

and the overlap A, is defined by

k = ——,
' g f d'r U(r)B F(r) (2.19)

(2.20)

where P~( r ) and m~( r ) must satisfy the constraint condi-
tions in Eqs. (2.9) and (2.10), while the perturbation H is
given by

H= g f d'r B;F(r)( V'+m—')P'(r)q;
ai

—g'o'g cr;vfd. 'r U(r)B;P' (r ) .
ai

(2.21)

The unperturbed Hamiltonian H' ' is the sum of the bare
mass Mo, the collective Hamiltonian H„and the meson
Hamiltonian H', given by

H"'=m, +H, +H' . (2.22)

Substituting Eqs. (2.6) and (2.7) into Eqs. (2.4) and (2.5)
we obtain for the total angular momentum,

0J =L+L'+ —,
2

where

L
&

=EiIk g qaj'Pak

(2.23)

(2.24)

L'= g f d r P'(r)(r X V)~'(r), (2.25)

and the total isospin

+ +
I =T+T'+ —,

2 '

where

&a =~apy g qpiPyi

(2.26)

(2.27)

with

H' is the meson Hamiltonian defined by

H'= —,
' g f d r[m. ' (r)+P'(r)( —V +m )P'(r)],

(2.21) induces small admixtures of the unperturbed excited
states into the ground state. Mathematically, this can be
expressed in terms of the exact wave-function normaliza-
tion given by

(@o
~
@0)=1+5(H), (2.29)

where
~
@0) is the exact ground state and 5(H) is the

change in the wave-function normalization due to the per-
turbation. In order to assess the sensibility of the compu-
tational scheme, we require that the change in the wave-
function normalization, 5, decreases as the coupling con-
stant g' ' increases or the bag size decreases. This condi-
tion implies that the lowest-order approximation to the
exact dressed nucleon wave function is good.

While the computations associated with the evaluation
of Eq. (2.29) have been carried out in a SU(2)-symmetric
static-source model, ' we will not present a detailed nu-
merical analysis here. This will be presented in a forth-
coming publication. Instead, we discuss an approximate
treatment of the unperturbed Hamiltonian in Eq. (2.22)
when the coupling is strong, and argue qualitatively that
the perturbations produced by H are small. There are
many papers that discuss approximation methods for the
energy spectrum of the collective Hamiltonian in Eq.
(2.17). Essentially, there have been three approaches to
H, . The first employs a variational principle which is
based upon trial wave functions constructed from
coherent states. ' Another approach attempts to diago-
nalize the Hamiltonian in a subspace of states which are
characterized by a definite number of mesons. ' Finally,
there is the semiclassical approach' which approximates
the energy spectrum of the collective Hamiltonian by the
minimum value of the potential energy, and includes some
quantum-mechanical effects through the rotational energy
of the system of oscillators. For strong coupling, the vari-
ational and diagonalization approaches are difficult to
carry out. ' This difficulty can be traced to the depen-
dence of the number of basis states on the coupling
strength, namely, as the coupling strength increases the
number of basis states increases. On the other hand, while
the semiclassical approximation is easy to implement, it is
unclear how to calculate corrections and verify the ap-
proximation.

In the next section, we discuss a strong-coupling-
approximation method for the collective Hamiltonian
which does not have the above limitations. We obtain ap-
proximate analytic expressions for wave functions and en-
ergies which can be verified semiquantitatively. It is im-
portant to note that our method of approximation of the
full Hamiltonian in Eq. (2.1) is not the single-mode ap-
proximation, ' since we approximately diagonalize the
unperturbed Hamiltonian in Eq. (2.22). This implies that
our lowest-order wave functions depend on the infinitely
many degrees of freedom of the pion field.

T'= f d r P '(r) && m '(r) . (2.28)
III. THE UNPERTURBED HAMILTONIAN

Computationally, the goal is to treat the unperturbed
Hamiltonian in Eq. (2.22) precisely, and obtain an infinite
set of stationary states of H'~ '. The ground state of this
set, the dressed nucleon state, is a reasonable approxima-
tion to the exact state provided the perturbation H in Eq.

A. The collective Hamiltonian

For small bag sizes or strong coupling, we expect that
the interaction-energy operator g,.o;y~q; in Eq. (2.17)
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1

R
5'-

8
(3.1)

will be the dominant term in the collective Hamiltonian.
This is a consequence of the dependence of the overlap A,

defined by Eq. (2.19) on the bag size R. A straightfor-
ward computation for R « 1/m gives

I/2 ' 5/2

ger„r„g„u
~
A, g)=gu

~

A, g),

where u is the unitary rotation matrix given by

with

(3.5)

(3.6)

This implies that there are modes of the pion field which
contribute a large interaction energy to the collective
Hamiltonian. Furthermore, the modes have high momen-
ta' which are of the order 1/R. The average energy of
these modes is the collective frequency 0 defined by Eq.
(2.18). A straightforward computation for R «1/m
gives

I /2
5 1

2 R
(3.2)

Since the overlap A, in Eq. (3.1) is large' for R «1/m
we proceed as in the Paschen-Back effect by choosing a
basis for the collective Hamiltonian which diagonalizes
the interaction-energy operator in Eq. (2.17). The relevant
eigenvalue equation is given by

g~, r~., ~
A, q) =q

~
A, q),

ai
(3.3)

where A represents a set of quantum numbers to be speci-
fied later and g are the eigen values. The operator
g,.a;w~~; is a 4&(4 matrix which is a continuous func-
tion of the q«, hence, there are four continuous eigen-
values. A convenient choice of variables for representing
these eigenvalues has been discussed in a pioneering paper
by Pauli and Dancoff. ' They showed that the nine
Cartesian variables q; can be expressed in terms of three
Euler angles which describe dynamical rotations of a set
of body-fixed axes in ordinary three-vector space, a simi-
lar set of three Euler angles in isospace, and three radial
variables. Mathematically, the change of variables is
given by

3
Tq;= g B,Q„A„;, (3.4)

where' A« is a proper orthogonal rotation matrix in ordi-
nary three-vector space which is parametrized by three
Euler angles IP, O, QJ, B„ is a similar matrix in isospace
parametrized by three Euler angles I @,e,+I, and the Q,
are three radial variables. Roughly speaking, Eq. (3.4)
expresses the intertwining of two three-vector spaces la-
beled by a and i through the body-fixed axes labeled by r,
where the amount of intertwining depends on the values
of the radial variables Q„. An analog to Eq. (3.4) is the
relation between the Cartesian variables x, y, and z, and
spherical polar coordinates. The spherical polar system
describes a dynamical rotation of a set of "body-fixed"
axes, where the body-fixed z axis lies along the radial
direction.

Since the problem of determining the eigenvalues of Eq.
(3.4) has been discussed by Pauli and Dancoff, we sketch
their results. Under an appropriate unitary rotation of the
spin and isospin matrices, Eq. (3.3) becomes

e —(i/2)(P+@ cos e
—(i/2)(P —~ sin"'2 ' ""2

e (i/2)(y —y) s1n""2 e ( '/2)(y+ y) o"'2 .

(3.7)

and u, is obtained from u by replacing p~@, g~+,
»d O~e. Since [o„z„,o,r, ]=0, (o„~„) =1,
o„~„u,~,cr, r, = —1 it follows that

ni= —Qi —Qz —Q3,
no= —Qi+Qz+Q3,

n3=Q i
—Qz+Q3

94 Ql +Q2 Q3

(3.8)

where

= f dQL, f diaz f dg(dgqdg3M(g]ygppg3),
(3.9)

dQI sinod8dg dP, ——
0Qz. ——sine de d@d+, (3.10)

~(gi Qz Q3) =(Qi' —Qz')(Q~' —Q3')(Qi' —Q3'),
and fP) is the second problem, namely, the parameter
space of the new variables. A detailed discussion of the
parameter space IPI is presented in Appendix A. There
we consider a simpler problem involving four Cartesian
variables and we extend this analysis to the nine-variable
problem of Eq. (3.4). The essential result is given by

The resemblance of the operator g„cr„~,Q„when
Q] —Qp —Q3 —1 to the operator o ~ o q involving two
spin- —, particles is useful. The eigenvalues of a &. oz are
—3 and 1 which correspond to singlet and triplet states,
respectively. For Eq. (3.8) the singlet eigenvalue is g& and
the triplet eigenvalues are g2, g3, and gq. The singlet state
is such that 3-components of the bare nucleon spin and
isospin are oppositely oriented. This observation will be-
come useful when we discuss baryon magnetic moments
in Sec. V.

There are two important problems which must be dis-
cussed before we construct the eigenfunctions of the in-
teraction operator in Eq. (3.3) and the approximate eigen-
functions of the collective Hamiltonian in Eq. (2.17). The
first involves the determination of the measure associated
with the change of variables defined by Eq. (3.4). The
second involves the parameter space of the six Euler an-
gles and the three radial variables.

The first problem has been partially discussed by Pais
and Serber. ' We express their results in terms of the
equivalence of volume integrals such that

f rIdq-
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f +dq;= f dP f sin9d8 f dP f d@ f sinede f dqI f dQ~ f dQq f dQ3M(Q&, Q2, Q3) .
CXi

(3.11)

Vo ——exp ——g q;0
ai

(3.12)

and upon substituting Eq. (3.4) in Eq. (3.12) we have

Cxeometrically, the region of integration of the Q„s is a
tetrahedron with one boundary plane at infinity as shown
in Fig. 1. Note that M(Q&, Q2, Q3) is positive in this re-
gion. For those who doubt the equivalence expressed by
Eq. (3.11), we suggest the following test. Consider the
collective Hamiltonian in Eq. (2.17) when g' '=0, then
we have a system of nine uncoupled oscillators. The un-
normalized ground-state wave function is given by

r

tion. Similar statements apply to the entire tetrahedral
boundary in Fig. 1.

Naively, one might think that the parameter space of
the Euler angles is the standard choice, however, this is
not the case as indicated by Eq. (3.11).' This is a conse-
quence of a set of discrete transformations defined by
Eqs. (A23) and (A24) in the body-fixed frame which leave
Eq. (3.4) invariant. Such transformations imply that the
standard choice contains redundant regions of integration
(See Appendix A).

Pais and Serber' have shown that the collective Hamil-
tonian can be expressed in terms of the radia1 and angular
variables of Eq. (3.4) such that

+o——exp ——g Q,
2

(3.13) H, =K+H,b+ U, (3.14)

Now, it is possible but tedious to show that the norm of
the wave function in Eq. (3.12) is equal to the norm of 4 0
in Eq. (3.13) when the appropriate measure in Eq. (3.11) is
used.

Some useful insights into the interpretation of Eq.
(3.11) can be obtained by considering the usual one-body
problem in three-vector space. For spherical-polar coordi-
nates, it is well known that the integration measure van-
ishes when the radial variable is zero. This point is a
boundary point of the parameter space, and furthermore,
a singular point of the one-body Schrodinger equation.
Similarly, when Q&

——Qz in Eq. (3.11), we have a boun-
dary plane of the parameter space, and we expect that this
is a singular plane of the corresponding Schrodinger equa-

where

1 0 8
& M aQ„MaQ„

(3.15)

r

fl'gQ, '+2g'c'A. go;r B „Q„A„;
r air

with L„, and T„ the Cartesian components of the body-
fixed angular momentum and isospin operators, respec-
tively, and M is given by Eq. (3.10). The body-fixed
operators are related to the corresponding inertial quanti-
ties via a rotation, namely,

Parameter Space of the Radial
Va ri a b le s

L; = g A~)LJ,
J

(3.16)

FIG. l. A plot of the paratneter space of the Q„'s which is
defined by Eq. C,'A21). The fourth boundary plane is at infinity.

where LJ and Tp are given by Eqs. (2.24) and (2.27),
respectively. The body-fixed operators satisfy the well-
known anomalous commutation relations. '

While the Hamiltonian in Eq. (3.14) looks formidable,
the operators K, H,b, and U have simple interpretations
which are familiar from the one-body Schrodinger equa-
tion. For example, K in Eq. (3.15) is the radial kinetic en-
ergy, H, b is a generalization of the usual centrifugal bar-
rier, and U is the potential energy. Note that the kinetic
energy and centrifugal barrier have singular points and
planes. This implies that the eigenfunctions of H, must
satisfy boundary conditions at these singularities so that
the energy of the system of oscillators is finite.

According to Eq. (3.3), we must specify the set of quan-
tum numbers A which label the eigenstates of the interac-
tion operator. The symmetry operators which commute
with g,. o;r q; are given by
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J; =L;+o;/2,
ui =-,' II'g Q,

'—2g'"~(Qi+Q2+Q, ),
I'=T +~ /2,

J;=L;+8;/2,
(3.17) u2 ———, 0 QQ, —2g' 'k(Qi —Q2 —Q3)

I =T+r/2,
where o; and ~ are related to o.; and ~~ via rotations as in
Eq. (3.16). Note that the operators J and I' commute
with the body-fixed operators J; and I . This implies
that the quantum numbers A can be chosen such that

~'

u3 ———,
' 0'g Q„'—2g' '&( —Qi+Qz —Q3)

T

u4= 2 I1'g Q,
' 2—g"'~( —Qi —Q2+Q3»

(3.22)

IAn;&= lJ Jz Jz ii'z iz~9i& (3.18)

The motivation for introducing the body-fixed quantuin
nuinbers, j, and j, involves the centrifugal barrrier in Eq.
(3.15), which depends on the body-fixed angular momen-
tum and isospin operators. Eventually, we will take ma-
trix elements of the centrifugal barrier with respect to the
basis states in Eq. (3.18). For the evaluation of the inatrix
elements, we can take advantage of a version of the
Wigner-Eckart theorem for body-fixed operators.

Since the collective Hamiltonian is not diagonal in the
quantum numbers j„i„nad i);, we express the eigenfunc-
tions of H, as a linear combination of the basis states of
Eq. (3.18) such that

l%') = $ w--. lj',j,',J', ;i',i,',i, ;i); ),
Jz'z&i

(3.19)

Jz'z»c
IJ Jz J,;i',i,', i, ;q; & .

~z'z%
(3.20)

In order to make further progress in understanding the
energy spectrum of the collective Hamiltonian defined by
Eq. (3.14), we must make approximations. We will rely
on our analysis of the SU(2) static-source model' and
draw heavily on analogies with this model.

The starting point for our analysis of the collective
Hamiltonian is the potential energy U defined by Eq.
(3.15). Using the basis states in Eq. (3.18), we define
eigenpotentials such that

U lA, q, )=u, lA, ~, ) (3.21)

with the u; given by

where the W's are functions of the radial variables Q„.
The basis expansion in Eq. (3.19) spans a space which is
too large for the collective Hamiltonian. This can be
traced to the change of variables defined by Eq. (3.4). As
we have shown in Appendix A, there are a set of discrete
transformations in the body-fixed frame defined by Eqs.
(A23) and (A24) which leave Eq. (3.4) invariant. In Ap-
pendix 8, we show that this invariance implies a set of
conditions on the radial functions W in Eq. (3.19). We
implicitly include the conditions of Eqs. (86) and (87) by
replacing g by g in Eq. (3.19), so that

which follow from Eq. (3.8). An important feature of the
u; is the fact that the potential energy minimum of u

&
is

the lowest. This can be demonstrated in the usual way
subject to the restriction of the parameter space of the
Q„'s, namely,

~&Qi&Q, & lQ, l
&0.

The minimum in u
&

is located at the point given by

Q, =Q =Q =g' 'A. /0 =-g' '/(10 R)'~

with a value such that

3 (0)2g2 3 (0)2

202 8mR 3

(3.23)

(3.24)

(3.25)

when R «1/m . The potential-energy difference u i —u;
for i &2 is roughly of the order of —g' '

A, /0 or less.
As a consequence, we refer to the g~ states as low-lying
states and the q; states with i )2 as high-lying states.
From the large energy separation between the low-lying
and high-lying states for a small bag radius, we expect
that the corresponding radial wave functions Wz will be
localized in different regions of the tetrahedron in Fig. 1.
For example, Eq. (3.24) implies that the low-lying radial
wave function IVY is localized somewhere along the lineg ]

Q ] —Q2 Q3 in Fig. 1, while the minimum in u 2 indi-
cates that the high-lying radial wave function 8 z is lo-

calized somewhere along the Qi axis. Similarly, Wv and

Wv are localized near the origin. Furthermore, from the
Yf4

harmonic-oscillator nature of u ~, we expect that the
lowest-lying state will be a Gaussian in the Q„s localized
about the point defined by Eq. (3.24). Therefore, as the
bag radius goes to zero the overlap between the low-lying
and high-lying radial wave functions will go to zero rapid-
ly. Hence, we can simplify the collective Hamiltonian by
noting that the centrifugal barrier H,b defined by Eq.
(3.15) is the only operator in Eq. (3.14) which has off-
diagonal matrix elements in i);. Therefore, for a small
bag radius the matrix elements of H,b between the low-
lying and the high-lying states will be negligible as a result
of the small overlap between the radial wave functions,
Wv and Wv for i &2. Furthermore, if we perturb about
the ground state in the off-diagonal elements in i); of H,b,
then the corrections to the ground-state wave function
will be characterized by large energy denominators and
small numerators when R « 1/m . Therefore, for strong
coupling or a small bag radius the low-lying spectrum



2570 JOHN A. PARMENTOLA 29

1 .g 1. 1 .g 1.
p ijz& p i p ~~z~ 2 ~ 11~) (3.26)

I

decouples from the high-lying spectrum. This feature
occurs in the SU(2) static source model.

For strong coupling and a discussion of the low-lying
spectrum, we can restrict the summation in Eq. (3.20) to
states with q;=g&. If we specialize for the moment to
low-lying states withj '=i'= —,, then Eq. (3.20) is approx-
imately given by Eq. (BS), namely,

where we have suppressed the g~ label on 8'. In order to
obtain an equation for 8', we must calculate the matrix
elements of H,b with respect to the basis states in brackets
in Eq. (3.26). In Appendix C, we discuss a method for ex-
plicitly constructing these states and the evaluation of the
matrix elements of H,&. Upon operating with the collec-
tive Hamiltonian H, defined by Eq. (3.14) on the wave
function defined by Eq. (3.26) and then taking matrix ele-
ments with respect to the basis states in brackets in Eq.
(3.26), we obtain an equation for W of the form

82

QQ
2y + IIZQ 2 2g(P)gg

1 ()

„„Q,—Q, (3Q,
W=EW,„,g„+Q, ag„ag, „„(Q„+Q,)'

(3.27)

(hp+h') W =EW, (3.28)

where we have made use of Eqs. (3.10) and (3.15) «
rewrite the kinetic energy operator and Eq. (3.22) f« the
eigenpotential u&. An interesting feature of Eq. (3.27) is
the absence of energy contributions from the centrifugal
barrier H,b which depend upon the (L +T„,) terms.
This is true for the lowest-energy states with j'=i', how-
ever we will not prove this here. Furthermore, states with

j '~i ' have contributions from both (L + T ) and
A.

(L~ —T~) terms. Since these contributions are positive,
we expect that the lowest state with j'=i '= —,

' or
j '=i'= —', will be lower in energy than states with (j'= —,;

To obtain insight into the solutions of Eq. (3.27), it is
useful to refer to the parameter space of the Q„'s in Fig. 1.
The singularities of the differential operator of Eq. (3.27)
are located on the boundaries of the tetrahedral volume in
Fig. 1. The presence of such singularities implies restric-
tions on the behavior of W as a function of the Q„'s at the
boundaries. For example, as Q3 —+ —Qz, W must have
the correct power-law behavior on the boundary, say,
(Q3+Qz) for some specific A, , so that the energy contri-
bution from the centrifugal barrier is finite. In general,
the correct power-law behavior on all boundaries is diffi-
cult to incorporate in W. However, for strong coupling
there is a significant simplification which is a conse-
quence of the behavior of eigenpotential u ~ defined by Eq.
(3.22). We have argued above that the minimum in u(
implies that the low-lying radial wave function 8 is lo-
calized somewhere along the line Q~ ——Qz ——Qq. The ap-
proximate location is the point given by Eq. (3.24). As
the bag radius goes to zero, this point moves further out
along the line, so that the singularities at the origin
Q( ——Qp

——Q3 ——0, on the plane Q3 ———Qz, and along the
line Q3

———Q~ ———Qq are far away from the region
where 8' is largest, i.e., the effects of these singularities
on the radial wave function are small. Similar behavior of
the low-lying radial wave function occurs in the SU(2)
static-source model, however, there is an important differ-
ence. Suppose we rewrite Eq. (3.27) such that

I

where

1
hp ———

2

02
+O'Q ' —2g("A,g

QQ
2

and

1 () ()

„„g„—g, ag, ag,

r

h'= ——g2 „,Q. +Q. ~Q, ~Q,

(3.29)

1

2, , (Q, +Q, )' (3.30)

is such that the expectation value of h,'~ with respect to
the unperturbed eigenfunctions of h o diverges. This
divergence is a consequence of the measure defined by Eq.
(3.11) and the fact that the unperturbed radial wave func-
tion does not have the cor'rect behavior on the distant
singular boundaries where it is small. A similar problem
occurs for the radial equation of a two-dimensional har-
monic oscillator with a linear-coupling potential. In the
latter case, an approximate solution for strong coupling is
obtained by expanding the centrifugal energy about the
minimum in the potential energy. So, if we naively
neglect the region in the neighborhood of the distant
singular boundaries, we can treat h' in Eq. (3.29) as a per-
turbation and obtain an approximate result for the first-
order energy shift in h'. In fact, for strong coupling the
derivative terms in Eq. (3.29) are entirely negligible, since
the derivative of the radial wave function is approximate-
ly zero in the region where the wave function is largest
and well localized. In Appendix 0, we solve the eigen-

+—g, (Q, +Q, )

The above argument indicates that for sufficiently strong
coupling, h' can be treated as a perturbation since it is
negligible in the region where 8' is large. However, the
centrifugal-energy operator



29 SOME IMPLICATIONS OF A SMALL BACx RADIUS 2S7i

value problem for ho defined by Eq. (3.28). The results
for the two lowest eigenvalues when j'=i'= —, are given

by

and

{0) 3Q
0(1/2)(1/2) = ++ 2 +0

16X0
(3.31)

(0) 9Q
EO(3/2)(3/2) =3+

2 &0 ~

SX0
(3.33)

The dimensionless quantity xo in Eq. (D9) plays an im-
portant role in the strong-coupling approximation, since it
is a measure of the displacement of the low-lying radial
function from the less important singular boundaries.
Summarizing the above discussion, if xo~&1 we expect
that our strong-coupling results are a reasonable approxi-
mation to the collective Hamiltonian in Eq. (3.14). In
Fig. 2 we plot xo as a function of the bag radius R for a
physical value of the bare coupling constant g' ' (see Sec.
V of this paper). Hence, we expect that the strong-
coupling approximation is valid for bag radii such that
R & 0.35 fm.

B. The meson Hamiltonian

In this section we discuss the eigenvalues and eigenvec-
tors of H' defined by Eq. (2.20). Since a similar problem
has been solved previously, ' we will be brief. In order to
obtain the eigenvalues and eigenfunctions of H', we
proceed as in free-field theory by specifying a basis which
diagonalizes the Klein-cordon operator; however, this

(0) (0)
E1(1/2)(1/2) =++EO{1/2)(1/2) (3.32)

where the dimensionless quantity xo is given by Eq. (D9).
The first term in Eq. (3.31) is the zero-point energy of the
ground state, the second term is the centrifugal energy,
and the last term is the potential energy. The excited-
state energy defined by Eq. (3.32) corresponds to a vibra-
tional excitation of the system which is Q above the
ground state.

A similar analysis can be applied to the case when
j'=i'= —.An analogous equation to Eq. (3.28) is ob-

tained; however, the centrifugal energy in Eq. (3.29) is
larger by a factor of 6, so that

(3.34)

where {r
~
G; ) =8;F(r). Note that h is the projection of

the Klein-Gordon operator onto a space orthogonal to the
r);F(r) and h has three zero-energy bound-state solutions,
namely, the r);F(r). It is straightforward to obtain the
eigenvalues and eigenfunctions of h as we have shown. '

The eigenfunctions describe the scattering of a pion in a
background potential which depends on r);F(r). These
scattering solutions are the expansion functions for the
fields P'(r) and m.'(r) which when substituted in Eq.
(2.20) reduce the eigenvalue problem of M' to normal
mode form. It can be shown that this implies that H' has
a discrete energy eigenvalue, the pion vacuum energy, and
a continuous spectrum of multipion energies. The vacu-
um state and the pion states are not free-field states.
Furthermore, the vacuum energy is not the free-field vac-
uum energy, however, the pion energies have the free-field
form.

The pion vacuum energy or total zero-point energy of
H' is given by

I
Evac =Evac —Eshift (3.35)

where E„,is the usual free-field vacuum energy given by

F.„,= f co(k)
3V dk (3.36)
2 (2m)

with V the volume of all space, co(k) =(k~+m )'~, and
Eshift is given by

Egb&fr —
p g J d r d r'r)'F(r)f ( r, r ')r3' F( r ') (3.37)

with

3
f(~&~&i) J eik (r —r'j

(2m )
(3.38)

basis must be chosen orthogonal to d;F(r) so that the con-
straint conditions defined by Eqs. (2.9) and (2.10) are sa-
tisfied.

A convenient way of obtaining this basis is to define an
operator such that

h= 1 —g ~G){G;~ ( —V'+m~ )

12—

IA

OP

8IA
C:
QP

E

DISPLACEMENT OF THE WAVE FUNCTION

Note that Eshift depends on the source size R through
r);F(r), and therefore contributes to the ground-state ener-

gy of the system, while E„„is a divergent and cutoff-
dependent contribution. %'e will absorb E„,into a redef-
inition of the bare mass Mo appearing in Eq. (2.1).

Combining Eqs. (3.31), (3.37), and the bare mass Mo,
the physical mass of the nucleon is given by

OX ~X ™0+E(0(1/2)(1/2) Eshift ~

and the dressed nucleon state is given by

(3.39)

I

0.4 0.8 I.00.2 0.6
R (fm)

FIG. 2. A plot of xo defined by Eq. (D9) as a function of the
bag radius R.

[W)= [e,"'q, ) [0'), (3.40)

where
~

%' ', gi) is given by Eq. (D26) and ~0') is the
ground state of H'. The masses of the 6 and N* are ob-
tained in a similar manner, namely,
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and

(0)Mg —™P+EO(3/2)(3/2) Eshift (3.41)

M~~ ——M +E&(&&2)(&&2)
—Esh&f

(0) (3.42)

where Eo(3/p)(3/p) and E((&/z)(, /z) are given by Eqs. (3.33)(0) (o)

and (3.32), respectively. The wave functions for the b, and
N' are straightforward to obtain from the results of Ap-
pendices C and D.

IV. THE PERTURBATIONS

In this section, we discuss the effects produced by the
perturbation Hamiltonian H defined by Eq. (3.21). The
discussion is at a qualitative level; however, we argue that
the admixtures induced by H into the nucleon ground
state are small for strong coupling. The arguments follow
our previous discussion of the SU(2) static source model. '

For convenience, we add and subtract a term in H such
that

H=Xg f d' r);(U(r)P'( )rg&, (Q, —Q, )&„;
ai T

—g(o) g(e;+r o;) f d r U(r)();(t)'(r),
ai

where the e; are given by
Te;= QB~„/I„,

(4.1)

(4.2)

(4.3)

where the inner product is only in spinor space and does
not involve an integration over Euler angles, etc. Another
useful property which follows from an application of the
Wigner-Eckart theorem is given by

(A', i))
~
r~cr;

~
A, g)) = —(A', q)

~
e;

~
A, g)) . (4-4)

This is a generalization of the projection theorem' of the
SU(2) static-source model. In Sec. III, we argued that the
nucleon ground state of H' ' is approximately given by
Eq. (3.40). From Eq. (3.40), it follows that the nucleon
state is an eigenstate of the interaction-energy operator in
Eq. (3.3) with eigenvalue gi given by Eq. (3.8). This fact
and the orthogonal conditions expressed by Eq. (4.3) im-
ply that the first term in H, i.e., the term proportional to
%, induces transitions between the nucleon state and the

and the Q„'s are given by Eq. (3.24). Note that we have
used the definition of ();F(r) in Eq. (2.13), the field equa-
tion of Eq. (2.14), and the change of variables defined by
Eq. (3.4).

Since the operator H in Eq. (4.1) is linear in P' (r ), then
matrix elements of H between eigenstates of H' ' in Eq.
(2.22) involve states which differ by one-pion scattering in
a background potential. If we perturb in H about the nu-
cleon ground state of H'0', then H contributes in second
order.

The properties of the states defined by Eqs. (3.3) and
(3.18) are important for a discussion of the effects of H
on the nucleon ground state. From Eq. (3.3) it is straight-
forward to show that

low-lying states such as, the X++, 5+m, N*+m, etc.
There are no matrix elements of the first term between the
nucleon state and the high-lying states. Furthermore, Eq.
(4.4) implies that the second term in H induces transitions
between the nucleon state and the high-lying states, i.e.,
states with g; where i )2. There are no matrix elements
of the second term between the nucleon state and the
low-lying states.

An important feature of H is the dependence of the
first term on (Q„—Q„). The Q„specify the location of
the minimum of the eigenpotential u i and the point about
which the low-lying radial wave functions 8' fluctuate
and are well localized. This implies that the radial matrix
elements of (Q, —Q„) between the nucleon state and the
low-lying states such as N+ ~ and 6+m go to zero rapid-
ly as the bag radius goes to zero. Furthermore, the radial
matrix element of (Q„—Q„) between the nucleon state and
the N*+m also goes to zero. In second-order perturba-
tion theory the latter term will be accompanied by a large
energy denominator, since the N' is of order Q above the
nucleon state.

The second term in H involves matrix elements between
the nucleon state and the high-lying states. For strong
coupling, this implies that the matrix elements of the
second term in Eq. (4.1) go to zero rapidly because of the
small overlap between the low-lying and high-lying radial
wave functions. Furthermore, in perturbation theory the
matrix elements of the second term will be accompanied
by large energy denominators, since the low-lying states
are of the order of u ~ below the high-lying states.

In summary, we expect that the second-order correc-
tions in H to the nucleon ground state of H' ' will go to
zero as the bag radius goes to zero.

This completes the qualitative discussion of the pertur-
bation corrections produced by H in the nucleon ground
state. In the next section, we explore the implications of
the strong-coupling wave functions and energies by calcu-
lating some static properties of the low-lying baryons.

V. SOME STATIC PROPERTIES
OF THE LOW-LYING SARYONS

Before we embark on calculations of the static proper-
ties of the low-lying baryons, we must discuss the method
of specifying the free parameters of the Hamiltonian,
namely, the bare mass MO, the bare pion-nucleon coupling
constant f~~, and the bag radius R. We can choose Mo
in Eq. (3.39) such that M)v is the physical nucleon mass.
This can be done for any choice of fg& and R. The
value of fz~ is fixed by the experimental value of the re-
normalized pion-nucleon coupling constant, namely,
f)v)v —-0.29. Instead of fixing Rwe ch, oose to plot the
static properties of the baryons as a function of the bag
radius.

A way of determining f~~ is to evaluate the expecta-
tion value of the pion field at large distances. To this end,
consider the pion field expansion of Eq. (2.6),

({) (r)= Q d;F(r)q;+P'(r),
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We now add and subtract a term such that

P~(r) = Qr)F(r)B~A„(Q, —Q, )

(0)

g 3;F(r)e;+P~(r),
N

(5.2)

where Q, and e; are defined by Eqs. (3.24) and (4.2),
respectively. Note, we have used the fact that

Q g(0)yN (5.3)

with N determined by Eqs. (2.8) and (2.13) and
g' '=V4rrfprpr ' 'Im . Taking the expectation value of
Eq. (5.2) with the nucleon state defined by Eq. (3.40), we
obtain

& N
I

t(' (r)
I
N & = 2 ~ F(r) &N

I B'A. (Q. —Q. )
I
N &

panding about the free-field ground state and truncating
at one pion, significantly disagrees with the strong-
coupling result. From Eqs. (3.39), (3.41), and (3.42), we
plot in Figs. 4 and 5 the mass differences 6—N and
N —N as a function of A. It is important to note that
M~ and Mg in Eqs. (3.41) and (3.42) do not correspond
to the physically observed masses. In order to calculate
physical masses, it is necessary to solve the pion-nucleon
scattering problem. The method for calculating scattering
is straightforward, ' however results will be discussed in a
forthcoming publication. Therefore, Eqs. (3.41) and (3 42)
should be considered estimates to the physical masses.

We now turn to a discussion of magnetic moments,
charge radii, and the average number of pions in the
dressed nucleon state. The total-magnetic-moment opera-
tor is given by

P3=P3+P3 ~
Q (5.8)

(o)

g B;F(r)&N
I
r~rr;

I
N &, (S.4)

where we have used the projection theorem of Eq. (4.4)
and the fact that &N

I

P' (r)
I
N & =0. For strong cou-

pling, the first term in Eq. (5.4) is negligible. Substituting
for d;F(r) from Eqs. (2.13) and (2.15) and evaluating Eq.
(5.4) at large distances, say r ~~ 1/m, we obtain

with the quark contribution p3 is given by

Q t f (0)
P3 = (XpiXpi Xp(Xpg)Dp

(0)+(XntXni Xn En')Pn t (5.9)

where 7» is a bare proton state with spin up, 7„,. . ., etc,
pz

' is the bare-proton magnetic moment given by

(0) —m r

&N
I P.(r) IN &

= &N I~.~, r", IN&
(0) eR

p
3(co —sin co)

3' 3 2sin2co —co sin co
2 4

(5.10)

(0) —Nl~~ e
X w~o)&;X,

4m r
(5 5)

with m=2. 04 and the ratio p„' '/pz ' ———', . The pion con-
tribution p3 is given by

f~x» =3fxx~=o85—
In Fig. 3, we plot the nucleon self-energy defined as

(5.6)

where Z is the renormalization constant and g is a nu-
cleon spin-isospinor. A straightforward calculation from
Eq. (5.5) implies Z= —,. Hence, the bare coupling con-
stant is given by

0

p, = —"J d r[pi(r)L3fz(r) —pz(r)L3pi(r)],
2

(5.1 1)

where L 3 is the 3 component angular momentum
L3 ———

3 g,
r.V'kJ J

Q .
Taking the expectation value of p3 in Eq. (5.9) with

respect to the dressed proton and neutron states given by
Eq. (3.40), we obtain

(0)
EO(1/2)(1/2) Eshift ~ (5 7) &s Is Pls &= —,', v,'" (5.12)

where EO~I~z~~i&z~ and E,h'ft are given by Eqs. (3.31) and
(3.37), respectively, as a function of the bag radius R.
Note that the usual perturbation theory result, i.e., ex-

for the proton and

&n IPl32I n &= ——,', P,'" (5.13)
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FICz. 3. A plot of the nucleon self-energy for the case of
strong coupling, and compared to the standard perturbation-
theory result as a function of the bag radius R.
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FIG. 4. A plot of the 6-nucleon mass difference as a func-
tion of the bag radius R.
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&& I@31&&=—e&& I(q»q» —qi2q2i) I&& .

Substituting the change of variables in Eq. (3.4) and using
the cross-product relation for the 2's we obtain

(5.15)

for the neutron. This result implies that the exa e expectation

this re
va ue o t e isoscalar part of p&~ is zero. Th

is result can be traced to the properties of the nucleon
wave unction in Eq. (3.40). As we pointed out in Sec.
IIIA, among the eigenfunctions of E . (3.5) th

~ ~'ng e state with eigenvalue qi. This state is such that
the 3 components of the bare-nucleon spin and isospin are

ortiona
oppositely oriented. Since the isoscalar art of
po ional to the bare-nucleon spin operator, then the ma-
t6x element of the isoscalar part of p~3 is zero.

From the fact that the pion contribution |M3 is pure iso-
vector we conclude that

(n Ip3ln)
&pls3ls &

(5.14)

This of course disagrees with the experimental ratio of
owever, we will have more to say ab t th'

moment. The evaluation of the expectation value p3 is in-
structive. Substituting Eq. (5.1) for P ( )

' E .
or p3 and taking matrix elements with the dressed nu-

c eon state of Eq. (3AO), we have

clear the im ort np ance of the pion contribution to the nu-
cleon magnetic moment for small bag sizes. As the ba
size decreases the pion-field stren th increa

ases e pion electromagnetic current densit and
therefore increa ses the nucleon magnetic moment. From

Ilsi y~ ail

the graph, we can see that a fit t thi o e proton or neutron

0.02 fm. It is
moments results in a change in the b de ag ra ius of roughly

m. It is possible to choose the bag radi h
there is a 15 e

ra ius so t at
a ic discrepancy between theory and ex eri-

ment. A possible ori in of thig' is small discrepancy involves
e resse nucleon wavet e irst-order corrections to th d

unction due to the perturbation Hamiltonian H. Anoth-
o e intrinsic isobarer possibility involves our neglect of the in

source interaction with the pion field in the CBM Hamil-
tonian. This interaction implie th t h
iso ar component in the dressed nucleon wave fun t'wave unction in

-or er strong-coupling approximation. Further-

tion o era
more, t e magnetic-moment operator willr wi contain transi-
ion operators between the bare nucleon and 5 states. The

this
ressed-nucleon matrix element f tho e isoscalar part of
is operator will not be zero so th t tha e ratio o the pro-

to' and neutron moments will not be —1.
e s in a simiarThe charge-radius calculation proceeds

manner where the relevant operator is given by

r,h ——«'y(Xp, Xp, +Xp,X~,

(xl'p3
I

) = e ke (N
I
Q„Q.,Ak38 3 I

X) . (5.16)

&& I~, l~&= —,
'

&
~"'I Q3X 0; I

~"'& (5.17)

and

Th e angular integrations can be performed with the result
that the roton andp d neutron matrix elements are given beIl

+e drr
& r~2r 2r~& r 519

where y=-0. 57 and the ~,.(r ) are the canoni
y q. .7. Note there is no bare-neutron

bution from E . (5.19)q, since the up and down quarks are
-neutron contri-

assumed to have equal mas d t bs an o ein an s wave.
Taking matrix elements of r bo r,h etween the dressed

proton and neutron states of Eq. (3.40), we obtain

&=,'&w'"IQ, +Q, I

~"'), (5.18)

( 2) eye ep
P (5.20)

Q] Q2 Q3 I

W' ' ) = W' ' is the radial wave func-
tion given by Eq. (D23). The remaining integrations can
be pe ormed analytically; however, the ex re expressions are a

messy. n Fig. 6 we plot the magnitude of the proton

(5.17
magnetic moment which is the sum of E (5 12)

), as a function of the bag radius. The graph makes

( 2) eye
2

where P is given by

ep
2

(5.21)
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13=, (~ I3 [io(2y) —1]—33 il(2y)
3N 2 2.

8my I
+3' [io(2y)+ 3~ ]J

+&'( —,
' +3y+y')e '«)

with

(5.22)

rn 60C
O

CL

l
OP

E 40-

O
OP

20—

VERAGE NUMBER OF PIONS

N„„)——g N„,
P

where Nz is given by

f d r d r'P&(r)f(r, r ')P„(r ')

+—' f d'r[P„(r) tr(r) tr„(r)P„(r)]—
2

+ f d r d r'tr&(r)g(r, r ')tr„(r '),

(5.23)

(5.24)

y=m R,
A =(1+y)e
8 =y it(y),

and ik(y) the modified spherical Bessel functions. In Fig.
7 we plot the magnitude of the proton and neutron charge
radii as a function of the bag radius, The charge radius of
of the neutron turns out to be negative. This is due to the
dominance of the m charge distribution surrounding the
bare proton core. For a bag radius in the range 0.35 fm
~R &0.25 fm, the neutron charge radius is within 30%
of the experimental value. However, the same agreement
cannot be claimed for the proton charge radius. It ap-
pears that the m+ charge distribution surrounding the
bare neutron core is not extended enough to account for
the experimental value. We believe that the discrepancies
between theory and experiment for the magnetic moments
and charge radii are related. We are currently exploring
the possibilities outlined above.

Finally, we compute the average number of pions which
dress the bare nucleon core. The total-pion-number
operator is given by

I

0.2
I

0.4 I.O0.6
R (fm]

FIG. 8. A plot of the average number of pions in the dressed
nucleon state as a function of the bag radius R.

inverse off ( r, r ) given by

3 ik(r —r')
~g) d k e

(2tr)' ro(k)

and the fields P& and tr& are defined by

rtr t +i rtr2 tr t i rr2—

(5.25)

Pt i rtr2 — trt+i tr2
(5.26)

go=03 tro=rr3

where p=+, 0, —.The expression for Nz in Eq. (5.24)
may be unfamiliar; however, it can be derived from the
usual free-field expression.

In Fig. 8. we plot the expectation value of N„„t with
respect to the dressed nucleon wave function defined by
Eq. (3.40). The increase in the number of pions as the bag
radius decreases is an important feature of the model and
a signal that the pion coupling to the nucleon source is
strong. As a further justification for the strong-coupling
approximation, we observe that the average number of
pions is approximately 6 for a bag radius of 0.3 fm.

where f(r, r ') is defined by Eq. (3.38) and g(r, r ') is the

l.2—
CHARGE R AD I I

E
0.8

Al

N

0.83 fm
Proton

0.37 fm
Neutron

I

0.40.2 0.6 I.O
R (fm)

FICx. 7. A plot of the magnitude of the proton and neutron
charge radii as a function of the bag radius R.

VI. CONCLUSIONS

We have argued that for a bag radius of the order of the
proton Compton wavelength the pion-nucleon coupling
described by Eq. (2.1) is strong and a discussion of the en-

ergy content of the system requires a nonperturbative
quantum-mechanical computational scheme. Our results
for the static properties of the low-lying baryons involve a
bag radius which is consistent with the strong-coupling
approximation. However, our lowest-order results for the
ratio of the neutron and proton magnetic moments and
charge radii are somewhat disappointing. For example,
our lowest-order calculation of the ratio of magnetic mo-
ments is —1, which is roughly in 30% disagreement with
experiment. However, we have shown that a significant
part of this ratio can be accounted for by the isovector
contribution from pions. In order to improve the lowest-
order results we need an isoscalar contribution from the
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bare-bag magnetic-moment operators in Eq. (5.9). A way
of generating such a contribution involves an improve-
ment in the nucleon wave function, namely, computing
first-order corrections produced by the perturbations.
This can be done since we now have a systematic method
for correcting the strong-coupling approximation. Anoth-
er way of improvement involves an application of the
strong-coupling approximation to the CBM Hamiltonian
which includes the interaction of the pion field with the
intrinsic isobar source. This interaction implies an intrin-
sic isobar component in the dressed nucleon wave func-
tion in the lowest-order strong-coupling approximation.
Furthermore, the magnetic-moment operator will contain
transition operators between the bare-bag nucleon and 6
states. The dressed-nucleon matrix element of the isoscal-
ar part of this operator will not be zero, so that the ratio
of the proton and neutron moments will not be —1. In
contrast to the previous way of generating an isoscalar
contribution, this approach emphasizes the role of the in-
trinsic isobar, and hence the quark degrees of freedom.

We believe that the discrepancies between theory and
experiment for the magnetic moments and radii are relat-
ed. We are currently exploring the possibilities outlined
above.
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~ &Q1&
~ Q2 ~

&0. (AS)

This is the region bounded by the lines Q1 ——Q2 and
Q2 ———Q1 with Q1&0.

The integration measure associated with the transfor-
mation defined by Eq. (Al) is given by the Jacobian of the
transformation. A straightforward calculation of the
magnitude of the Jacobian gives

I
J

I
=Q1' —Q.' (A9)

APPENDIX A

92& 92&

We discuss implications of the change of variables de-
fined by Eq. (3.4), in particular the parameter space of the
Euler angles and radial variables. For the moment we
consider a simpler problem involving four Cartesian vari-
ables q;, where a,i =1,2 so that Eq. (3.4) becomes

r

qll q12 cos@ sin@ Ql 0

sin@ cos4 0 Q2

Combining Eqs. {AS) and (A9), we can write the
equivalence of volume integrals in the form

f II«.;=f «dC f dQ1f
'

dQ2(Q1' —Q2')

(A10)

where IPI is the parameter space of the angles P and @.
In order to determine [P), we define a matrix q~; such
that

cosP sing
—sing cosP

E

From the q; one can construct two rotationally invariant
quantities given by

S1=gq '=Q1'+Q2'
ai

q'=B b QaA, (A 1 1)

(A12)

where b and a are 2X2 proper orthogonal matrices
which by assumption are independent of the Q„and B,
A, and Q are the matrices defined by Eq. (Al). We now
require that

and

S2 ——detq =Q1Q2 . (A3)

whe«q is g1ven by Eq. (Al). From the orthogonality of
the A and B matrices we obtain

The parameter space of the q;, namely, oo &q;& —oo,
implies that

b Qa=Q. (A13)

Equation (A12) is true for all values of the Q, 's, in partic-
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ular Q~ ——Q2 which implies that Q is proportional to the
unit matrix. This fact and the orthogonality of b implies
that a =b, hence from Eq. (A12) we have

[b Qt=0. (A14)

bi 0

0 b2
(A15)

Therefore, b can be simultaneously diagonalized with Q
so that b is of the form b= 0 1 0

0 0 1

—1 0 0

0 —1 0
0 0 1

1 0 0
(A22)

which is the tetrahedron in Fig. 1. The measure of the
transformation can be obtained by standard methods
and is given by Eqs. (3.10). The discrete transformation
matrices which correspond to Eq. (A17) are the proper
orthogonal matrices given by

100 —100

The orthogonality of b implies that the eigenvalues are
given by

0 1 0
0 0 —1

0 —1 0
0 0 —1

bi ——+1,

b, =+1.
(A16)

Of the four rotation matrices only two are independent.
We will select the second and third in Eq. (A22), which
correspond to the transformations

Hence there are two proper orthogonal matrices of the
orm (A23)

1 0
0

—1 0
0 —1

(A17)
and

The identity matrix is uninteresting; however, the second
solution implies that the q; are invariant with respect to
simultaneous body-fixed rotations of the form

8~8+m,

8 8+~, 0
(A24)

(A18)
respectively. The unitary operators which induce these
transformations on the Hilbert space of states of the col-
lective Hamiltonian 0, are given by

If we assume 2n. &P, @&0, then the transformations ex-
pressed by (A18) imply that there are redundant regions
of integration in Eq. (A10). It is straightforward to show
that the region of integration 2m & P, N & 0 is twice [P I,

'

which is given by

and

+in(L3+ T3)
V3 ——e

+i+L2+ T2)
V2 ——e

(A25)

(A26)
2m &P &0,

m&C&0.
(A19)

A similar analysis can be carried out for the nine-
dimensional case of Eq. (3.4); however, we will just outline
the steps. In this case there are three invariants given by

S& = g q =Qi'+Qz'+Q3'
ai

Sz ——detq =Q)Q2Q3,

S3 y qaiqpjqajqp Ql + 'Q2 +Q3
4 4 4

ai
Pi

(A20)

&Ql &Q2 &
I Q3 I

&0 (A21)

An analytic solution of the Q„'s in terms of the S s is
possible but not useful; however, the three geometries of
Eqs. (A19) correspond to a sphere, eight hyperbolic sheets
(one in each octant), and a "cube" with rounded edges.
Again in the Q~, Qz, and Q3 space there are redundant
regions. The regions can be determined graphically by
plotting planar slices of the three geometries and deter-
mining the points of intersection. A choice of the radial
parameter space which is covered once is given by

2~& P &0, m. & @&0,
n. & %&0,

~&0&o, ~&e&0.
(A27)

Hence, the equivalence of volume integrals is given by Eq.
(3.11).

APPENDIX 8
We discuss the implications of the discrete transforma-

tions in Eqs. (A23) and (A24) for the basis states of Eq.
(3.19). For a rotation of othe unitary oper. ators in Eqs.

where I.; and T are the body-fixed rotation operators
given by Eq. (3.16). The existence of V2 and V3 imply
that the eigenfunctions of H, must be invariant with
respect to the discrete transformations of Eqs. (A23) and
(A24). These unitary operators are important for the con-
struction of wave functions which will be discussed in
Appendices B and C.

The transformations of (A23) and (A24) imply that the
standard choice for the parameter space of the two sets of
Euler angles I$,8,$) and I@,e,+I is redundant. As be-
fore, one can show that the region of integration' of the
Euler angles is given by
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(A25) and (A26) can be written in the form
I

'II, ri; & = $ W-. -. Ij 'j,',j,;i',i,',i„2);&,
Jziz Ii

(82)

—in{J3+I3)
V3 ———o.3~3e

(81)

then
I

0'& defined by Eq. (3.19) is given by

(83)
—im'{J~+I2)

p
———a 2w2e

where J;, I~, etc. , are given by Eqs. (3.16) and (3.17).
Now define a set of states such that

Note that the states
I
0,2i; & in Eq. (82) are eigenfunctions

of the &„2.„. This follows from Eqs. (3.3), (3.4), and the
discussion leading up to Eqs. (3.8). If we apply V3 to

I

%', 2); &, we obtain

A'

V3lq'n;&= —~A X W-. -.
Jz'z&s

IJ, ],j

(84)

If i = 1, then the eigenvalue of o 32.3 is —1 and Eq. (84) becomes

V3

A

i&= g W"" ( 1) IJ Jz J'i'i
J I YJ)

(J

If
I
0', 2) i & is invariant under V3, then Eq. (85) implies

W-. -. =(—1) ' 'W-. -.
Jz'z» Jz'z» (86)

For the case of the V2 transformation we obtain from Eq (82) .the relation

A A

=(—1) +'( —1) '
J I 17) Jz 'z» (87)

Forj'=i'= —,, Eqs. (86) and (87) imply that
I
%,rii & in Eq. (82) is given by

I+ ~i& —W„(I 2&Jz&2t 2t zt 2&ni& I »J.—2, —2,2. , —2,gi&),

where we have suppressed the angular momentum labels,
etc., on Wi. Finally the case of j'= —, and i'= —, with
ri;=2), involves two W's while J'=i'= —, involves four
W's. This feature has implications for the nature of the
energy spectrum of H, in the strong-coupling approxima-
tion. We will have more to say about this in Appendix C.

APPENDIX C

IA, g, &=u-'I J,. &, (Cl)

where u is defined by Eqs. (3.6) and (3.7). The
I

A,; & de-
pend on the bare-nucleon spin-isospinors and have a func-
tional dependence on the Euler angles I $,8,P J and
f&,e,+f. This functional dependence is determined by
the following eigenvalue equations:

The eigenfunctions of Eq. (3.5), namely, u
I
A, ri, & are

straightforward to obtain since the eigenvalues q; are
given by Eqs. (3.8). Let these eigenvectors be denoted by

I
A, ; &, then the eigenfunctions in Eq. (3.3) are given by

IA 21'&=2 (J +1)IA ri &

. &=j:
I

A g &

( I ')
I
A, 2i; & =i'(i'+1)

I
A, 2i; &,

I, IA, q, &=i, IA, q, &,

(C2)

where the symmetry operators are defined by Eqs. (3.17)
and the quantum numbers A=(j ',j,'j„i',i,',i, ). The r'ep-
resentation of the symmetry operators in terms of Euler
angles has been discussed by Pauli and Dancoff. The
solutions to Eqs. (C2) involve Wigner functions ' in spin
and isospin space. We will not present a complete set of
solutions to Eqs. (C2); however, a particular subset, which
is relevant to the low-lying wave function in Eq. (88), will
be discussed. The angular part of the low-lying wave
function for the case of j,'=i,'= —,

' is given by
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de(0) D+(0)
00 00

0 0

dg(0)
00

—~2dlo" .
Dg(1).

00

—~2D"„"',

dg(1) ' Dg(1)
0—1 01

~2d] I ~ ~2D[I

d+(1) D(1)
01 0—1

—

vied*„"'

. —vZD*, '", , (C3)

(H,b) =2 + 1

„,(Q, +Q, )' (C4)

where the subscripts o. and v on the spinors refer to spin
and isospin space, respectively. The d* and D* are
Wigner functions which depend on the Euler angles
IQ, O, QI and I@,B,VI, respectively. The angular wave
function defined by Eq. (C3) describes the dynamical cou-
pling of the bare-nucleon spin and isospin degrees of free-
dom to the spin and isospin degrees of freedom of the
pion field. The angular wave function in Eq. (C3) and the
radial function Wz completely specify the form of the

low-lying wave function in Eq. (88).
In order to completely determine the low-lying wave

function, we must operate with the collective Hamiltonian
H, defined by Eq. (3.14) on the wave function defined by
Eq. (88) and take matrix elements. The only operator in
H, which presents some difficulty is the centrifugal bar-
rier H,b defined by Eq. (3.15). Employing the Wigner-
Eckart theorem for body-fixed angular momentum and
isospin operators the matrix element of H,b between the
angular wave functions defined by Eq. (C3) is given by

I

can be formed out of the solutions to Eqs. (C2). In this
four-dimensional space, the centrifugal barrier H, b is a
4&4 matrix which can be diagonalized analytically. The
lowest eigenvalue is given by

(H,b) =12+, , (Q, +Q, )' (C5)

APPENDIX D

The eigenvalue equation we want to solve is of the form

h08" '=E' '8" ' (Dl)

where ho is given by Eq. (3.29). We define a set of dimen-
sionless variables such that

The other three eigenvalues are higher in energy since
they involve both 1/(Q„—Q, ) and 1/(Q„+Q, ) terms.
Spectroscopically, this implies that there are four sets of
low-lying energy levels with j'=i'= —,. This clearly indi-
cates that the collective Hamiltonian H, has an incredibly
rich spectrum.

For the case when j'=i'= —,, evaluation of the matrix ele-
ments of H,s is not so simple, since the form of

~

%', g& )
involves four radial wave functions. Each radial wave
function is multiplied by an angular wave function which

vn
Xr r

then Eq. (Dl) can be written

(D2)

~ +2xr — g A, x
2 x~ —x~ Bxp

, ~(0) ~(0)~(0)
7 (D3)

where p'o'=&'0'/2Q. We define a reduced wave function co' ' such that

(0)
pr(0)

G (D4)

where G =(x& —xz)' (x, —x3)' (xz —x3)' . Then co' ' satisfies

, +2x, —1 a 2 2
2 Bx„

3/2

r(s (Xr Xs)
(D5)

Cxeometrically, the singularities of Eq. (D5) are located on the planes x& ——xq and xq ——x3, and the line x& ——xz ——x3 in
Fig. 1. Since the wave function co( ' is localized somewhere along this line, it is convenient to rotate the x3 axis onto the
line and the x2 axis into the plane x1 ——x2. This rotational transformation is given by
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vz,X)= X)+ ~X3
3 v'31, I, 1xz= —~x)+ ~xp+ ~x3
1, 1, 1

x3 ———~x) —~xg+ ~x3,
which upon substitution in Eq. (D5) gives

(D6)

3/2

2 ax„'2 ' n 4 ( 3xl x2)2 ( 3xl+x2)2 2x2
L

(D7)

The linear-coupling term can be transformed away by the change of variables given by

Zf —X ]

Z2 =X2 (DS)

Z3 =X 3
—Xo

3/2

x, = — g( X,V 3 2 (0)
4 0

hence Eq. (D7) becomes
r

~(o) ~ (O)~(0), +2z„'1 8 2 1 2 2 + 1
(D10)

2 Bz„4 (v 3z, —z ) (v 3z, +z ) 2z

where e' '=e' '+2xo . From Eqs. (D8) we observe that xo is a measure of the displacement of the radial wave function
co' ' along the line x~ ——xq ——x3. As xo increases the radial wave function moves further away from the less important
singularities at the origin x~ ——x2 ——x3 ——0 on the plane x ~

———x3, and along the line x3 — x] — x2.
If we go to cylindrical coordinates, then co' ' separates such that

co' '=R (p)B (P)Z (z3 ) .

where R (p), B(p), and Z(z3) satisfy

——,Z"+2z3 Z =kZ,
and

d' 1 2 2

dp 2 (V 3 cosp —sinp) (~3 cosp+ sinp) 2sin p
a =la

(Dl 1)

(D12)

(D13)

and

+2p'+, R =mR, (D14)
1 d2 1 d 2 l

dp p dp 2p

I

since xo in Eq. (D9) tends to infinity in the limit when the
bag radius goes to zero. Under these conditions, Eq.
(D12) is a one-dimensional harmonic oscillator with solu-
tions of the form

where k, l, and m are quantum numbers to be deter-
mined, p=(z& +zq )', and the angle p is bounded by
the two intersecting planes x2 ——x3 and xi ——x2 such that
n/3&p&0. The eigenvalue e' ' is given by

z2
Z(z3) =e ' FI„(v2z3),

and k in Eq. (D12) is given by

k =2n +1,

(D17)

(D18)
Z(o) =k+m .

For a small bag radius or strong coupling the parameter
spaces of z3 and p are well approximated by

ao )p)0,

where H„are Hermite polynomials. We have not been
able to find a general solution to Eq. (D13); however, the
lowest eigenfunction and eigenvalue are given by

B (P) = (cosP' —M3 sinP')'~

Oo )Z3) —ao X (cosp'+ v 3 sinp') '~~(cosp') '~~, (D19)
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where p'= p —rr/6 and l in Eq. (D13) is given by

9
4

(D20)

eigenvalue has p =0 and n =1. The first-order energy
shift involves matrix elements of h,'b in Eq. (3.30). In
terms of the x, variables in Eq. (D2) h,b is given by

Finally, substituting Eq. (D20) into Eq. (D14) and recog-
nizing that Eq. (D14) is related to a two-dimensional os-
cillator equation, we obtain

—P2 2L (3/2)(2 2)

Hence, in in Eq. (D14) is given by

m =(4p+5),

(D21)

(D22)

which completes the determination of 8' ' and E' ' in
Eq. (Dl). In summary, we have wave functions given by

~lIitt +P (P)+1(P)zn (z3 ) / G (D23)

which for l = 4 have eigenvalues given by

h,'b =—gQ 1

4,(, (x„+x,) (D25)

To obtain the first-order energy shift we expand h,'b about
the point x~ ——x2 ——x3 ——xo and keep the leading term.
The results for the two lowest eigenvalues of the collective
Hamiltonian H, in the strong-coupling approximation are
given by Eqs. (3.31) and (3.32). Note that the first sub-
script refers to the n quantum number of Eq. (D18). Qth-
er quantum labels such as I and p have been suppressed
since they are the same for the two lowest eigenvalues.
Furthermore, the low-lying wave function

i
'P, ri&) is ap-

proximately given by

Ett (9/4)tt ——(4p +2n +6)—Ax 0
(0) 2

7l (D24)
c 1. 1 .c

2 tJzt 2 t 2 ttzt 2 t ll ))
(D26)

The lowest eigenvalue has p =n =0 and the next highest where W' ' is given by Eq. (D23).
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