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Long-range rapidity correlations in hadron-nucleus interactions
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Long-range rapidity correlations between particles produced in proton-nucleus interactions at 200
QeV/c are studied in the multichain dual parton model. A large long-range correlation between
particles produced in two rapidity intervals is predicted, provided these two rapidity intervals are
properly chosen. The predicted effect is easily measurable. Predictions at 1 TeV are also given.

I. INTRODUCTION

Experiments at CERN ISR and especially at the CERN
SPS colliders have revealed the existence of dynamical
long-range correlations (LRC's) in pp and pp interactions.
This LRC, measured by a parameter b (0& b & 1), is con-
sistent with a value of zero at low ISR energies, is about
0.15 at top ISR energies, ' and grows to as much as 0.40 at
Vs =540 GeV.

Such a strong LRC is clearly in conflict with the prop-
erty of short-range order (SRO) which is the main feature
emerging from all the basic time-honored schemes of
low-pz hadronic interactions (Regge-Mueller, Feynman's
parton approach, etc.).

The Regge-Mueller approach is formulated in the
framework of an S-matrix theory, in which unitarity is
known to play a very important role. Unitarity implies
the existence of multiple inelastic collisions which pro-
duce dynamical LRC.

It has been shown ' that standard unitarity corrections,
computed in the eikonal or perturbative Reggeon calculus
unitarization schemes, together with SRO within each in-
elastic collision, lead to LRC s which are in quantitative
agreement with the ISR and SPS data. Such an approach
has the peculiar feature of introducing LRC, without

modifying the local compensation of charge, which is
another characteristic feature of SRO. An experimental
verification, at collider energies, of this local compensa-
tion of charge (which is known to work quite well at
lower energies ), would provide a strong indication that
multiple inelastic scattering is indeed the mechanism re-
sponsible for the observed LRC.

Another clear-cut consequence of the multiple-
scattering approach is the existence of strong LRC in
hadron-nucleus interactions —much stronger than the
ones in pp scattering at the same energy per nucleon. So
far, attempts to observe this LRC in hadron-hadron in-
teractions at presently available energies have failed.

In this paper we compute the strength of the LRC in
hadron-nucleus collisions at presently available energies.
The calculations are performed in the multichain dual
parton model. As far as we know this is the only version
of the multiple-scattering model (and as a matter of fact
the only model we are aware of) which can reproduce the
observed LRC at SPS energies.

It turns out that the LRC strength is quite large—
certainly large enough to be measured. We also show that
the predicted LRC between the particles produced in the
two rapidity intervals chosen in Ref. 6 is small, and com-
patible with the result obtained there. However, by choos-
ing the two rapidity intervals in an appropriate way, we
predict a larger LRC.

II. THE ORIGIN GF THE LONG-RANGE
CORRELATION

We are going to use the complete version of the mul-
tichain dual parton model as formulated in the first paper
of Ref. 7. The formulas needed to compute the LRC are
given in Appendix A. However, in order to make the dis-
cussion more transparent, we present in this section a
somewhat simpler form of the model. It has the advan-
tage of simplifying the formalism considerably, and mak-
ing very transparent the physical mechanism responsible
for the appearance of LRC.

In this model the charged-particle rapidity density in a
proton-nucleus (p-A) interaction is given by
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Here (v) =Hog/H„ is the average number of inelastic
collisions in the nucleus. For (v) =1 one has only two
terms, which correspond to an inelastic collision between
the proton and a nucleon n~ of the nucleus. According to
the model, in such a collision two chains of hadrons are
produced: one of the chains (qq~-q„") links the diquark of
the nucleon nz with the valence quark of the proton, and
the other one (qz-qq~ ) links the valence quark of the nu-
cleon nz with the diquark of the proton. Each new in-
elastic collision produces two extra chains qqz-q~ and

q~-qz linking, respectively, the diquark and the valence
quark of the newly struck (wounded) nucleon nz~ with a
quark and antiquark of the proton sea.

The rapidity distributions X'(y) of the individual
chains are obtained from a convolution of momentum-
distribution functions of the proton constituents (which
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can be determined within the model) with standard quark
and diquark fragmentation functions. The main feature
of the dual parton inodel which results from the
momentum-distribution functions is the fact that the
valence quarks are slow in average (with a 1/V x distribu-
tion near x =0), the sea quarks are even slower (in 1/x),
while the diquarks are fast and carry the proton quantum
numbers (leading-particle effect). The resulting rapidity
structure for the chains, which depends little on the de-
tailed form of the fragmentation functions, is shown in
Fig. 1.

Let us consider the correlation between particles pro-
duced in two rapidity intervals, (y i,y i +hi ) and
(y2 —b z,y2) with y i &y2 (the first interval will be denoted
by F and the second one by B). In order to measure this
correlation one plots the average multiplicity in, say, the
second interval (Ng ") as a function of the multiplicity
Ng" in the first one. This type of plot is quite standard
in probability theory where it is known as a linear regres-
sion. Under very general conditions one always obtains a
linear dependence:

( Ng ")=a +bNg

where
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FIG. 1. The rapidity distributions of the four chains in Eq.
(1). The solid curves correspond to the valerice chains qqz-q~
and qz-qq~. The dashed and dotted curves are the rescattering
chains qq~-q~ and q~-q~, respectively. The valence chains are
computed for v=1 and the rescattering chains for v=2 (the
latter are present only for v&2). The v dependence of the
chains, responsible for the attenuation effect (Ref. 7) in the pro-
jectile fragmentation region, is not shown.

a =(Ng ")=b(Ng ")
and the slope b, which measures the strength of the corre-
lation, is given by

(2)

yl+~&f dy f dy' &N~ (y)N~ "(y')) —&N~ "(y')&&N "(y'))
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This correlation will certainly have a long range in rapidity provided y i
—yz )A, , where A, is a correlation length charac-

teristic of the short-range correlation (typically 1.5—2 units).
Let us now compute b within the model. As explained in the Introduction, we assume SRO for the particles produced

in the individual chains. This implies

(N'(y)N'(y')) =(N'(y) )(N'(y') ), iy —y'
i

)& .

We also assume that particles produced in different chains are uncorrelated, i.e., for any y and y one has

&N'(y)N'(y')&=(N'(y)&&N'(y')&, i' .

(3)

Using Eqs. (1), (3), and (4), we obtain for the numerator of b in Eq. (2),
yi+~i

DI z [(v ) —(v) ]f ——dy[N " ~(y)+N" ~(y)]f dy'[N " ~(y')+N " ~(y')] . (5)

We see that with only short-range correlations in the individual chains, a nonvanishing LRC arises as a consequence of
the fluctuation in the number of chains ((v )&(v) ). Its strength is proportional to the product of the sums of the
average multiplicities of the two rescattering chains (qq~-qz and qz-qz), in the rapidity intervals under consideration.
[Another source of correlation is the fluctuation in the position of the chains in rapidity space. This correlation which is
quite sizable up to ISR energies, goes away with increasing s (4). The simplified version of the model presented in this
section neglects this source of correlation, which is, however, taken into account in the numerical calculation (see Appen-
dix A).] Therefore in order to observe a large LRC one has to choose the two rapidity intervals in such a way that the
product of multiplicities of the rescattering terms in these two intervals is as large as possible. This is achieved by choos-
ing them symmetric with respect to yo- —0.5 (see Fig. 1). [The first factor in Eq. (5) depends only on the nature of the
projectile and target and on the incoming energy. ]

In order to compute the value of b, we have, of course, to compute the denominator of Eq. (2). This requires the
knowledge of the quantities

yi+h yi+h
(D' )'= f dy f, dy'[&N'(y)N'(y') &

—&N'(y) & &N'(y') &)

(6)
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(D@F) =k(NF) (7)

with k =1 if the particles are directly produced and more
generally k equal to the average number of particles in
each cluster (resonance). (An alternative ansatz, which
leads to very similar results, is to use the experimental
e+e and Ip data for the dispersion of the chains. )

III. NUMERICAL RESULTS

In order to compare the results of the model with data
already available, we consider a proton-xenon interaction
at 200 GeV/c. Our results for various nuclei are collected
in Table I. First we take for the two rapidity intervals the
whole forward and backward hemispheres. Clearly, our
calculation can only give, in this case, a lower bound for
b Indee.d, using Eq. (3) in the region y -y' (which is now
present in the numerator of b because y~

——y2), one
neglects the contribution of the short-range correlations.
For p-Xe interactions at 200 GeV/c we obtain b=0 57, a.
rather large value. The value of the numerator of b
[which is a less model-dependent quantity since it does
not require the assumption in Eq. (7)] is also given in
Table I.

The experimental value is b =1.23+0.07. Such a large
value is by itself a strong indication of the existence of
strong LRC. It is indeed quite implausible that the
short-range correlation (which gives b-0.2 in proton-
proton collisions at comparable energies) can be so impor-
tant here. Presumably, the difference between the experi-
mental value and the computed value of bLR is not entire-
ly due to the short-range correlation but also to the effect
of the intranuclear cascade in the target fragmentation re-

TABLE I. The values of the calculated long-range correla-
tion slope bLa and its numerator DI ~ [Eq. (2)] at 200 GeV/c
for three different targets and four sets of rapidity intervals.
The decrease of bLR with increasing A for (y & 0.75,
y' & —0.75) is presumably a consequence of the attenuation ef-
fect in the projectile fragmentation region (Ref. 7).

i.e., the dispersion squared of the individual chains in the
appropriate interval. An ansatz, which is quite natural
from the assumed SRQ within a chain, is to assume an in-
dependent emission, i.e.,

gion. Let us discuss this point in some detail. The physi-
cal origin of the LRC in a multiple-scattering model is the
following. If one observes a large fluctuation of multipli-
city in some rapidity interval, one is most probably look-
ing at a contribution consisting of several inelastic
collisions —the probability of observing a large multiplici-
ty fluctuation in a single inelastic collision being much
smaller due to SRO. Therefore one is bound to observe
multiplicity fluctuations far away in rapidity (LRC). The
increase in the number of inelastic collisions will also pro-
duce an increase in the number of (slow) particles pro-
duced via intranuclear cascade. Such an effect is inti-
mately associated to the LRC—and goes away when b&R
vanishes. Our purpose here is not to discuss this
phenomenon quantitatively (a rather difficult task) but to
compute the LRC slope and show how to observe it.

In order to eliminate the contribution of the short-range
correlation, the authors of Ref. 6 have also considered the
two rapidity intervals y &0.75 and y' & —0.75. The mea-
sured value of b is consistent with zero and the authors
conclude that there is no LRC. However, from Eq. (5)
and Fig. 1, the value of bLR is expected to be much small-
er here —since the average multiplicity of the rescattering
chains is smaller than in the previous case. A numerical
calculation gives bt R ——0.13. Thus with this choice of in-
tervals most of the LRC has been eliminated together
with the short-range one. A somewhat larger value of the
LRC is obtained when one keeps the same rapidity gap
between the two intervals but, as explained in Sec. III,
shifts them toward the left. Let us take the two intervals
y & 0.25 and y' & —1.25 which are symmetric with
respect to yo ———0.5. In this case we obtain bLR ——0.17.
If our approach is correct the measured value will
presumably be somewhat larger than the calculated one
due to the intranuclear cascade. The latter effect could be
eliminated to a large extent by choosing the two rapidity
intervals —2.25 &y' & —1.25 and 0.25 & y & 1.25. In this
case the LRC slope is larger. We obtain bI R

——0.27. The
predictions for pI ——1 TeV/c are given in Table II. At
this energy, the average rapidity length and the plateau
height of the rescattering chains are larger than at 200
GeV/c. Therefore the predicted values of the LRC are
also larger. For example, taking the rapidity intervals
0.75 &y &4 and —4&y'& —0.75, we obtain bL~ ——0.61.

40
131
268

DF-a 2

2.73
3.82
4.36

0.45
0.57
0.61

Rapidity intervals

y&0
y'&0

IV. COMPARISON WITH OTHER MODELS

The LRC slope is a parameter which contains a lot of
dynamical information on the mechanism of hadron pro-

40
131
268

0.43
0.40
0.28

0.15
0.13
0.09

y &0.75
y' & —0.75

DFg ~LR Rapidity intervals

TABLE II. Same as Table I for 1 TeV and two sets of rapidi-
ty intervals.

40
131
268

0.66
0.91
0.97

0.14
0.17
0.18

y &0.25
y' & —1.25

2.67
4.56
5.79

0.42
0.61
0.71

0.75&y &4
—4 &y' & —0.75

40
131
268

0.52
0.80
0.97

0.20
0.27
0.30

0.25 &y & 1.25
—2.25 &y' & —1.25

40
131
268

1.58
3.02
4.24

0.39
0.56
0.66

0.25 &y & 1.25

—2.25 &y' & —1.25
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duction. Therefore it should be an excellent arena to test
the existing models of the multihadron production in
hadron-nucleus interactions. For instance, there are two
different versions of the dual parton model, which are
developed by the Austin and Orsay groups. The main
difference between the two formulations is that

U —S

N " (y)=—0 in the Austin version. At very high ener-
gies, where all chains develop a plateau of comparable
size, one obtains from Eq. (1)

(dN/dy)o„, ~ 2(v)
(dN/dy)~„„;„( v) + 1

At present energies the contribution of the q~-q ' chain is
rather small and the two approaches give comparable re-
sults for dN/dy, where the contribution of the rescatter-
ing chains is inixed with that of the two main (single-
scattering) chains. On the contrary, the LRC slope bi R is
directly proportional to the product of multiplicities of
the rescattering chains, since the contribution of the two
main (single-scattering) chains cancels out in b. It is clear
from Eq. (5) and Fig. 1 that the quantity

Dp g =(Ng Ng ) —(Ng ")(Ng ),
where F denotes the interval 0.25 &y & 1.25 and B the in-
terval —2.25 &y' & 1.25 will be appreciably smaller in the
Austin version than in the Orsay one. Numerically, we
obtain at 200 GeV/c (D~ ii )z„„;„——0.60 and
(DF ii )o„,„——0.80. (The difference between these two
values increases with s, and the test becomes more
relevant. )

Likewise the LRC slope should allow the testing of the
dual parton model versus other types of models, such as
the additive quark model (AQM). Moreover, there are
also different versions of the AQM, which differ from one

another by the assumptions for the multiplicity of parti-
cles produced in multiple inelastic collisions of a same
constituent quark with the riucleus. Presumably they lead
to rather different predictions for the value of the LRC
slope.

V. CONCLUSIONS

Multiple-scattering models of hadron-nucleus interac-
tions predict the existence of strong long-range correla-
tions. In the dual-parton-model version of these models
the long-range-correlation slope is already quite sizable at
200 GeV/c. We show how to choose the two rapidity in-
tervals in such a way that the long-range correlation be-
tween them is maximal.

A measurement of a large long-range-correlation slope
at these energies will provide a nice test of the multiple-
scattering inodels and in particular of the dual parton
model. It will also provide further evidence that the large
long-range correlation found in the SPS colliders is due to
standard multiple inelastic interactions, with short-range
order in each individual collision.

Moreover the value of the long-range correlation slope
should allow us to distinguish between different models of
particle production in hadron-nucleus interactions.
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APPBNDIX A

In the dual parton model the rapidity distribution in a
hadron-nucleus collision is given by

A

N "(y)=—g o fdxp(x) f fdxi dx2„p„(xi,x2 x2„)
CTv1

&&
'N " ~(1 x,x&,'y)+N " ~(x—,x2,'y)

S U —S

+ (v —1)[N " ~(1 —x,x2,'y)+N ~(x,x3ig)]

The momentum-distribution functions p and the rapidity distributions N'"""(x,x,y ) of the individual chains for fixed
positions of the chain ends are given in Ref. 7 [where the approximations leading from (Al) to Eq. (1) are also discussed].
We have used the following quark and diquark' fragmentation functions:

zD~ (z)[1.32(1—z) +0.03]/(1 —0.5z),

zD«(z)=1.35[(l —z) +2(1—z) +(1—z) ],
and used the same exponential thresholds for the individual chains as in Ref. 4. The fixed thresholds used in Ref. 7
yield very similar results. (Notice however that with exponential thresholds the plateau height of the rescattering chains
is somewhat lower than with fixed thresholds. As a consequence the A dependence is smaller in the former case and in
better agreement with experiment. )

Using Eqs. (3) and (4) for N'"""(x,x',y), we obtain for
~ y —y'

~
~ A, ,
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(N~ "(y)N~ (y') )

=—y cr fdx p(x) fdx, ' fdx „p (x„.. . , xp )~ v=i

X[N " '(1 —x,x„y)N " '(1 x,—x, ;y')+N " '(x,x2„,y)N" ~(x,x2„,'y')

S S V —S U —S

+(v—1)[N ""(1—x,x2,y)N " '(1 x,x—2,y')+N ' '(x,x3,'y)N ' '(x,x3,y')]

+[N " "(1 x,x—~,y)N '" (x,x2„'y')+(v —1)N " (1 x,x2—,y)N " (x,x3,y')

+(sr~ y

pa, fdxp(x) fdx'p(x') . fdx& . dxz„p~(x&, . . . , x2, )

A

v=i

[N " ~(1 x,x&,y—)+N " (x,x2„,'y)]

&& [N " ~(1—x',xp,y')+N " ~(x',x3,y')]

+ (sym y~y')
S iP —S

+(v—2)[N " ~(1 —x,xq,'y)+N " (x,x3jy)]

)& [N " ~(1 x', xq', y')+—N " ~(x'x5',y')] ' . (A2)

The corresponding expression for D~+ in Eq. (2) is easily obtained by using the Poisson distribution, Eq. (7), for the
individual chains. In the numerical calculations we have used k = 1.
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