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We present results of a direct calculation of leading power-law corrections to the proton and pion
structure functions at large x to order 1/Q for v&~2""" aud 1/Q for Wf""'" and to order 1/Q
for vW~' " and WL"". For v8'2 we find large -(1—x) corrections to the leading -(1—x)
behavior as x —+1 and substantial (1—x)i/Q2 corrections, a phenomenologically desirable form.
We find a very large value for the coefficient of 1/Qi in (ot. /or) """.The 1/Q correction to
v%2"" is of the form proposed by Berger and Brodsky but much smaller than their estimate after
complete normalization constraints are imposed. In addition, this correction is not purely longitudi-
nal until (1—x) is very near zero.

INTRODUCTION

While QCD is widely accepted as the theory of the
strong interactions, detailed comparison with experiment
is far from perfect. Even the deep-inelastic structure
function, which in principle provides one of the cleanest
experimental tests, may have important power-law correc-
tions at various orders in 1/Q . Indeed, it now seems
clear that the leading asymptotic terms predicted by QCD
explain neither the low-to-moderate-Q structure-function
data nor the ratio R =o.L/crT. ' . In a previous Letter we
presented partial results of a direct calculation of the lead-
ing power-law corrections to v8'z'"'" and v8'I""" at
large x near 1 and large Q . In the present paper we ex-
tend these calculations considerably. We calculate not
only the leading -(1—x)/Q correction to the -(1—x)
behavior of W2""" but also the —1/(1 —x)Q, the
-(1—x) /Q and scaling (1—x) corrections. We find
that (1) the (1—x) /Q correction is small with negative
coefficient, as previously reported; (2) the 1/(1 —x)Q
correction is small and positive; (3) both the (1—x)/Q
and 1/(1 —x)Q corrections would vanish for a constant
strong coupling constant —i.e., in a sense they derive from
higher-order corrections; (4) the (1—x) /Q correction is
positive and of substantial magnitude; and (5) the (1—x)
correction is negative/positive for a proton/neutron target
with large coefficient. Our asymptotic result for
vs"""/vW'2~""" is, as previously reported, very large
and x independent as x~ 1. (We note that the earlier cal-
culations did not include helicity-flip contributions
whereas those discussed here include all contributions in a
given order. ) This result for vs~"""/vWz~""" suggests
that very large Q is required before a meaningful asymp-
totic series for o.

L /o. T can be developed. The size of all
terms is fixed, in our approach, by the approximately
known normalization of the leading ( 1 —x ) term of

z~~protonVlf' 2 ~

In the present paper we have also "repeated" the calcu-
lations of Berger and Brodsky' for the —(1—x) and

-(1—x) /Q terms in vW2v"" and the (1—x) term in
vWL~"". We have, however, included helicity-flip and oth-
er quark-mass effects. In addition, all normalizations are
fixed by that of the (1—x) /Q correction to vS'v2"",
which is much smaller than suggested in Ref. 4, and it is
not purely longitudinal until x is extremely near 1.

We would like to emphasize that our purpose here is to
perform a calculation within the context of the standard
QCD picture of hadrons and not to give a detailed fit to
data. At large x QCD predicts that the valence Fock
states must dominate the hadron structure function. Our
results for the valence Fock state will thus be valid for x
sufficiently near 1. At moderate x it is likely that higher
Fock states will be important. It is quite possible that the
very large higher-twist effects that we obtain for the
valence states are also present for those higher Fock
states.

Our analysis will be based on the extension of the
Brodsky-Lepage formalism first employed by Berger and
Brodsky in their calculation of higher-twist contributions
for pion beams. We begin in Sec. I by giving kinematic
preliminaries. In Sec. II, we repeat the pion calculation
using our techniques and discuss possible subtleties and
difficulties in the original results. In Sec. III, we turn to
the proton target.

I. KINEMATICS

We begin by giving a few kinematic preliminaries. The
structure functions for deep-inelastic scattering are de-
fined through

Ip9'v
W'p (p, q) = —gp —

2
8'i

+ p„—q„2 p„—q W2 . (1.1)

We use light-cone notation: for general vectors U and u

we define
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U =U +V, U =u —V
+ 0

u=v +iv, v=v —iv

V T (U1 &U2)

U =U U —UU=U U —UT

u v= —,'(u+v +u v+ —uv" —uv) .

(1.2)
/// // / / /I

u (p., )

photon

u(k;)/~x;

/

Note that use of v and U for transverse momenta will sim-
plify later Dirac algebra.

In a frame defined by

q =(q+,q, q T) with q+ =0 q =2v/p+, qT —Q
(1.3)

p =(p &p &QT) With p ™target /p & V=p'q &

+ +

we have

FIG. 1. The initial and final Fock states of a general bound
state of fermions.

The wave function is normalized according to

t)'iS, P Ti&ai&Si
ns.

II/+ + /p +2 ~ Q 2p +2

4v

and the standard ratio of o.
L /o. T is given by

rR =o.L/oT ————
1 —r '

4xBj v8'I
Q2 VW'2

XBj = 2v

(1.4)
X167r 5 1 —ya; 5 y pTi ——1 .

Our spinor normalization is such that

gu, (p)u, (p)=p+m .

Similarly, the final state created by the absorption of a
+ or —component photon will be specified by momenta

and spinors

We will calculate 8'++ and 8' by computing the
amplitudes, A+ or 3 for absorption of a + or —com-
ponent photon by the target, squaring the amplitude, and
then integrating over final-state phase space. In comput-
ing A+ or A, we begin by imagining a superposition of
multiparticle Fock states for the incoming target. In the
frame of Eq. (1.3), we define the amplitude for finding n

(on-mass-shell) quarks and gluons with spin projection S,
along the z direction and momenta p; as (see Fig. 1)

u(k;), v(k;)
(k+)1/2 (k+)1/2

(see Fig. 1). In this normalization the phase space associ-
ated with an n-particle final state is (x; =k;+/p+ )

dI'"'—= g + 16 5 g k;dx;d kz;.

2(2ir)

+
(~) I'4 (ai&pTi& i) & i=

where, by momentum conservation,

(1.6)
X5 1 —gx; 5 (p+q) —gk;

- 277
l

ga;=1, g pT; ——0.

The s; specify the spin projections of the constituents.
For xB;~1 we will be concerned only with valence Fock
states containing quarks or antiquarks. For each fermion
or antifermion constituent gs"' multiplies the spin factor

u( Pi) + 1/2 v(Pi) +»2
(p; ) (p; )

+ 1/2(P ) + 1/2(P

(1.9)

Our procedure will be to calculate 8'++ or 8' by first
computing the amplitude A+ or A for a given quark in
the initial-state configuration specified by fs to absorb a

Z

+ or —component photon and yield a final state as
specified above; this amplitude will include the integration
over initial configurations p T; and a; and a coherent sum
over the initial quark spin states for the given S,. We
then obtain, for a given struck quark,

1

2
1 dx;d kT;

161r 5 g kT; 5 1 —gx; 5 (p+q) —Q k;
~

A+
~

2, (1.10)2', ;, 2(2ir)'; ', ' p+

where A+' depends on x;, kz;, and s .
Finally, we sum over the possible quarks which can be

struck by the deep-inelastic photon. We do not allow for

I

interference terms in which the photon is absorbed on dif-
ferent quarks of the target. These terms are suppressed by
a factor of
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II. CALCULATIONAL FRAMEWORK
AND APPLICATION TO PION STRUCTURE

FUNCTION

%'e now consider deep-inelastic scattering on a pion tar-
get at large xq;. In the x~, —+1 limit the bound-state
quark struck by the virtual photon is required to carry
most of the + component of longitudinal momentum.
The simplest diagrams allowing this configuration are il-
lustrated in Fig. 2, where we consider the qq Fock com-
ponent (in the hght-cone decomposition of Ref. 5), higher
Fock components being suppressed by powers of
(1—xB;) . We will calculate the amplitude for virtual-
photon absorption in the xz;~1 limit and later square
and provide phase-space factors to obtain the structure
functions, as discussed in Sec. I.

In the frame of Eq. (1.3), the on-shell recoil momentum
p —k of Figs. 2(a)—2(b) is given by

(p —k)+ =(1—x)p+,
m +k

(p —k)
(1—x)p+

(p —k)z = —kz. ,

(2.1)

where m is the spectator-quark mass and x =xB; in lead-
ing order. From (2.1) we find that

—(m +kg )
k (x)-

(1—x)
(2.2)

is forced far off-shell in the x~1 region. This purely
kinematic result allows us to apply the Brodsky-I. epage
formalism in the x —+1 limit. '

In the procedure of Ref. 5 one notes that the transverse
momenta of the initial quarks do not enter into the large
off-shell momentum (2.2). Thus one may evaluate the
tree graphs of Figs. 2(a) and 2(b) with collinear on-shell
initial quark and antiquark lines and incoming spinors,

a, (Q')

a, ("kr "/(1 —xB;))

relative to the diagonal terms we retain. This is because
the virtual-photon momentum has to be routed through
an explicit gluon exchange between the two interfering
quarks (when visualizing the calculation as that of the
imaginary part of the forward Compton amplitude). Our
normalization is such that for a one-particle state
vS'2 ——5(1—xs& ).

44Q29% k2( ) (2.4)

This is the point beyond which the initial transverse mo-
menta can no longer be neglected in calculating the tree
graphs. It is the region below "Q " which gives the
leading-logarithmic contribution in the x ~1 limit.

In the limit of very large "Q ", P(a, "Q ") takes a par-
ticularly simple form for a pion,

P(a, "Q ") — a(1—a)
44Q 2t% nq

(2.5)

where n, =number of colors. At more moderate "Q "
the wave function will not have reached its fully evolved
form. In fact, Berger and Brodsky use the weak-binding
form

P(a, "Q ")=5(a——,
'

)
4 n,

(2.6)

We have chosen the normalization of P so that the nor-
malization of the large-Q pion form factor, proportional
to J P(a)/a, is the same for (2.5) and (2.6). More so-
phisticated forms for P are considered in Ref. 6. We do
not, in this paper, wish to explore all possibilities for the
pion and so we will restrict our considerations to a P of
the form Eq. (2.6). We will employ f = 130 MeV.

The above wave function for momentum coordinates
must be supplemented by the color wave function

(2.6')

(a,b =quark, anti-quark colors, respectively), and the pion
spin wave function

u (ap+) v [(1—a)p+]andVa v'1 —a
This tree-graph result is then convoluted with the evolved
wave function P(a, "Q ") defined by (for simplicity we do
not write the standard wave-function renormalization fac-
tor)

'g&" d pz-id

Slsg

X Ps ( p t, p2, s i,s2 )5(s
& +s2 ),

(2.3)
where p ~+ =ap+, p2+ —= (1—a)p+, and we require a spin-0
qq Fock state for the pion. This "evolved" wave function
is thus the integral over initial transverse momenta of the
Fock-state wave function with upper limit "Q " set by

(2.6")

k+q
both normalized to unity in the square. The + and-
refer to infinite-p+ helicity states (see Ref. 5).

The calculation will employ an axial gauge for the
gluon specified by

(b) g.As)„,„=0, g=(0,g, 0,0) . (2.7)

FIG. 2. Tree graphs for the two-quark pion valence state at
large xBj.

In this gauge the rules for the numerator of the gluon
propagator,
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g„k„+qJc„
gpv+ PPY(k) 9g.k

are specified in Table I.
We will also employ the Dirac-algebra rules for matrix

elements between on-shell spinors specified in Table II,
adapted from Ref. 5 to our more convenient notation. We
will employ "helicity" states where the helicity is that
which a particle would have in the p+~ co limit (see Ref.
5). We supplement these rules with the observation that
the numerator structure of an off-shell spinor line may be
written

Y
t

Is
I

Y
n, (v)

I

I

I

TABLE I. pp„(k).

V
Y

I

I

I

Y

v(n}
k

k+

I

2

k+ u~(k) uq(k)g+m=
p+ ~ (k+/p+)t/2 (k+/ +)&/2

+(k —m)~
2k+

aII ofhers =0

TABLE II. Matrix elements of one and three y matrices. o,p= hehcity jn p+~ ~ frame

u (q)
Notation:

(q+/p+ )1/2

v (k)
(k+ /p+ )1/2

Overall
factor

u (k)
( k + /p + )

1/2

U (q)0 y :—0
(q

+ /p + )
1/2

p
V W

Ij

0 0

2p+
k+q+ qk+m kqq+m' —m(k —q) +m(k —q)

q /q+ 0 1 1

q4 k+

k/k+ q/q+ 1 1—m
q+ k+ 0

0 0 0

p 8p+ 0 0 0

P 8p+

q V +

p 8p+

q
— + h k

P 8p+
k

0

k/k+

k/k+

0

0

q /q+

0

m /k+

0

—m /k+

0

m /q+

0

q Ij ~ ~ k
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with a similar rule for antifermions. Graphically
+

(2.9)

2kT qT5(x —xB, ) —5'(x —xa, )

Here the spinors are on-shell spinors. The k component
is placed on shell and the y+ term of (2.8) compensates
for this correction. Note that this trick combined with
the axial gauge of Table I implies that only + and trans-
verse matrix elements need ever be considered for 8'++,
for 8' a limited number of —elements are required.

One finds that the amplitudes have the form
+

A+ -a+(I x)+—b+/Q+
Q (1—x) (2.10)

A -a Q

up to subleading terms in (1—x) '. The numerator alge-
bra for nonflip contributions appears in Table III. We, of
course, only retain those contributions capable of con-
tributing to the leading terms as x ~1. The phase-space 6
function has the expansion

m +k—6'(x —xB, )
Q (1—x)

2k~. q T

Q2
+ —,5"(x —xB, )

2

(2.11)

We square the amplitude (2.10), multiply by the expansion
(2.11), and collect all terms of given powers in 1/Q and
1/(1 —x). [Observe that the derivatives of 5(x —xB, ) lead
to extra inverse powers of (1—x).] The resulting forms
are

(1—x) +constant/Q

(2.12)—constant .x~1
More generally (Appendix A) one can show that the

leading terms for n-body fermion Fock states behave as

Pr (1 )2n —3+2' hA
i

x —+1
(2.13)

TABLE III. Numerator y--. . "atrix alegbra results.

A+ contributions 2n —4+2AT
v Wl —(1—x)a~1 (2.14)

where AA, is the helicity of the initial target spin state
minus the helicity of the quark (or antiquark) probed by
the virtual photon. The corresponding rule for 81 is

+
I I

I

l

A

+ ~ V

I

I

I

A

+
I

I

I

+

V
l

I

I

A

+ 4p+kT2
+ CC

x-~ (1—x)c

4p+(1 —a)qf
x~1 (1 x)

+ 8p+kT2
CC

a(1—x)

+ 4p+kT'
+ CIC

x x (1—x)

f~ 3

2~n, '

2.15( )

where the rightmost equalities hold for the form of the
wave function given in (2.6). These are the only two in-
dependent wave-function weightings which appear once
the symmetry under a~(1 —a) of P(a) is employed.
Denoting, for example, 3+ + as the amphtude for an
initial + —helicity to absorb a photon and yield a final
+ —helicity state, we define amplitudes for fixed final

helicity states as
1

A+ —~(A++++))

where AT is the helicity of the initial target spin state.
We now discuss the details required to obtain the full

result including normalization and spin-flip terms. The
color wave function (2.6') and coupling constants yield a
factor of —g, Cz. In addition, we convolute with the ini-
tial wave function and sum over spin configurations [see
(2.6")). We define

"Q"
d

CX

A contributions

V +
t

I

A

4kT2
QC+ x~1 p+( ] —x)

T- —++=+—++ for all the above

1
A++ = ~ (A+ ++ A~2

1
A + —— (A+ + —Av'2

—+,++) ~

-+,-+»
(2.16)

1
A = (A+ —A + ),v'2

corresponding to the coherent helicity-0 initial pion state.
We obtain (taking the charge of the struck quark to be
unity for the moment)
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A + — ( C—Fa,4')+ 1 4p+(1 —x)
(m'+kr')'

A+ ——(A+
x —+1

I Ig2

—(I~+Is)—
(kz. +m )

qk (Ia —I~ )
Q (1—x)

1 4p+(1 —x) mk(Ia) mq
A+++ — ( C—Fa, 4n ) 2 2 2- 2 2

—
2 (Ig —Ig )

V2 '
(m +kz ) (m +kz ) Q (1—x)

A+ —+(A++ )*,
x~1

(2.17)

( —Cpa, 4m )
1 4

x —+1 2 p

qkI~

(m +kT )

1
A ++ — ( —CFa, 4~)

x 1 V2 ' p+
/ II'

(m +kT )
=+(A: )".

Note that no terms of the form c+ in Eq. (2.10) appear. We next square and incorporate final-state phase space; see
(1.9) and (1.10). We obtain, using the expansion (2.11),

A+
'

v&2 —— J dI' '

4~ p +

—4' I dkT a,x~1
(I„+I~) + 2 2 (3I~ +2IgI~) (1—xB, )

(kT +m ) (kT +m )

1 1+
Q (kT+m )

I (6' +4IgIg)m(3' 4Ig 2I—pe ) +-
(kT +m ) kg +I

(2.18)

2

vW = I dl ' '
~

p+A
4v 4m

dk a
4CF

x~ ~1 (m +kz )
(2.19)

The simplified results of Berger and Brodsky (Ref. 4),

dkT 4 kT
vg'p — 36CF Ig 4 a, (1—xB„) +

xB ~1 ' k,4 j 9 Q2

~(ai. +ar ), (2.20)

dkT , Qv8'I — 4CF Ig, n, ~ g-L,
xB.~1 m

are obtained by neglecting m 's except as an integration
cutoff and by using Iz ——2I& as appropriate for the wave
function (2.6). In this approximation the higher-twist
contribution to vfYz (proportional to 1/Q ) is purely
longitudinal. Vfe will see that evaluation of the more gen-
eral expressions (2.18) and (2.19) does not yield this result
until xz& is very near 1; the longitudinal content of the
1/Q correction to vWz is sensitive to the m scale and
to the wave function through Iz and Iz. We evaluate the
full expressions (2.18) and (2.19) for the approximate wave
function (2.6), and employ a moving coupling constant

kT +m
s =s

(1—x)
(2.21)

is logarithmically divergent without the moving a,
whereas the additional higher-twist terms with explicit
numerator m powers converge. For xB& very near 1 this
near divergence enhances the first term and leads to a
purely longitudinal higher-twist correction. However, for
practical xB„. values, the results are very different.

The numerical results are best expressed as a function
of the variable

x= A, (1 —xB„)

where A is the QCD scale of a, in (2.21). Defining

(2.22)

2 1(1—,„)'S,+,T, = W,"+ W,"', —
xB.~1

(2.23)
v 81 — SI

xg ~1

with a= —,
' for (2.6); a, is thus the two-loop momentum-

subtracted moving coupling evaluated at the off-shell
momentum carried by the gluon in the graphs of Fig. 2.
This procedure possibly reduces the higher-order correc-
tions to these graphs when they are evaluated in axial
gauge. Note that the term in v8'2 proportional to

(4Ig /Q )/(kT +m )
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twist, HT = higher twist), we note that
T '

d md tofS S, and T2 are in1.*

/ h (k )i dfi d
In Fig. 3 we plot, or uni

~S T /m S, and kT /m, w ere T

h h b i ml-
the inte rand of Eq. (2.

at 5) 10 where e pThe graph begins at h
comes valid. First it is necessary oto comment

Dt tl, bon the norm alizatiOn Of S2. a a a
D 11-Y n pair production us-

rmi tion of the n 1 on str c-
ion-nucleon Dre - an

in the deep-inelastic determination o e
'

n. This indirect extraction uses a ac
'ld oi of-2. The (1—xil;) fits to v&2 yie an

ficient

(2.24)10 to 15.S2 ——

(1 xB, )

-s uared factor of —,') weFrom ig.F' 3 (corrected for charge-squ
/A value of roughlysee that an m

m
2
=1, (2.25)

1.6m, X= 10,
(2.26)3.3m, +=400 .

Thus m =0. e.01 G V corresponds to an
'

an intrinsic trans-

(kT2) =

10

+mom
~ ~ ~

~ ——0.9 is required to obtainto /=10 at xB, ——

h 1 f 1""1'"1"''hvalue it is ep u orp
rse momentum square oaverage transverse m

'
h x as shown in Fig.(k ). It varies slowly wit xB& asquark,

3. For example,
T

atlar ex~ o) f order 100—200 MeV,g
well within the conve ntional phenomeno ogic

ate m value alsohat this same approximate m
th 1yields the correct normalization or e n

function.
we see that the normalization of

]]

T Mt 11that the predicted values or 2 are
=0.01 GeV . Nonetheless,m

+a ——0.99~HT
(2.27)

V 2 2
— jS (1—xB ) gl, o G,vz

9 8 becomes negative but is, inAt x values below 0.9, vxaj 9 v

8' ' d' tdtoTh longitudinal struc ture function v
of x . in the limit xB,~1 an wi

h
'

Aalso become increasingly impa so e
' 'm ortant in is

ful guide is

T2 =0.5 .

0.2, xBj ——0.9,vRL
1, xgj ——0.95 .VW2 m2=p. p) ~j —~ ~

(2.28)

lar er must be in order forCl rl the larger xq; is the larger mu
these leading approximations to y'

(2.29)g' vs
ositivity see Eq. (1.5)].eqll y p

(lb o ' o(1
differ from those o e .

th(k ) —1

sw o y
2 in a range inconsis en w'

ea s h' h -twist coefficient. The
osen in the first article o e .

2 leads to a small hig er- wis
d 8 alculations, including

1 1

v8' and L ca c
ebra contributions, is a so

d t'nd' t' ""ntf. 4 a roximation an en
ntribution from eing pu'g

the "transverse" part o v
Q 1 fo 11 1 so

.19) 'ld 1 1o t-r calculation. On y or Ue

(1—xB;) will qs.E s. (2.18) and (2. yie
in v8'2, for it is only by adinal higher-twist component in v 2, o

power of
—1

1
1n

1 —xgj

0
0.02 0.04 0.06 0.08 Q. I0

I~x
" ion" target. oPl tted as a function ofp—x ) are m S2, SL/m S» 2 mm /A (1 B,

S is in units o e
1T g fties are imen

'
d mensionless. Multip y 2 q

type of pion.

) contributions are supp ressed rel-that the m (kT +
k +m ) 'termsinv

di R f. 4i 1 d m h t-The second work quoted in

l. '

the evaluate it by irs resame as ours, ey
r F(, an ed then inputting the

phenomenologicaical form determined by ow-
th strict xB ~1 limit,

1 h
In contrast, in t e s ri

to . Th o lt
e uivalent to emp oying

QCD form for the meson form actor. u

8'L ——(0.05 CxeV ) —,/Q
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at xB, ——0.9 is approximately a factor of 4 below their esti-
mate, which is probably appropriate at smaller xz, .

Regarding other possible meson "targets, " we note that
0-helicity vector mesons yield exactly the same results as
for pions up to an overall normalization factor. Trans-
versely polarized vector mesons exhibit some distinct
qualitative differences.

(a) vs behaves as (1—x) instead of (1—x) .
(b) v Wz receives no matrix-element contributions.

For instance, the diagram of Table III, which is a leading
matrix-element higher-twist contribution for the pion-
helicity configuration, is zero for a ++~++ helicity
configuration. Thus the higher-twist contributions for
transversely polarized vector mesons come entirely from
the 5-function expansion (2.22) and will yield a negative
coefficient.

III. THE PROTON STRUCTURE FUNCTION:
PRELIMINARIES

( I-a —P)p

gp I

I

t3p I

I

I

I

I

I

p
—k —g

I

I

I

I

Ib

I

I

I

I

I

The calculation of the proton structure function
proceeds in close analogy to the pion case. However, the
number of diagrams for the proton valence three-quark
state is much larger. Our classification appears in Fig. 4.
The kinematics are illustrated in the A diagrams of Fig. 4.
The vectors l and p —k —l are on shell and we define
[in (+, , T) notation]—

lp +m
I = z(1 —x)p+, +,tT

z(1 —x)p+

( l T+kT)'+m'
p —k —l = (1—z)(1—x)p+,

(1—z)(1 —x)p+

I

I
I

I

4b

I

I

I

I I

5b

—( I T+kT)

LT ——l T+kT .

In this case

I

I

I
I

I

I I

k (x)
2+m 2 L 2+m 2

z(1 —x) (1—z)(1 —x)
(3.2) FIG. 4. Enumeration of the tree graphs appropriate at large

xB, for the three-quark valence proton state.
is again forced far off-shell and perturbative calculations
based on the formalism of Ref. 5 are appropriate. In this
region higher Fock states, beyond the valence, are
suppressed by powers of 1/k (x) in the amplitude. We
define an evolved wave function for the three-quark state
as

4(a,P, "Q")=
$1$2$3

5(sl +sp+s3 —s )

-g2» d PT ~d PT2

(16~ )

X ti'5 ( p 1 p 2 p 3$1$2$3 )

(3.3)
with "Q " set by 1/(1 —x11&) as in (2.4). At very large
"Q " the form of P for a helicity + —,

' proton state,

1

ve (2
I

u+u+d ) —
I

u+u d+) —
I

u u+d+))

+symmetrization (3 4)

is (neglecting logarithmic structure)

P(a, P, "Q")
"Q2"—+ oo

CaP(1 —a —P) . (3.5)

Our calculations, however, are to be compared with data
at modest "Q "values; in this region It is unlikely to have
attained its fully evolved form. Other possibilities include
a simple weak binding form

Q=B5(a ——,
' )5(P——,

'
) . (3.6)

A form for P based on off-energy-shell dynamics, which
leads to good agreement with moderate- Q nucleon
form-factor data and P~pp decay, has been proposed by
Brodsky, Huang, and Lepage:"
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PT1 +m PT2 +m2 2 2 2

$3q(a, p, pT;)=A exp b—
1 —a- a

PT3 +m2 2

+

independent of spin. The corresponding P is

P(a, P) = A~aP(1 —a —P)

(3 7)

We are now ready to discuss amplitude evaluations.
For the moment we consider only terms with leading
x ~1 behavior in a given order of 1/Q. For vW2 we list
those forms capable of yielding

(1—x)
v W2 — (1—x)/Q (3.14)

1/Q (1—x),

)&exp —b m2 2 1 1 1+ +
1 —a —P a P

while for vWL we will only keep terms contributing in or-
der 1/Q (i.e., to oL /err in order 1/Q )

where the choices
(3.8)

vWL -(1—x)

These are

(3.15)

Ap ——0.35 CxeV

b'm'=0. 012

(3.9)

(3.10)

In comparing results for different wave functions, we nor-
malize B and C of Eqs. (3.5) and (3.6) so that the I~
values for these wave functions are the same as for (3.8).
Since the I~ weighting dominates the nucleon-form-factor
calculation, this will lead to the same form-factor normal-
ization for all three cases.

As in the pion calculations the moving coupling con-
stants will be evaluated at the momentum transfer carried
by the associated gluon. The wave-function momentum
fractions a, p or y =a+p appear in these arguments and
are evaluated at their average values for the particular
type of integral Iz, . . . , ID which weights a given contri-
bution. We denote these average values by

&a&r„, &p&J„, &y&J„, «c.

The color wave function for the proton is taken as (nor-
malized to unity)

1

v6
which yields a color factor of

color factor= 9 3 CQ

(3.12)

(3.13)

for each amplitude diagram of Fig. 4. Note also that the
tree graph involving the three-gluon vertex is zero for the
color wave function of (3.12).

yield their best fit. The corresponding valence-state prob-
ability is ( —,. Note that all choices of P are symmetric
under a~P~1 —a —P. Various integral weightings of P
will appear in our diagram evaluations. Those appearing
in vW2 and vWL are

Iz ——f P(a, P)da dP
1

p(a+ p)'

I~ ——f P(a, P)dadP 1

(3.1 1)

Ic——f p(a, p)da dp
1

p'(a+p) '

ID ——f P(a, P)dadP 1

b+ c+A+ —a+(I —x)+ +
x 1 Q [Q2(1—x)]

d+ e+

Q (1—x) Q (1—x)
—a (1—x)Q .

(3.16)

(1—x) 1
nonleading x~1 Q Q

(4.1)

but those are not as important in the strict xz;~1 limit
of vW2 as the various 1/Q and 1/Q corrections arising
purely from the expansion of the — component
momentum-conservation phase-space 5 function. We
refer to this as the absence of leading higher-twist
"matrix-element" contributions in the XB;~1 limit. This
absence is related to the extra power of (1—x) in A rel-
ative to the pion calculation [compare (3.16) to (2.10)],
which in turn arises from the nonzero helicity of the in-
cident photon. However, terms of the form (4.1) will be
computed later and will be found to be phenomenological-
ly more important than the terms we consider now.

In the gauge (2.7), only a very few diagrams contribute
to the a+ term of Eq. (3.16). The Feynman-graph-
numerator results for the nonzero y-matrix configurations
are listed in Table IV for the nonflip helicity configura-
tion + —+~+—+.

We have defined the variables

~ '+m' L '+m'U=, S = U+T . (4.2)
z '

(1—z)

Final-state phase space provides one power of (1—x), so
that upon computing (1—x)

~

A
~

we obtain

vW2 ~ a+ (1—x) +
x —+1

(3.17)
vWL ~ a (1—x)

x —+1

in agreement with (2.13) and (2.14).

IV. vWq

The results for 3+ are easily summarized. First, the
possible power-suppressed corrections, with leading
xB;~1 behavior listed in (3.16), to the dominant a+ term
do not arise; i.e., b+ =c+=d+ =e+ =0. There are
numerous terms contributing to 3+ of order
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TABLE IV. Numerator results. 2 + nonflip contributions
(charge and color factors omitted).

(a+P)S BU
(1—x) ' (1—x)

+
) I

I

I

)

I

V

16p+ P SlL
+ -& (1—x)' (a+0) z(1—z)

(a+P)S at
(1—x) ' (1—x)

(4.4)

aT PU
(1—x)' (1—x)

Combining Table IV, Eqs. (3.11), (3.13), (4.3), and (4.4),
and using a~p symmetry of p, we obtain

+
I

t
A

I
I

I

I

V

&6p+ a SLt
x i (1—x)3 a+P z(1 —z)

wv

+ + ——8p (1—x)( , CF )(4—m).+ 1 IL
x~1 z(1 —z)

(yAS)(PA U) (yAS)(PAT)
Ug 2

(PBT)(aBU)
UTS

V+A
I

I

I I

A
I

I

V

sp+ TIL
(l —~)3 z(]—z)

=AlL .

We have introduced the notation (defining y =a+p)

(yAS)—:a, [(a+p) I„S/(1—x)],
(aBU) =—a, [ (a )I U/(1 —x)],
(PCU)—:a, [ (P )I U/( 1 —x)],

(4.5)

(4.6)

(1—x)
(ds~) =

za (a+P)TS
(4.3)

d4A
(1—x)

aP(1 P)UT S—
The moving coupling constants appearing in the various
diagrams are evaluated at the average off-shell momen-
tum transfers carried by the two gluons. The absolute
values of these momenta transfers are

Only diagrams 2A, 5A, and 4A of Fig. 4 contribute as
x~1. The corresponding denominator products are

(d2A) = (1—x)
p (a+p)US3

etc.
At this point note that A vanishes if the weak-binding

wave function (3.6), which implies Iti 2I&, is chos——en and
if the a, 's are taken to be constant.

The leading helicity-flip contributions are easily sum-
marized. First, the upper line may not flip without losing
a power of (1—x) [see Eq. (2.13)]. Helicity flip for the
middle line leads to the replacement in Eq. (4.5) of I by
( —m). Helicity flip for the lower line leads to L~—m.
Helicity flip for both lines results in IL ~m .

The results for initial helicity configuration ++—are
obtained from the above by T++U, a~P, and LT—+ —-l z.

interchange which leaves A in (4.5) unchanged. The ini-
tial —++ helicity configuration does not contribute to
the leading x ~1 behavior.

For the spin wave function (3.4) we thus obtain the
final-state spin amplitudes

A ++ (cA ~+ ++ +dA + + ++ ) = A (clL +dm )+ 1 + +

A++ — (cA++ + +dA+++ + ) = ~ A (cmL dml), —

1 + + V 'V

A +++ (cA ++ +++ +dA + + ++'+ ): ~ A (cml dmL )v6

(4.7)
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leading to

IM I

'=
I ~++- I

'+
I ~+-+ I

'
+ I ~+-- I

'+
I ~+++ I

'
(c+d )=A (IT +m )(LT +m ) .

6
(4.8)

c=2, d= —1,
while for the struck d quark (of + helicity)

(4.9a)

For a proton, Eq. (3.4) implies that for each struck u

quark (of + helicity)

the helicity-nonflip factor Ir Lr, which would have ap-
peared in (4.10) to (lT +m )(Lr +m ). This is, of
course, much simpler than what happens in the pion case.
This simplicity is quickly traced to the fact that the line
struck by the photon cannot flip helicity in the proton
case [without extra (1—x) suppression], whereas it may in
the pion case.

The final-state phase-space factor for the proton three-
quark Fock state is dl ' ', given in (1.9). We have

d lrd LT(1—x)dzdxdr(
(16m )

helicities

c=—1, d= —1. (4.9b)

The above does not include the charge-squared factor.
Using the weightings (4.9) we obtain (after including the
charge factors)

~2~5 2v- S
1 —x

(kr+qT) +m

(4.11)
IM I

„„„2=
I

A
I

( —,')(IT +m )(Lz. +m ) . (4.10)

For a neutron target the —, is replaced by a —,
'

yielding the
well-known —,

' ratio for (viz )„,««„/(vW2 )~««„. '

Note that the helicity-flip terms in net, merely change
I

As before, we will expand the 5 function, this time up
to order 1/Q . Because the matrix element

I
M

I
is even

under both l z.~—l T and L~~ —I-T, we can use the
simplified form

dx dz(1 x)n dLr —~dlT

Bj finaI (16m )
helicity
states

5
X 5(x —xB;)— 5'(x —xB;)+

Q (1—x)

I.T +lg 5"(x —xB; )
g2 2 g4( 1 x)2

We finally obtain v8'2 as

(L~ +lT )S 1 (L~ +IT +4LT lT )5"'(x —x B, ) +—
4

5'"'(x —xB; ) +0
Q (1—x) ' 4 4

(4.12)

(4.13)

C3 C4
s

1
s

L ~'+lT' s' 5"(x —xB, )
g2 g4(1 )2

Cj C2
I(xnj)—= f dx(1 —x)'a, a,

1 —x '
1 —x

5
X 5(x —xg, ) — 2

5'(x —xB])+
Q (1—x)

(I.,'+ t, ')S 1 (L,'+4L,,'I, '+I,')
g'(1 — )

' 4 g'
We note that for

First let us examine the x integral. The important x dependence in (4.13) is a series of terms of the form

(4.14)

ln
c

1 —x

a= 4m.

211——,gp
(4.15)

we have

da,
CXs

dx
a,

a(1—x)
(4.16)



J. F. GUNION, P. NASON, AND R. BLANKENBECI. ER

The 1/Q correction terms which involve f (1—x) 5'(x —xB;) and f (1—x) 5"(x —xB, ) receive their leading contribu-
tion by differentiating the explicit (1—x) power the maximal number of times. Contributions obtained by differentiating
one of the a, s are suppressed by a single a, relative to these leading contributions. In contrast, the 1/Q correction
terms involve integrals of the form

f (1—x)5"(x —xB;), f (1—x) 5'"(x —xB,), or f (1—x) 5'"'(x —x»),
which would be zero unless one of the 5-function derivatives is partially integrated against a moving coupling u, . Thus
the leading 1/Q term will involve an integral over five powers of a„versus four. Defining

4

X(a, )= g a,

Eq. (4.14) reduces to

C;
II(a, )= +1 —x i=1

C;
(4.17)

(1—x»)
(x») = (1—x»)'«~, ) I.=.„+ z

" [6(L,'+I,') —2S]11(~,)
I „„x =xg.

1 Sz
z z 6(Lz +IT +4LT Ir )+

2
2(LT'+—IT')S+ [11(~,)r(~, )] I „„a 1 —xa. )3

s s x =xg.

Writing the leading power-law contributions as

T Uz
vW'z — Sz(l —x») + z (1—x»)+ 4 + .

x~ ~1 Q
" Q(1 —xB)

we obtain the following explicit expression for S$"""from (4.13), (4.5), (4.10), and (4.12):

(4.18)

(4.19)

(yA ) PA ( AS)(PA
0 m 2/z m 2/1 —z US2

+ TS2
(PBT)(aBU)

UTS

The expression for T2 is easily obtained, following the
procedure just outlined in (4.18) by multiplying the in-
tegrand of (4.20) by

j 6[U ( 1 —z) + Tz —2m ]—2S I .

The expression for U2 is similarly obtained by following
the procedure of (4.18). It is clear that Uz vanishes unless
we employ moving coupling constants. That this is also
true of Tz is less obvious; nonetheless it can be verified by
analytic calculation that T2 is indeed identically zero for
constants a, . Thus both T2 and U2 are sensitive to the
manner in which we have approximated higher-order
corrections to our tree graphs through evaluating the
moving coupling constants as specified in Eq. (2.26). For
constant a, the leading power-law corrections to v8'2
behave as (1—x) /Q and 1/Q, thus establishing con-
tact with the results of Ref. 13; see Appendix B for fur-
ther comparison.

Our complete results are easily summarized. First we
note that the ratios T2/S2 and U2/S2 are very insensitive
to the wave-function choice. Only the normalization of
S2 exhibits any sensitivity. For a given choice of I the
S2 normalization values of 7= 10 are in the ratio

Sz[Eq.(3.5)]:Sz[Eq.(3.6)]:Sz[Eq.(3.8)]
=0. 147:0.022:0.051, (4.21)

i.e., the normalization changes by a factor of 7 for dif-
ferent wave-function choices. This sensitivity is due to
the tendency for cancellation between the Iz and I~ terms
of (4.20). Indeed, for the wave function (3.6), Sz is identi-

(4.22)

„70, 7=10,
24, /=400 . (4.23)

Results for a neutron target are easily summarized. We
find Sz/Sz ———', as obtained in Ref. 12, while Tz/Sz and
Uz/Sz are target independent. The —', ratio above is, of
course, a direct consequence of the fact that only struck
quarks with + helicity before and after photon absorp-
tion contribute to Sz [see (4.7)—(4.9)].

In order to determine an approximate m value we (as
in the pion case) look at the overall normalization of the
leading-twist contribution Sf'"'". Data at X» & 0.9 is not
available. We adopt the procedure of extrapolating the
plots of Fig. 5 to small g and find that the approximate
experimental result

v Wf""" — 0.5(1—x» )3
x~ -0.7

requires

m & 0.006 CireV

(4.24)

(4.25)

where Am, m =0.01 GeV has again been employed. We

cally zero for constant a, . We present results for the pro-
ton, with wave-function choice (3.6), in Fig. 5. There we
plot the m-independent [at fixed X, see (2.22)] quantity
m4Sf""" as a function of g. The results for Tz/Sz and
Uz/Sz show that they vary slowly with x», i.e., with X:

7, 7=10,
4, 7=400,
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Proton

These corrections receive contributions both from explicit
matrix elements and from kinematical terms generated
through 5 function and other expansion corrections to the
leading S2 term. In addition neither V2 nor X2 vanishes
for constant a, .

V. vS'L,

First, however, let us turn to a discussion of the longi-
tudinal structure function v8'L. For spin- —,

' quarks v8'L
scales. The determination of vJFL requires computing the
amplitude A . In this case, as xB,~1, all three initial
helicity configurations + —+, + + —,and —+ + and
all eight final helicity configurations contribute to the
behavior

0 0.02 0.04 0.06 0.08 0.10

I/x
FIG. 5. Results for a proton target. Plotted are m S$, m Sz~,

and Sl~ /mS( as a function of g, where m "S$,m SL~ are in units
of CxeV, while Si~/m 2S$ is ditnensionless.

note that this is roughly the same size for m as required
in the pion case, Eq. (2.24). In fact, for future discussion
we will employ m =0.01 GeV . Once again we calculate
(kz. ) as a function of m . For the proton we obtain

2.8m, +=10,
X=40o (4.26)

which, for I (0.01, yields a very reasonable intrinsic
transverse momentum.

It should be apparent from (4.22), (4.23), and (4.19) that
none of the leading corrections to v8'f"""are very sizable
for the value m (0.01 determined from overall normali-
zation. In a later section we wiH discuss nonleading
corrections to vR'2 of the form given below by V2 and
X2.

3 T2 U2
v W2 — S2(1—xB;)'+, (1—xB, )+

xg„~ 1 g (1—xs, )

+ ——Aql+SqLI I (5.1)

with A++ ++ obtained by LT~/ z, z~(1 —z), a~P
from A+ + + +, and

++ ——Aql +CqL . (5.2)

We define

4( 1 x )(477)
[(

p+z(1 —z)

4(1—x)(4n. )

p+z(1 —z)

(5.3)

v WL — Sl (1 —xB, )
xB ~1

In addition, diagram types 1A, 2A, 3A, 4A, 5A, and 6A
all make contributions in axial gauge and most receive
contributions from several y-matrix configurations.
[Note that in axial gauge 8- and C-type photon attach-
ments (see Fig. 4) do not contribute to the leading xB;~1
behavior. ] It is neither useful nor practical to tabulate in
detail all the contributions. Instead we confine ourselves
to writing out the amplitude for + +—++

—+++, and ++—+ ++, and then illus-
trate how to combine these to obtain v8'L. We use the
short-hand notation for the a, 's given in (4.6).

The structures of the nonflip amplitudes for the three
possible helicity states are

(1—xs„)+ V2(1 —xB;) +X2 2 + . (4.27) and obtain (charge and color factors are omitted)

2Ic Ic IgE — (PCU)(yCS)+ (/3AU)(yAS) — +(PCU)(yCS)+ (/3BU)(aBT)
x 1 SU SU S TU

Ig 2ID 2' IcU Ig
TS

(/3BU)(aBT) + (PBD)(aDT)+ (PAT)(y AS) + (PCT)(y CS)+ (/3BT)(aBU, (5.4a)
TU TS TS
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IcE — (13CU)(y CS)+ (PA U)(y AS) + (PAT)(y AS) — (PBT)(aBUUS US TS TUS

Ic 2' IgFI — (13A U)(y AS) — (13CU)(y CS)— (PA U)(y AS) — (aBT)(13BU)U'S US US U T

Ig Ic 2' Ig(aBT)(PBU) —(13CT)(yCS)— (PAT)(y AS)+ (PBT)(aBUUTS TS TS

For the —+ + case we define

4(1—x)(4~)'
~(1 )E L 2~~ C 4(1 —x)(4ir)

~

—
/

2
—

~p+z(1 —z) p+z(1 —z)

and obtain

2Ic Ic Ig Ig
SU (13CU)(yCS)+ (PAU)(yAS) — (13CU)(yCS)+ (PBU)(aBT) (PB—U)(abT)SU S2 TU TS

(5.4b)

(5Ac)

(5.5)

2ID 2Ic IcU Ig(13DU)(aDT) (P—CT)(y CS ) + (PCT)(y CS ) + (aBU)(PBT)TU TS TS TS

Ic Ig «c
US z (PCU)(y CS)+ (PBU)(aBT) + 2 (13AT)(yAS ) 2(PC—T)(y CS)UTS TS TS

Ig Ig
UT

(PBT)(aBU) (PBT—)(aBU)
UTS

6= E(T~U)—,

H= F(T~U) . —

(5.6a)

(5.6b)

(5.6c)

(5.6d)

The full result for vWL is obtained, in this helicity-
nonflip case, by combining the absolute squares of the
amplitudes for the various helicity configurations and
charge choices according to the wave-function weighting
(3A) and using (1.4) and (1.10) to obtain

df.(3)( +)2 I
A

V

Sl (1—xB, ) (5.7)
x~ 1

where, for SL, we keep only the leading term in d&' «
Eq. (4.12).

The result for vWL obtained by keeping only these
helicity-nonflip terms was given in Ref. 3 for the wave
function (3.8). Helicity-flip terms, which are explicitly
proportional to the mass m, are important, however, for
all P values we have considered. They result in a
moderate increase in the value of SL~. For instance, for
the wave function (3.6) we obtain (in units of GeV )

only a mild sensitivity throughout the entire 7 range. For
example,

Eq. (3.8) Eq. (3.6)

)3.6X10 1.5X10, 7=10,
'4. 5X10 7.9X10', 7=400.

(5.9)

The complexity of the full result for vWI (obtained by
using REDUcE' ) is apparent in the "invariant-amplitude"
expansions of the amplitudes A for fixed final helicity
states (the coherent sum over initial helicity states having
been performed). Each helicity amplitude contains terms
proportional to various vector quantities such as q, l, L
etc., as in (5.1) and (5.2). The coefficients of the vector
quantities are the invariant amplitudes —there is one in-
variant amplitude for each vector structure which appears
in a given helicity amplitude. %'e list the vector struc-
tures which appear for each amplitude in leading order as
xgj~1:

nonflip

2Su 3.3X10 8.3X10,X=10,
3.7X10 ' 1.0X10—', 7=400. (5.8)

Gur complete answer will include the helicity-fhp terms
and employ the wave function (3.6). We have investigated
the sensitivity of the ratio Sr /m S~q to the wave-function
choice in the helicity-nonfhp approximation. We find

A+++ (xq(1,L l, lL),

~q(L, /, L /, / L),
A+ ~ q(/L, L,~l),

+ ~q(/, L,L 1,1 L),

A:++ ~q(L, /),
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SL SL,

m S" m S~2
(5.12)

(good to 3%%uo over the range X= 10 to 400) or, using the re-
sult

S2
s~

we have

(5.13)

SL

s~ (5.14)

While (5.13) is an exact result, following from the fact
that the quark struck by the deep-inelastic photon must
have + helicity (for a + helicity proton) both before
and after photon absorption in order to contribute to S2,
(5.14) is not an exact result. Both + and —helicity
quarks contribute to SL and with different amplitudes. In
addition there are leading contributions to SL in which an
initially negative-helicity quark is struck by the photon
and flips helicity so as to contribute to the same final-
state helicity amplitude as an initially positive-helicity
struck quark. This results in interference between terms
arising from initial quarks of different helicities.

The value (5.11) corresponds to [see Eq. (1.5)]

OL Pl1.6X 10
QCJy xg ——0.9

(5.15)

implying that very large Q values are required before an
asymptotic series for this ratio becomes appropriate. We
do not see any justification in the large-xn region for theJ
usual statement that a small (kz. ) value guarantees a
small value for the 1/Q coefficient in crL/err While the.
scale of this 1/Q coefficient is set by the same quantity
m, the complexity of the proton wave function, the ten-
dency for cancellation in the expression (4.5) leading to
vW2, and to a lesser extent the slow convergence of the in-
tegrals for vWL (which, except for a, variation would be
logarithmically divergent) lead to the very large numerical
multiplier of (5.15).

+ ~ q(1,L I,IL ),
+ ~ q( 1,LI, IL ),

A ~q(L, I) .

The invariant amplitudes multiplying these vector struc-
tures are, in general, lengthy expressions of which (5.4)
and (5.6) are zero-mass reductions. They are, of course,
functions of T, U, and z at fixed m and xs&. We compute
the full v WL from the squares of the above amplitudes us-
ing (5.7). We plot m S& as a function of X in Fig. 5, as
well as the ratio SL~/m S~2. We see that at X ( 10, corre-
sponding for A, =0.1 GeV and m =0.1 GeV to
xQj (0.9, this ratio is slowly varying with value

S,'/m'S& =4X 10' . (5.1 1)

For larger X, x~j values the ratio increases.
The result corresponding to (5.11) for a neutron target

is easily summarized as

2+ —a+(1—x)+f+(1—x)2+g22 (1—x) h+
x—+1 2

(6.1)

Here a+ is the leading term already discussed and we re-
call that the possible "leading" matrix-element terms b+
through e+ of (3.18) are found to be zero.

Coritributions to V2 arise through a+-f+ interference
in

~

A+
~

[recall phase space provides an additional
(1—x)] as well as through trivial corrections to the

~

a+
~

leading term arises from the full x dependence in
dI' ' of Eq. (4.11). The same diagram and y-matrix con-
figurations that contribute to a+ (see Table IV) contain
terms of the f+ type as a result of keeping nonleading
corrections in (1—x) to the numerator and denominator
algebra. However, there are also many new configura-
tions of the A type that contribute to f+. (In axial gauge,
B- and C-type diagrams do not contribute to f+.) Since
we are concerned with an interference a+ f+ contribu--
tion, only the same final helicity configurations
(+—+,++—,+ ——,+++ ) that contribute to the
leading term a+ need be retained for f+. The structure
of f+ is revealed by the vector structures which appear

f++ + cc(L I,L I,LI, 1),

f++ ~(L I,L I,Ll, l),

f++ 0:(L I,LI,L,I),
f++++ ~(L I,L I,L,I ) .

(6.2)

Each vector structure is multiplied by an associated in-
variant amplitude. In general, these invariant amplitudes
are lengthy expressions. For the interference contribution
V2 we compute a+f+ +a+ f+ summed over final heli-
city states and integrated against the leading term in
d I' '. We combine this with the trivial corrections to the
a+ term due to nonleading corrections to dI' ' to obtain
the full result for V2. As for T2 and V2, we find that the
ratio Vi/S2 is a slowly varying function of X. We find,
for the wave function (3.6),

—96, 7=10,
—168, 7=400. (6.3)

Unlike T2/S2 and Uz/S2 the above ratio does, however,
change in going to a neutron target. We find

yN

Stl
15, 7=10,
14, 7=400. (6.4)

Note that the coefficients of the (1—xn, ) correction are
very large especially in the case of the proton and that, in
fact, very large X values (i.e., x~; very near 1) are required

VI. (1—x~;) AND (1—x~;) /Q
CORRECTIONS TO v8'2

To obtain the corrections V2 and X2 to the leading
terms of vW2 [see Eq. (4.27)] requires a major effort in-
volving REDUcE. Our procedure is to isolate terms in
A+ which behave as



2506 J. F. GUNION, P. NASON, AND R. BLANKENBECLER 29

for the combined S2 and V2 terms of the (1—xB, ) power
series to yield a positive result for vW~2.

Thus the behavior vW( -(1—xs„) in the currently ac-
cessible xB, (0.9 region could have little to do with off-
shell counting arguments that apply to the leading
(1—xB;) term discussed here. Positivity, of course, im-
plies that the negative (1—xa;) term is partially canceled
(at moderate xB ) by higher-power terms. This couldJ

3leave an effective (1—x~;) power at moderate xq„. values.
Nonetheless our calculations show that the power-
counting result for the leading S2 term can only be strict-
ly trusted at xBJ values much nearer to 1 than those
currently accessible to experiment.

On a related point, note that (6.3) and (6.4) imply that
vW2/viz should approach the canonical value of
S2/S~2 ———', (Ref. 12) from above. If anything, current
data around xB, of 0.9 suggest that vWz/vWz is below
the value of —', . Thus the asymptotic results for the
(1—xs;) term obtained here would appear to obtain only
at xBJ, still nearer to 1.

In what follows we will adopt the optimistic point of
view that the (1—xB, ) term is largely compensated by
terms with still higher powers. The S2(l —xB;) term is
the least-damped (1—x~, ) behavior and a type of "duali-
ty" may hold in which this leading term also represents a
good average of the sum of all terms. The higher-power
corrections, T2 and U2, discussed so far also have leading
(1—x~;) behavior at their respective orders of 1/Q . Our
next computation will show a substantial correction to the
1/Q term at level (1—xs„), compared to the leading
(1—xB„)/Q form. This correction could also be partially
compensated by terms with still higher (1—xB ) powers.

2However, recall that the (1—xB, )/Q term vanishes for
constant a, whereas the (1—xB, ) /Q correction does
not. In a sense the (1—xs, ) /Q term is the first "non-
trivial" higher-power correction at order 1/Q .

We now turn to the (1—xs, ) /Q correction term X2 of
Eq. (4.27). Referring to (6.1) we find several possible
sources for X2..

(a) a+-g+ interference combined with a

1—5'(x —xg, )(1—x)

phase-space correction [see (4.11)].
(b) a+-h + interference combined with the leading

(1—x)5(x —xB, )

phase-space term.
(c)

i
a +

i
terms combined with phase-space terms of

the form

(1—x) 5'(x —x B, )

or

2 (1—x)5"(x —xB;)

We see that as in earlier cases the ratios are target sensi-
tive but vary fairly slowly as a function of P. The values
given in (6.6) imply that the (1—xs, ) /Q correction to
the leading (1—xB;) behavior of vW2 can be quite sub-
stantial. For m =0.01 GeV and Am, m=0. 1 GeV, we
have at xzj ——0.9,

1

Q
2 X2(1—xB )

S~2(1 —xB;)
6.96 GeV

Q (1—xsI)
69.6 GeV~

Q2

phase-space terms.
All of these possible sources do, in fact, contribute. As

for f+ we confine ourselves to specifying the invariant-
amplitude content of the new forms g+ and h+, of (6.11),
which contribute under (a) and (b). We find

V'

cc ~(I,L, / L, I L )+~(/, L,L I,IL ),

cc (L,/, L—l, l L)+ (L / /—L L/ )

cc ~(1,1L,I L )+ (/L, —L,I ),

~ —(1,1L,I L)+ (LI,L, / —),
(6.5)

h+ + cc(L1,1),

h++ cc (L/, 1),
h ++++ cc (L I )

h++ cc(L,I) .

The computation of the invariant amplitudes is performed
using REDUcE. The expressions for those appearing in
the g+ amplitudes are lengthy while the ones contributing
to the h+ amplitudes are not as involved. The entire cal-
culation of the interference and phase-space corrections
listed under (a)—(d) is also performed by REDUCE with a
final numerical integration yielding the results below. We
employ the wave function (3.6) and obtain

696, +=10,
~2gs 898, 7=400,

(6.6)
63, 7=10,
213, g =400.

(1—x )5"(x —xB;) .

(d) a + f+ interference combined w-ith

1 5'(x —xs; )

n . 2

Q2 JX2(1—xB.)

S2(1—xB, )

0.63 6.3
Q (1—xB) Q

2 . 2 6.8

The proton X~2 correction is clearly very sizable. Assum-
ing that the 6.6-GeV coefficient of (6.7) is not substan-
tially varying as xzj decreases outside the range xpj )0 9
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VII. SUMMARY

In this paper we have explored in detail the predictions
of perturbative @CD, using the approach of Refs. 4—6,
for the behavior of the deep-inelastic structure functions
for large xB,. We have compared the terms given below
which derive entirely from the valence-quark wave-
function states of the pion or nucleon target:

vW2 — S2(1—xB„) +T2/Q
x~ ~1

v8'L -SL,

(7.1)

(7.2)

N (1—xBj) N 1
vW2 S2 ( xBj) +T2 2 ++2

Q (1—xBj)

N 4 N Bj+ V2 (1—x»)'+X2 (7.3)

(in which our calculation is perturbatively justified), we
would obtain a —50% correction at Q =25 GeV,
xB)——0.5.

We also remark that we have simply not attempted to
extract the 1/Q correction to the leading S2(1—xB, )

term. Such a calculation is possible and we would again
anticipate a large coefficient since there are many con-
tributing sources from both nonleading phase-space
corrections and direct-matrix-element terms.

yields the correct normalization for both. The average
transverse momentum of the quark struck by the deep-
inelastic probe is exemplified by the results (4.26) which
we approximate for discussion as

(k 2)N-3m2 (7.7)

SI
& 0.2

m 2S2

and for

(7.8)

roughly independent of x~, . The important point to note
is that with (7.6) this is a small number entirely consistent
with indirect determinations using fragmentation and
similar data. Using (7.5) and (7.6) we find that all a, ar-
guments which appear in our calculations are well into the
perturbative domain, provided xB; & 0.9.

Given such a small result for m or (kT ), it has be-
come customary to think that the 1/Q power-law correc-
tions (which scale as m relative to leading terms) are
then very likely to be small, especially corrections of this
type which have no "extra" dynamical origin such as di-
quark' or other nonperturbative internal wave-function
structure. In this paper we have found that for a pion tar-
get this optimistic scenario appears to hold, whereas for a
nucleon target one must anticipate large power-law
corrections.

For the pion target we found (xB;)0.9)

A, =0.1 GeV, (7.5)

in rough agreement with the lower range of existing deter-
minations. (We use the lower range because our results
indicate the likelihood of substantial higher-twist contam-
ination in these determinations. ) The second is the quark
mass, which provides the infrared cutoff for internal-
transverse-momentum wave-function integrals. The nor-
malizations of S2 and S2 scale as 1/m and 1/m,
respectively, and thus provide a sensitive measure of m .
Comparing these quantities to approximate experimental
determinations shows that

pyz &0.01 GeV (7.6)

vWL -SL (1—xB, ) (7.4)

Since we are interested in the limit Q ~ oo followed by
the limit of large xB, , we have systematically neglected
terms of order a, ("kT "/(1 —xB, )) and a, (Q ) relative
to terms of order a, ("kT "/(1 —xB, )) in computing the
various coefficient functions S2, . . . , X2. In particular,
the neglect of terms of order a, (Q ) implies that we need
only consider diagrams, for the forward Compton ampli-
tude, in which the photon enters and exits on the same
quark line. Equivalently, in our calculations we sum in-
coherently the absolute squares of the tree-graph wave-
function amplitudes (2+ or A ) for each type of quark
in the bound state.

Aside from the initial-wave-function choice, for which
we have taken the "weak-binding" forms (2.6) and (3.6)
(there is no substantial sensitivity here, as discussed), there
are two parameters in our calculation. The first is A,
for which we have taken the value

4xg) 8 L

Q' W

related to 0.1 by

(7.9)

(7.10)

we obtain

0.8m 2

„)0.9 Q (1
(7.11)

For T2 we find a negligible result for xB, -0.9 rising rap-
idly to the asymptotic value (independent of wave-
function choice)

T2
lim =1

x~,
(7.12)

for which the 1/Q correction is purely longitudinal, as
obtained in Ref. 4 in the absence of helicity-flip and mass
corrections. At accessible xz, values our results imply
that the 1/Q correction T2 to W2 is not pure longitudi-
nal and is in any case negligible once the relationship be-
tween the normalizations of S2 and T2 through m is
taken into account. The estimate of 8'I contained in the
second work of Ref. 4, appropriate to moderate xz;, is a
factor of 4 larger than our result at xB, ——0.9 (see Fig. 4).
Both evaluations are substantially lower than the original
estimate in the first work of Ref. 4.

The most dramatic example of a large proton-target
power-law correction is the result for r of (7.9). The lead-
ing term in the asymptotic series for r~ is found to be
(xB, &0.9)
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ri-, & 1.6X10'm' /Q'4 S~p

Q' S5
(7.13)

which could provide a correction of the desired type. We
find a 1/Q correction of the form

[see (4.22) and (4.23)]. At Q = 10 GeV and xB;——0.9 one
obtains

N =—0.4,
Sq (1—xi';)

(7.15)

[see (5.9)]. Since positivity requires r(1, the higher
terms in this asymptotic series must be important until

Q & 1000 GeV . Certainly one can find no justification
for the statement that small (kT ) guarantees a small re-
sult for oL /o. T. We have attempted in Sec. V to present
enough calculational details that the sources of such a
large result for Sl become apparent. These include: a
large number of contributing diagrams; no cancellation
tendency, whereas the S2 calculation exhibits some can-
cellation (which would, in fact, be complete for constant
a, and a weak-binding wave function); and slower integra-
tion convergence.

The interplay of these effects is quite subtle. For exam-
ple, in going from the weak-binding wave function (3.6) to
the form (3.8), the cancellation effect is reduced and S~q

increases [see (4.21)]; nevertheless, at X=10, ri' also in-
creases. Thus it does not seem that the large value of rp

can be substantially reduced by minimizing the cancella-
tion in SP2.

The terms T2 and U2 which have the most dominant
xBj~1 behavior at the 1/Q and 1/Q level, respectively,
in the series for W2, are found to be modest in size. As
discussed they would be zero in the approximation of con-
stant moving coupling constant. With the choice (2.21)
we find (at xs;—0.9)

N

N =—4m
S2

(7.14)
N

U2
N

—70m
S

(1—xB )

Q 700m

S2(1—xs;) ~s;=p9 Q (1—xB, )
(7.17)

we find, using g scaling,

Xp target mass 3~ 2Sp
2 T 2

Thus, in our weak-binding model with m =0.1 GeV,
MT ——0.3 GeV and the target-mass contribution to (7.17)
is negligible. The correct procedure to determine the full
value of X~2 is to subtract the weak-binding value of
Xp2"' " '" and to add back in Xp2"' " "' with the
correct value of MT ——0.937 GeV. (This assumes that
X~2' "'

/S~2, like V~, is not strongly dependent on the
wave function; we have not been able to verify this ex-
plicitly, since the complexity of computing X$/S2 for
other than weak binding is prohibitive. ) This results in a
40% increase in X~& when m =0.01 GeV . Thus, target-
mass corrections alone underestimate the full X~i by a fac-
tor of more than 3.

Although the term (7.17) seems quite large we would
like to point out that it is of precisely the form and gen-
eral magnitude considered by Barnett in his favored fits.
Barnett adopted the higher-twist correction factor

(This ratio, unlike earlier ratios, is target sensitive —the
neutron result is ——,'p as large. ) Though less leading as

xB,~1 than the 1/Q T2 correction, the large coefficient
implies that the X2 correction completely dominates the
T2 correction for xB, &0.9. We have not computed the
(1—xB, ) /Q term which is the natural competitor to the
U /Q4(1 —xB;). There is a large number of sources for
this form and it could easily dominate the latter.

Note that (7.17) is the only term we calculate that has a
target-mass contribution. Defining

~p ~p twist 4, ~p target mass

~(1—xB, )j (1+xB, Wp /W' ), (7.18)

7 2 .2

2
' +600'

Q (1—xB, ) Q (1—xB;)
(7.16)

He obtains a good fit for m =0.138 GeV, while the xn,
and xB, factors reduce the "effective" 1/Q2 and 1 /Q4
coefficients (in the xn; range of the fit) to values nearer
those given in (7.14); it is clear that (7.16) suggests a larger
positive 1/Q or 1/Q correction than predicted by T2
and U2 alone.

We have computed the coefficient of one possible term

N =+0.7,
S2 (1—xs )

3

which can hardly be called small corrections. Nonethe-
less, they are smaller than the values preferred by Barnett
in a fit of this type which assumes a higher-twist correc-
tion form

where

gr2 Q2
(1—xi'. )

As xa ~1 this form is identical to our X2 correction pro-
b

vided 8'0 ——X2/S2. For an average nucleon target,
N: (p+n)/2 (as con—sidered in Ref. 2), we use (6.6) and
S2/Si ———, to yield our prediction,

(~p ) =X2/S2 ——509m'. (7.19)

Barnett analyzed three sets of data —European Muon
Collaboration (EMC), CERN-Dortmund-Heidelberg-
Saclay (CDHS), and SLAC-MIT —and obtained the fol-
lowing values of 8'p in (7.18) in combined "leading-order
QCD" + "higher-twist" fits:
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12.5+4.3 GeV, +I.p—0.075 GeV EMC
( Wo ) = . 8.3+5.3 GeV, Ato-0. 130 GeV, CDHS,

4.4+0.47 GeV, ALo-0. 048 GeV,

n =3, m =0.023 GeV, AL ——0. 112 GeV,

n =2, m =0.016 GeV, Ago ——0.056 GeV .

(7.22)

Both fits have X =134 for 118 degrees of freedom com-
pared to X =140 for a pure QCD fit and X = 133 for the
simpler form (7.18). As in (7.20) fits to CDHS and
SLAC-MIT data would yield somewhat smaller m
values. In these fits the T2 and U2-type -terms of (7.21)
play only a minor role in comparison to the X2-type term.

Since our calculation is based on the valence Fock state
of the proton, it strictly applies only in the xB,—+1 limit.
Thus, the agreement between our results and Barnett's fits
should be considered with caution. At moderate xpj,
higher Fock states could be important but we see no
reason to. suppose that the corresponding higher-twist
corrections are any smaller than the ones computed here.

Thus, for the proton target, we have seen that the sim-
plest possible perturbative wave function for the valence
three-quark state (in which the two gluon exchange
graphs of Fig. 4 determine all distributions) yield uery

substantial power-law corrections at large xpj to the naive
parton-model scaling predictions. These are in addition to
those scaling-law corrections due to QCD evolution or ex-
plicit nonperturbative ("diquark'"?' ) wave-function ef-
fects. It seems improbable that such large corrections
could be present for xaj &0.9 (where our calculation is
theoretically well justified) and not at lower xB,. Indeed,
simple extrapolations of the large-xzj forms to moderate
x~; are remarkably successful for the W'2 structure func-
tion and yield an rn value consistent with that deter-
mined by the normalization of the leading (1 —xs„) term.

SLAC-MIT. (7.20)

Full target-mass corrections are included through g scal-
ing and should not be added to X2/S2 in (7.19). Especial-
ly in the SLAC-MIT case the X of the fit with the correc-
tion (7.18) was much better than the pure @CD fit. The
(W'0 ) value obtained is somewhat sensitive to the xB,

3

factor assumed in (7.18) but clearly (7.20) brackets the
value (7.19) predicted by our calculation with our
preferred value m =0.01 GeV . The values of ALQ (LO
= leading order) in (7.20) correspond to small values of
A, of order A, =0.1 GeV as adopted in our work.

At our request Barnett has repeated his fits with a com-
plete correction form that agrees as xs, ~l with that
predicted by our calculation for N = (p +n)/2,

2x m

W (1—xa, ) W W' (1—xa, )

(7.21)

allowing for an adjustable power xB;" on the dominant
X2-type term. He considered EMC data and obtained'
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The "+"component of the momentum for any one of
the outgoing spectators is proportional to one power of
(1—x). It follows from the on-shell conditions that the"—"component is proportional to (1—x), which im-
plies that all the "—"momenta components flowing
throughout the tree graph are enhanced by (1—x)
Since all the "+"components of the momenta flowing
on the internal tree-connecting lines are finite as x~1,
the square of the off-shell momentum of each internal
propagator grows as (1—x) '—the corresponding propa-
gator is suppressed by one power of (1—x). There are
2( n —1) internal propagators, which results in a basic ini-
tial factor (1—x) '" "for the tree graph.

This is modified by numerator algebra. Looking at
Table II, we see that we may have possible enhancement
from vertices of the type

helicity
+

final spectator

~{l—x) '

he licity final spectator

(A 1)

Since the value of these matrix elements carries an inverse
power of the + component of the final momentum, each
such vertex enhances the amplitude by a power of
(1—x) '. Also, the configurations

(A2)

carry a (1—x) ' enhancement, since they are proportion-
al to the square of the momentum flowing in them [Eqs.
(2.8) and (2.9)]. Finally, the gluon-propagator-numerator
matrix element

APPENDIX A: COUNTING RULES
FOR @WE AND OWL,

First we examine possible sources of enhancement or
suppression of the large-x behavior in a general diagram
with n fermions,
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-I
ac{ I-x) (A3)

For vs the discussion is very similar, the only differ-
ence being that now we can get further numerator
enhancement by pairing a spectator with the active quark
provided they have opposite helicities in the following
configuration:

is proportional (in axial gauge) to the component of the
momentum carried by the gluon and is thus proportional
to (1—x) '. The final-state integral produces an extra
suppression from the longitudinal-momentum-fraction in-

teg rais:

dx dz dz„ t5(1 —x —z — —z„&)
0

~(1—x)"

Consider now the 2 amplitude, which contributes to
8'2. For simplicity look at diagrams in which all the
gluon lines are attached to the struck fermion line. We
can always gain a factor of (1—x) ' (from the numerator
algebra) for each gluon line which we can terminate with
a y on a negative-helicity-spectator line or with a y on a
positive-helicity-spectator line. We gain, in this way, a
factor (1—x) '" ". Further enhancement is possible if
we pair positive-helicity spectators and negative-helicity
spectators as in

1

v + n
I I

I

I

I

I

V

~ extra (I —x) (A5)

yielding an extra (1—x} ' [Eq. (A2)] for each such pair
of opposite-helicity spectators. The number of such pairs
is easily seen to be

—,
' [(n —1)—2

~

hA.
~ ], (A6}

V

l

I

A

0 (A7)

since y+ =0. Summing up all the (1—x) powers yields

(1—x) power=2(n —1)—(n —1)——,[(n —1)—2
~

b, A,
~ ]

= —,'(n —1)+
~

b, A,
(

(A8)

for the A+ amplitude. Computing
~

a+
~

X phase space
(A4) yields

' where b,A, is the difference between the total helicity of the
initial state and the helicity of the struck quark. Note
that we cannot pair a spectator with the struck quark it-
self because

V
I I I

I

I

I

I

A

Observe that the helicities have to be opposite
because only in that case do we gain the power of q that
we need to obtain a leading contribution to O'L at the
same time as we obtain (1—x) ' of (Al) from the specta-
tor connection. We gain the extra (1—x) ' from the"+""split" of (A10). Combining (A10) and (A5) we see
that we gain one power of (1—x) ' from a "+""split"
for each pair of opposite™helicity fermions in the initial
state, this time including the struck quark. This number
is easily seen to be

oc extra (I—x} (A10)

—,
'

(n —2AT), (Al 1)

)2n —4+2A&
(A12)

APPENDIX 8: RELATION
TO OPERATOR-PRODUCT RESULTS

The technique most commonly employed to study
higher-twist effects in deep-inelastic scattering is the
operator-product expansion. There the tree-level hard
processes which are relevant at twist 4 are' the two quark
diagrams of Fig. 6(a) and the four-quark diagrams of Fig.
6(b). In axial gauge the diagram of Fig. 6(ai) contributes
to twist 2 and higher and the diagrams 6(aii) and 6(aiii)
contribute to twist 4 and higher. All these diagrams are
present in the tree graphs of our calculation. We have not
included four-quark diagrams such as 6(b) because they
are suppressed —by a power of a, (Q ). (They actually
vanish in the weak-binding case since the gluon is always
cut and radiation on-shell —+on-shell is impossible. ) The

P, h

where AT is the total helicity of the initial state. Combin-
ing powers we get

vWI ~
~

A
~

phase space

~(1—x)2I 2(n —1)—(n —1)—(n —2A&)/2]+ n —2

(1 x)~» —&t+2
I
~~ I+~ —&

x—+1

)2n —3+2 I
&k

I (A9)

+ crossing
I

FICx. 6. Tree-level hard processes contributing to deep-
inelastic scattering.



29 POWER-SUPPRESSED CONTRIBUTIONS TO DEEP-INELASTIC. . . 2511

operator-product expansion automatically incorporates
Lorentz invariance, gauge invariance, and the symmetry
properties of the target.

In our direct calculation, symmetries and gauge invari-
ance are not so explicit. It should be pointed out, howev-
er, that the weak binding calculation, when all spin-flip
contributions are included, is completely Lorentz and
gauge invariant. Gauge invariance follows immediately
from the fact that, when the initial quarks are on shell,
for fixed momenta of the final-state quarks, the total am-
plitude for absorption of a photon is gauge invariant. The
use of the running coupling constant does not spoil this
conclusion, because the coupling is the same for each
gauge invariant subset of diagrams contributing to the
amplitude. Once gauge invariance is established, Lorentz
invariance follows immediately; because our calculation
could have been done as well in Feynman gauge, where
the axial vector g does not appear, and then, the only pos-
sible form of the answer is the one of Eq. (1.1). The use
of axial gauge is a mere convenience and large portions of
our calculations were also performed in Feynman gauge
as an explicit check of our axial gauge results.

It is interesting to point out a difference between our re-
sult and that of Soldate. ' By calculating the matrix ele-
ments of the various operators, using large-x formalism,
he finds as xBj~1

while we find

(1—xB, )

Q2

The disagreement seems to derive from our use of the run-
ning coupling constant in the calculation, ' if we used a
constant a„ the coefficient T2 vanishes.

As a final point note that we have obtained results for
the absolute normalization of our higher-twist effects
through the use of an explicit wave function calculated
for large xB; using the formalism of Ref. 5. In this sense
our results are less general than those of the operator-
product formalism but do provide an explicit normaliza-
tion of the contributions which appear therein.
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