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Bernard has proposed a measure of the effective gluon "mass" in terms of the screening of the
linear potential for adjoint sources, and has extracted an estimate of mE ——500—800 MeV from a lat-
tice Monte Carlo calculation. The same quantity is calculated in the bag model, with the result
m~ ——740+100 MeV. This arises as an effect of confinement, even though the gluons themselves are
massless. The model illustrates several interesting features of this measure of "mass", and these are
discussed.

I. INTRODUCTION
The properties of gluonic matter are presently under ex-

tensive study by a variety of means. Lattice Monte Carlo
estimates yield a strong prediction of the lightest glueball
m (0++)=700+300 MeV, and some weaker indications
of excited states in the 1—2.5-GeV range, roughly con-
sistent with other estimates from bag and potential
models. Recently, Bernard has suggested another measure
of gluonic properties. ' He notes that the potential be-
tween two adjoint sources, which in QCD would corre-
spond to infinitely massive color-octet bosons or fermions,
should rise initially but eventually level off due to the
screening of the potential by gluons. The physical picture
is that, once the energy in the flux tube is great enough, a
pair of gluons can be produced from the vacuum which
will combine with the octet sources to form two color-
singlet states. Further separation of the two color singlets
does not require any energy, hence the potential is flat at
large distance. Bernard proposes that one half of the en-

ergy stored in the flux tube, at the distance where screen-
ing sets in, be called the "effective gluon mass. " This pro-
vides a measure of the minimum energy needed to create a
gluon. One can easily see the importance of this measure
for models of glueballs. An advantage of this definition
of effective mass, which will be called mE subsequently, is
that it is measurable by lattice Monte Carlo methods.
Bernard has made estimates of it and claims that values in
the range

mE =500—800 MeV

are reasonable.
In the bag model, the gluons are massless. However,

there is clearly a minimum energy carried by a confined
gluon. This is most easily seen from the glueball spec-
trum before the spin splittings are included, where
ground-state glueballs made of two gluons have a mass of
j. GeV, while those with three gluons have mass 1.5 CxeV.
At this level, there is an energy cost of 500 MeV per
gluon. This occurs because the minimum energy which a
massless gluon may have when it is confined to a spheri-
cal bag of radius R is

2.744
0 I

For adjoint particles the string tension is correspondingly
larger:

3
k~ ———,kF . (4)

Likewise the Coulomb forces are greater by a factor of 4 .
From the heavy-quark studies we can therefore extract the

which for 8=1 fm is 550 MeV. A value of about this
size is expected just from the uncertainty principle. How-
ever, these estimates are not the same as Bernard's defini-
tion of mE. It is the purpose of this paper to calculate the
quantity which Bernard has measured.

The existence of Bernard's effective mass does not im-
ply that gluons in the bag model develop a mass. In addi-
tion, it is not necessarily true (as some people advocate)
that the mass of a glueball is twice mE. Certainly in the
bag model this is not true. If one were able to turn off
Coulombic and spin-dependent interactions, then
Bernard's definition of mass would be ideal. However, all
bound states have masses which include effects of these
interactions. For example, in the case of two heavy ad-
joint sources discussed below, there is an attractive
Coulombic energy such that, for a large range of the inter-
particle separation, the energy Ezz —2m+ is negative.
However, since all states have similar Coulomb energies,
one does not want to include that binding energy into the
definition of the effective mass. For Bernard's effective
mass to be a sensible measure, one needs to argue that the
effect of the Coulomb interaction cancels out. In the
work described below, this appears to be the case. One of
the uses of the effective mass is for a comparison of dif-
ferent methods, in this case a comparison between the bag
model and lattice Monte Carlo methods. That these
methods agree on the effective mass is encouraging for
both techniques.

The energy of two static adjoint sources can be obtained
from the bag-model studies of heavy-quark systems. The
change from sources in the fundamental representation
(quarks) to adjoint sources can be made by a modification
of the color Casimir factor 4a, /3~3a, . The bag picture
generates a flux tube with string tension, for quarks,

' 1/2
32trBa, (r)

kF ——
3

(3)
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energy of two adjoint sources as a function of r,

Ess(r) =2ms (5)

quarks, where meaning can be made of an effective mass
for bagged quarks even though the quarks themselves are
nearly massless. These topics are discussed in Sec. IV.

where ms is the mass of the source and the last term is
the large-r approximation to the small correction term
given by Haxton and Heller.

We wish to compare this to the mass of two isolated
color-singlet states each consisting of one source and one
gluon. In Sec. II, I calculate this mass, including the
Coulomb corrections at 0 (a, ). As a function of bag size
R the result is

4m 3 2.744Eso=~s+ m +
3

1.75a, (R)
R

Ess(r) =2EsG

with the latter calculated at the minimizing value of R.
This radius is roughly r =1.1+0.1 fm and indicates the
distance beyond which it becomes energetically favorable
to create two gluons and bind them in color singlets to the
sources. Bernard's effective mass is then one half the
flux-tube energy at this radius,

The second term is the bag volume energy, the third is the
gluon's kinetic energy, and the fourth is the Coulomb at-
traction of the source and gluon. For the strong coupling
constant, I employ a form which has been used many
times before in the bag model:

1

poln( 1+I /AR )

with Po ——11/2m in a world without quarks. This repro-
duces the asymptotic-freedom prediction at small R, and,
as it should, only has a pole in a, when R —+ oo. Various
estimates of A range from A =0.2 GeV (Ref. 3) to
A=0.47 GeV (Ref. 4), corresponding to a, (1 fm)=1 —2.
In presenting numerical values, I will use the experimental
value for kF ( =420 MeV). The remaining dependence on
a, (or A) is then only in the Coulomb energy. It is impor-
tant for the utility of Bernard's definition of the effective
mass that the Coulomb energy not have too large an effect
on the estimate of mE. It vvi11 turn out that the results are
very insensitive to the form of a, and the value of A, with
identical results being obtained for both A=0.2 and 0.47
GeV. To determine the mass of the asymptotic-source-
plus-gluon state, one minimizes Eso. As ms~oo, no
center-of-mass corrections are needed.

To find the crossover radius at which screening occurs,
one equates

II. MASS OF AN AXUOINT SOURCE
PLUS GLUON

The calculation of the mass of a heavy adjoint source
with a massless gluon is similar to many calculations of
hadronic masses mithin the bag model, but is most
directly related to Ref. 5 where mesons with one heavy
quark and one light quark are studied. We consider the
gluonic case here.

In a bag containing a heavy source plus a gluon, the
source will be located at the center of the bag and the
gluon will be spread throughout the bag with a wave func-
tion given by the minimum-energy mode. The source has
a mass ms and a charge density with unit total color
charge, which can be described by the form

fABC ts Cg3( ) (10)

with as and as being creation and annihilation operators
for the source. For the massless transverse gluon, the
lowest-energy mode in a spherical cavity is the transverse
electric (TE), l= 1 with wave function

A(x) =Nj, (kr)e)&r e'""

with k=2.744/R, N =0.63/R, and e being a polariza-
tion vector. This leads to a color current density

pTE=2N'~Ej &'(«)f" (&
' e e* r e.r )~TE~—TE (12)

with aTE and aTE being the creation and annihilation
operators for the TE gluon. For an appropriate combina-
tion of spins, the bag pressure will be spherically sym-
metric and the spherical bag will be stable.

Several terms in the bag energy are immediately obvi-
ous,

4~ 2.744Esc= BR +ms+ +
3 R

(13)

The first term is the volume energy of the bag, while the
second and third are the energies of the source and the
gluon. In this section I mill not include a zero-point-
energy term, but will refer to it in Sec. III. The only
remaining piece is the interaction energy between the
source and the gluon. The spin-spin interaction, mediated
by gluon exchange, is unimportant as it goes like 1/ms.
(It would be absent altogether if the source were spinless. )
All that remains is the Coulomb energy

=740+100 MeV,

IIc= g' I d'x d'y p (x)G(x y)p'(y)
8m

where 6 (x,y) is the cavity Coulomb Green's function

(14)

if one uses kz ——(420 MeV) . The parameter dependence
which goes into the quoted errors is discussed in Sec. III.

Within the model we can see that this is not a real mass
in that the gluons are massless. However, it may be that
there are acceptable uses of the idea of mass for gluons,
such as the above example. A similar situation occurs for

G(x,y) =

E

+—g — PI(cosy) —1 . . (15)
1 I +1 xy

A
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The total Coulombic energy, including the lowest-mode
self-energy, is then

1 1Ec= —3a, (CEs ——,Czz ——,Css)

where

Cl. ——f d x d yp;(x)G(x, y)pj(y)[1+(x.y) ]—',

and

pz(x) =2%2j, (kr),

Ps(x) =5'(x) .

(16)

(17)

(18)

In the case of the self-energy of the source, there is an in-
finite piece independent of the bag size and a finite piece
equal to

Css= —1/R . (19)

The infinite piece is the same value as in free space and
goes into the renormahzation of the mass of the source.
One might wonder why the self-energy of a point source
depends on the bag size. This dependence arises because
the gluon field cannot extend beyond the bag boundary,
and hence the energy contained in the field depends on the
size of the bag. The required integrals are integrated nu-
merically with the result

Czs ——0.38/R,

CEE =0.59/R

the total Coulomb energy being given by

1.76a, (R )
Ec

R

(20)

(21)

and the total bag energy as reported in Sec. I, Eq. (6).
To compute the energy of the state one minimizes the

bag energy with respect to the radius. For a, (R), I take
the form of Eq. (7). The minimization then fixes the ra-
dius and mass. Because of the dependence of a, on R this
procedure must be carried out numerically. For A=0.20
[a, (1 fm)=1], I find

R;„=4.7 GeV '=0.94 fm,
(22)

Esg ——~s+0.46 GeV,

while for A =0.47 [a,(1 fm) =2], the result is

The above results for r, and mz are essentially indepen-
dent of A if the experimental value of kF is used. It is
fairly easy to see why. The Coulomb energy of two
sources at the crossover point is almost equal to twice the
Coulomb energy of the bound-source-plus-gluon system.
Thus the effect of the Coulomb energy and a, essentially
cancels out of the problem. This is fortunate for the relia-
bility of the answer, and it also is a sign that Bernard's
definition of the effective mass is a good measure of the
cost of adding a gluon to the system.

III. PARAMETER DEPENDENCE

We have seen in the last section that the effective mass
is essentially independent of the value of the strong cou-
pling constant, if the bag constant and string tension are
extracted from experiment. There are, however, a couple
of steps in the procedure which can lead to small shifts in
mE. In this section I discuss these.

In much of the spectroscopy of light hadrons an effec-
tive Casimir energy or zero-point energy,

Eo = Zo/R (25)

has been used. This is supposed to account for the size
dependence of the quantum zero-point fluctuations of the
fields. Direct calculation of Zo in a rigid cavity yields a
divergent answer, with the finite part being small and neg-
ative (i.e., positive Eo). Phenomenological fits favor
Zo ——1. It is not completely straightforward to incorpo-
rate the zero-point energy into the present calculation, as
Zo should be shape dependent, and therefore neither of
the above values would apply for the flux tube. In studies
of heavy-quark systems the zero-point energy was not in-
cluded. However, an estimate of the size of this effect is
obtained by including a term —Zo/R in both EsG and
Ess. In the latter case the radius is estimated by the best
fit of the flux tube to a spherical shape. A term of this
form will lower the effective gluon mass if Zo is positive.
Physically this occurs because, for positive Zo, one gains
energy by dividing a large bag into two smaller bags if the
total volume is unchanged. My estimate of the effect of
this modification is to lower m~ by about 80 MeV for
Zo —1 o

The other procedural step which has some effect on mz
is the technique for dealing with the self-energies. For ex-
ample, if one had two heavy sources in a spherical bag,
the interaction energy itself would be

R;„=4.7 GeV

Esg ——ms+0. 16 GeV .
(23)

1 1E=—3aS r R (26)

mE= 2kgrs=0. 74 GeV . (24)

To use this to calculate the effective gluon mass one uses
Eq. (5), obtained by modifying the results of Haxton and
Belier, with a, evaluated at R;„. I find that the cross-
over separation is

r, =1.1 fm,

and the effective gluon mass which results from Bernard's
definition is

due to modification of the Coulomb propagator. The
standard procedure is to add to this the R dependence of
the self-energies which exactly cancels the unusual 1/R
piece leading to E= 3a, /r. A similar mod—ification
occurs in the source-plus-gluon system. There the purely
interaction contribution is

—1.lu,

instead of Eq. (21) which also includes the self-energies.
For the gluon, the self-energy was calculated by keeping
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the gluon in the TE mode. To estimate the effect that
these terms produce iq mE, I have redone the calculation
without any self-energies. In this case, using A=0.2 GeV,
mE decreases by about 70 MeV. If one were to include
self-energies in the state with two sources, but not include
them in the gluon-plus-source system, the mass would in-
crease by the same factor.

The uncertainties produced by these procedures are not
particularly large. This is reassuring and suggests that the
model may be reasonably reliable in this context.

IV. DISCUSSION

From the above calculation we can see that one must be
cautious in concluding that Bernard's measurement of the
effective mass indicates massive gluons in the usual sense
of the word "mass. " The bag-model gluons are massless,
yet require a net energy cost to produce them because of
confinement. One respect in which bag gluons differ
from naive massive spin-one particles is that the former
are transverse and gauge invariant, while the latter are
not. This feature is manifest in the glueball spectrum by
the absence of a 1 + two-gluon state. Such a state is for-
bidden by Yang's theorem for massless gluons, yet occurs
with two massive gluons due to the longitudinal corn-
ponent allowed in the latter case. Bernard's measurement
does not indicate a naive mass for gluons. Cornwall has
proposed that, by adding extra degrees of freedom, a form
of mass can be generated for gluons without the loss of
gauge invariance. This must, however, differ from the
naive idea of mass. Perhaps the bag model is a realization
of this idea.

The situation which occurs for gluons is similar to that
which occurs for quarks in the bag model. The light
quarks in the bag model are treated as nearly massless,
with a mass parameter in the equations of motion which

is small, often called a "current" mass. Nevertheless
when confined to a bag, quarks acquire a minimum ener-
gy of about 350 MeV, which is comparable to usual values
of "constituent" masses. This energy does behave as a
mass in some situations. For example, in the calculation
of the magnetic moment for a massless bag quark, the re-
sult is very nearly equal to

which would be the nonrelativistic value if Eo were iden-
tifed with a mass. Likewise, if one defines a mass by the
term in the quark propagator which commutes with y5, or
by the minimum energy in the propagator, these defini-
tions are also close to Eo. However, in some situations,
such as the determination of pion and kaon masses, or in
the calculation of the cr term, it is the current masses
which are the important mass parameters.

The comparison of the bag calculation of mE with the
lattice measurement allows one to draw some relevant
conclusions about aspects of the bag model. For example,
the question has been raised whether the bag constant for
gluons should be the same as for quarks or should be
larger (Ref. 10 suggests that it is 10 times larger). While
within the standard form of the model the bag constants
are equal, it has not been possible to confirm this because
of our lack of understanding of the glueball spectrum.
The present comparison with the lattice Monte Carlo
method clearly favors a single bag constant for quarks
and gluons. Likewise, it has been suggested that a large
positive self-energy for gluons should be included in order
to push the glueball spectrum to higher mass. The
present calculation is the cleanest evidence that a large
self-energy should not be present and that the bag model's
estimate of the energy of a gluon is reasonable.
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