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When there are many flavors of massless fermions, both three-dimensional electrodynamics, and a su-

persymmetric variant thereof, each spontaneously break chiral symmetry. For the latter, this occurs
without breaking supersymmetry, and without a photino condensate.

While the importance of chiral-symmetry breaking has
been clear for some time, ' there remain few models in
which this can be studied analytically. Four-fermion in-
teractions provide some examples in two dimensions, but
since their broken chiral symmetry is discrete, they do not
display true pions.

With this in mind, consider a three-dimensional gauge
theory coupled to N flavors of massless fermions. Though
in three dimensions there are no infinite renormalizations of
the bare Lagrangian, the infrared behavior might be analo-
gous to that in four dimensions. The gauge coupling e is—(mass)'i~, so if any mass scale is generated dynamically,
it will be a pure number times e . For small N, such a pure
number should be of order one, and so difficult to obtain
analytically. 4

I am thus led to the limit of large N, with n —= e2N fixed as
In this limit, non-Abelian interactions are down

by N ', so I might as well start with the Abelian theory,
three-dimensional QED. With N fermion flavors to one
photon, if a fermion mass m is dynamically generated, it
should be possible to solve for it by a N ' expansion.

By finding a self-consistent solution to the Schwinger-
Dyson equations with m & 0, I show in this Rapid Com-
munication that QED3 spontaneously breaks chiral sym-
metry at large N.

I then turn to a supersymmetric electrodynamics in three
dimensions, super QED3. Expanding in a large number of
massless matter fields, I show that chiral symmetry is spon-
taneously broken in super QED3 as well. To the order I cal-
culate, supersymmetry is unbroken, in accord with general
arguments of Witten. 8

Various analyses of supersymmetric gauge theories in
four dimensions have indicated that the chiral limit breaks
supersymmetry, ' has a gluino condensate, " and/or no
stable ground state. ' I find no evidence for any of this in
super QED3 at large N.

I conclude with a discussion of how my results could be
obtained from effective potentials.

I. LARGE-N QED3

The Lagrangian for massless QED3 is

W= Qi gQ+ ~F»2

where P'„=8„+i'„Itake (.tl to be a four-component
Dirac spinor; implicitly, P includes an index for N flavors.

Chiral symmetries are a bit unusual in three dimensions.
To describe spinorial representations of the Lorentz group,
two-component spinors will do. For two-component spi-
nors, ho~ever, the flavor symmetry is the same if the fer-

(lfl(m+ m y4 5)i]i (2)

The mass m' is two-component-like, for if m = 0 but
m'%0, the flavor symmetry remains U(2N). The mass m
is chiral, since when m & 0, the symmetry is reduced to the
U(l) x U4 5(I) x SU(t+~ &(N) x SU(t ~,)(N) subgroup of
U(2N). If m AO occurs spontaneously in the chiral limit,
2N2 Goldstone bosons are generated: ignoring flavor in-
dices, there are N' yq-type pions, coupling to Qy„y4$, and
N2 y5-type pions, coupling to Qy&ysp.

Less obvious is that the mass m', but not that of rn, is
odd under the discrete space-time symmetries of parity (P)
and time reversal (T)." Following the analogy to four
dimensions, except where noted, I choose m'= 0.

To prove chiral symmetry is broken, I obtain a self-
consistent solution, with m & 0, to the Schwinger-Dyson
equation for the fermion self-energy. I do so assuming that
m &( n, which will be justified after the fact. I emphasize
that by Eqs. (6)—(8) below, this m is a dynamical mass, the
result of a vacuum condensate (PP) A 0, and not a bare
mass per se.

Adopting the Landau gauge, in momentum space the
photon propagator is

&»= (g„„p„p„/p')I(p'( l+—II(p)'JI

To leading order in N ', all radiative corrections are deter-
mined by one-loop graphs. For the photon self-energy, this
gives'6

r

II(p)=-, 2m+ sin
n (p' —4m') . i p

4m p2 P &2+4m»~2

mions are massless or not, and so it is not a chiral sym-
metry. This is because the Pauli matrices form three 2X 2
matrices y„, and no other 2&2 matrix anticommutes with
all of these y„.

In contrast, four-component spinors have flavor sym-
metries which are chiral, in that massless fermions have a
greater symmetry than massive ones. Simply put, in three
dimensions there are two matrices which anticommute with
the three 4& 4 y~ s—y4 and yq.

The flavor symmetry of Eq. (I) is actually one of U(2N):
essentially, P represents 2N varieties of two-component spi-
nors. '4 In four-component notation, the Lie algebra of
U(2N) is given by that of U(N) flavor and combinations of
the Dirac matrices 1, y4, y5, and y4 5

—=—iy4y5.
By a U(2N) rotation, any mass for P can be written as a

sum of t~o distinct terms:
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When p )& m,

II(p) = n/(8P)

while for m &) p,

11(p) =~/(6~m)

The fermion self-energy at zero momentum is

g(0) = —2— — —' — . (6)
p [1+II (p) ] (p'+ m') (27r )

Over momenta a &) p » m, the photons' propagator is
dominated- by II (p) in Eq. (5a), and X (0) —f d3p/p3.
From Eq. (6), this logarthmic dependence is naturally cut
off by n in the ultraviolet, and by m in the infrared

X(0) = —gim [in(n/m) + cp]/(m'N)

where c0 is a number —0 (1).'8 Requiring

X(0) = —im

gives

m = cn exp( —7r'N/8)

Since c = exp(c0), c is a positive number —0 (1).
As promised, the fermions are extremely light at large

A —m « n. The fermions turn out to be so light crucially
because they interact only via gauge fields. For fermions
coupled to a scalar field o- by a Yukawa interaction—gPo.Q, m —g(a. ), and the fermions are heavy at large
N, m —0(l).2

The fermion-antifermion static potential, V(r), is of
some interest. At large N, V(r) is determined by single-
photon exchange. Over small distances, r « ~ ', the pho-
ton propagator can be taken as the bare one, so
V(r) —(n/N) in(ro;). For intermediate r, n ' (( r(( m ', from Eq. (5a) the potential is Coulombic,
V (r) —(Nr) '. Finally, over very large distances
r » m ', the potential returns to a confining form, but
from Eq. (5b), the many, light fermions strongly screen the
bare charge by a large, finite renormalization—1/[1+ II(0) ] —m/n V('r. ) —(m/N) ln(rm).

II. LARGE-N SUPER QED3

To obtain a supersymmetric electrodynamics in three
dimensions, I start with the form of four-dimensional super-
symmetric electrodynamics given by Wess and Zumino,
and then assume that all fields are independent of one spa-
tial coordinate. By this dimensional reduction I obtain the
Lagrangian

~= I~„S+I + I~„S 12+y/—gq+ —'I +1) /&/+ 2 (&„@) + —'D2+e @ (IS I
+ IS I )+/eD(IS

—e$(pygmy) —&2e(QS+P+A+QS P A. +. H.c.) (10)

where P+ = (1+@5)/2. The matter fields are the complex
scalars S+ and S, and the four-component Dirac field P;
there are X flavors of each. The gauge multiplet includes
the photon A„, the photino X (which is a four-component
Majorana spinor), and two real scalars $ and D.20 Like that
in four dimensions, 9 the global flavor symmetry of Eq. (10)
is U(t+„)(N) x U(1 ~ )(N) x UR(1).

The mass terms allowed for the matter fields are

m, 1(IS,I'+ IS I')+/y(m~+ mf'~, ,)q

I ignore the possibility of a I' and T-odd mass-for Q by set-
ting mf'=0. Anticipating my results, I take, for the time be-
ing, supersymmetric values for the masses, m, = mf —= m. A
mass m corresponds to vacuum condensates for (PP) and
(IS+I~) = (IS l2) A 0; supersymmetry relates these con-
densates in a precise way. 2' This breaks the flavor sym-
metry to U(N), with N'+1 Goldstone bosons. This sym-
metry breaking is not a Higgs effect: composite operators
have nonzero vacuum expectation values, but those for any
elementary scalar field —(S+), (S ), ((t ), and (D)—
vanish to each order in %

To leading order in % ', the propagators for the gauge
multiplet are

~„.= (g„. P„P,/P')/(P'[1+ II(P)])—
a„~= /, p'= a, =I/[I+ 11(p)],

where

When p )) m,

II (p) = n/(4p )

For p« m,

II (p) = n/ (47r m )

(13b)

(13c)

As a consequence of the supersymmetry, a single function
II(p) suffices to describe charge renormalization.

One aspect of Eq. (12) is surprising, at least at first.
Dimensionally, a photino mass —fn could occur, but does
not due to the y5 dependence of the photino's couplings.
At one-loop order, the photino self-energy arises from a vir-
tual scalar-fermion pair, where one vertex brings in a factor
of (1+y5), and the other of (1—y5). The result is entirely
wave-function renormalization for the photino.

This can be understood generally. A photino mass re-
flects a vacuum condensate (h. A. ) A 0. A discrete Z(2)
symmetry, which includes A. l qk, implies that (A.X) =0
unless the vacuum spontaneously breaks this symmetry.
To any finite order in the X ' expansion, the vacuum
respects h. yak, and (P A. ) =0.2'

To establish that chiral-symmetry breaking occurs, I as-
sume n » m, and mf. To the order computed, only the
form of II(p) for n » p ))m„m~ will matter. Since in
this regime II(p) is independent of mass, Eq. (13b), the
propagators of Eq. (12) can be used even if I do not take
fPlg = flip

To leading order in X ', at zero momentum the fermion
self-energy is23

II(p) =csin '[p/(p +4m2)'/ ]/(27rp) (13a) Xf(0) = — / 6[minf( / mf ) + 0 ( 1 ) ]/ (7r 'N ) (14)
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Setting Xf(0) = —imf,

mf ——
cfog exp ( —~'N/6) (15)

The zero-momentum scalar self-energy is

g, (0) = [8mf21n(a/mf) —2m, 2ln(n/m, ) ]/(7r2N), (16)

effective potential for (PP) is, to leading order in N

V,rr(m) = —N tr ln [(~—im )/p ]

After an ultraviolet renormalization,

V, (m) = N(m ) /(3m ) (20)

where terms —m, '/N, mf'/N have been dropped. " Requir-
ing X, (0) = m, 2 and using Eq. (15), I find

m, ' = 4mf'/3 —2m, ' In(n/m, )/(vr'N ) (17)

If I take m, » mf, Eq. (17) has the solution m, —a
x exp(+ rr N/2). This satisfies m, » mf, but not
n » m„and so must be discarded. '4 Equation (17) has no
solution for mf » m, . Hence m, /mf —0 (1) at large N:

m, = c,n exp( —m'N/6) (18)

In Eqs. (15) and (18), cj and c, are positive numbers—O(1). While calculations beyond leading order in N
would be needed to determine cf and c„' I emphasize that,
to the order I work, the chiral-symmetry breaking is super-
symmetric. For a theory like super QED3, one knows a
priori merely that mf/n and m, /n are pure numbers. There
is only one reason why the exponential dependence on W
for mf and m, should be the same, and that is supersym-
metry.

Witten has argued that supersymmetry cannot be broken
dynamically in theories like super QED3. In four dimen-
sions, Peskin has suggested that these arguments might be
evaded in the chiral limit, '0 but at large N super QED3 does
not.

III. EFFECTIVE POTENTIALS

I have shown that in large-N QED3, there is a solution to
the Schwinger-Dyson equations with m ~ 0. Trivially,
m = 0 is also a solution, so I should prove that the solution
with m & 0, Eq. (9), is the stable ground state. This is easy:
if the effective potential has only two extrema, one at
m =0, and the other for m ~ 0, as long as the theory has
some stable ground state, then the solution with m ~0
must be it. The theory obviously has a stable ground state,
since for large m, all radiative corrections are small, —n/m.

With the vacuum expectation value of (QQ) —iNm', the

V (m m ) = N[(m ) —(m ')'i']/(37r) (21)

To demonstrate that super QED3 breaks chiral symmetry is
simply a matter of computing terms of —0 (1) in V,ff and
requiring V,rr(m~, m, ) to be stationary under independent
variations of mf and m, .

Suppose, however, that one insisted on working in a su-
persymmetric fashion. For mf= m, = m, V,ff(m) =0—for
all m! This result holds to all order in X ', as an example
of a nonrenormalization theorem. How, then, does the
correct vacuum choose one particular value of m? I suggest
that if the effective potential does not pick a unique vacuum,
the effective action will. In particular, if the Green's func-
tions were calculated for any m, due to finite renormaliza-
tions, the supersymmetric Ward identities would be obeyed
for only a single value of rn. By necessity, this m must be
that found from the Schwinger-Dyson equations, Eqs. (15)
and (18). For now, this is a conjecture about super QED3,
but in the supersymmetric nonlinear cr model, 3 exactly the
same thing happens. 7

Further calculations are underway, and will be presented
separately.
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Calculating the corrections of —O(1) in V,rr would be
another way of showing that chiral symmetry is spontane-
ously broken in QED3.

Defining the condensates of super QED3 as (QQ) —iNmf
and ( I&+ I') = (I& I') —Nm„ to leading order in N ' the
effective potential is
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in an unusual fashion. With J„=gy4 Sy„g/~N the Uq 5(1)
current, at one-loop order

(0~ J„5(p)!A„(—p)) = e „„p"Wn/(2vr)

P 0. At two-loop order,

(0~ J4 5 (p)J," 5 ( —p)!0) = 3m (g„„—p p„/p2)/(2vr )

p 0, where Eq. (5b), and m'=0, have been used. It appears as
if the U4 5(1) symmetry is spontaneously broken, with the pho-
ton for a Goldstone boson. I believe, however, that appearances
are misleading. (0~ J&~& 5!A„)—eo,xpx, so the matrix element for
the U4 5(1) charge, given by J04 as p 0, vanishes. 1n this

way, Goldstone's theorem is avoided. Nevertheless, it is peculiar
to find long-range correlations in a current which is neither
anomalous nor spontaneously broken: I term this a "U4 5(1)
peculiarity. " See also Sec. II, Ref. 7.
The spin density is —ItI Iy&, y2]p —Itfy4 5II|I. Spin is a pseudo-
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a single two-component spinor has a P- and T-'odd mass. A four-
component spinor creates a P- and T-even mass m by pairing up
two-component spinors of equal mass and opposite sign.

6If in Eq. (2) I set m =0, m'~0, as follows from a condensate
(Py4 sP) —iN(m')2, to one-loop order the photon propagator is

g„.—p„p„/p' —~„.xp "11'/p'

(1+n }[p'+ (II')']

II is that of Eq. (4), with m replaced by m'. The value of m',
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II Z IH, and

X(p) = —8Z(~/3+im) In(n/m)/(vr2N)

P 0. With

~+ X(p) = Z(p- —im)

the relation which determines m is unchanged. The above is in

the Landau gauge, and gives Z= 4. Secondly, the physical mass
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