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%"e discuss some subtleties connected with the nonrenormalization theorem in supersymmetric gauge
theories. In particular, we reconcile the need for infinite-mass counterterms in the Wess-Zumino gauge
with the existence of the theorem.

Supersymmetric theories have a number of amazing prop-
erties of which, perhaps, the most remarkable are the non-
renormalization theorems. These theorems were first prov-
en for theories of interacting chiral superfields @;, where it
was shown that the only infinities in the theory reside in the
wave-function renormaliz ation constants for the chiral
superfields:

Z 1/2@ ren

Other infinities in the theory can be absorbed by rescaling
the bare-mass parameters and bare coupling constants, ap-
propriately, with the Z s, to wit,

m "'"= (Z Z ) ' 'm .
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These results were extended also to the case of supersym-
I

metric Yang-Mills theories. In particular, it was shown by
Ferrara and Piguet3 that, after the rescaling (2), no addi-
tional mass renormalization is needed for the chiral super-
fields, even in the presence of gauge interactions. The ab-
sence of mass renormalization demonstrated by Ferrara and
Piguet is rather formal. What they show is that, calculating
with superpropagators, graphs involving two chiral super-
fields have always a negative degree of divergence, and
hence require no counterterms. In contrast, graphs involv-
ing a chiral and an antichiral superfield diverge logarithmi-
cally, requiring a wave-function renormalization.

These formal results appear to be vitiated if one performs
the simplest one-loop calculation in supersymmetric QED,
as was indeed done by Wess and Zumino" in their original
paper. A straightforward calculation, in the Wess-Zumino
gauge, gives for the fermion self-energy at one loop the ex-
pression

dX"'(p)=ie'„t, , » mo(4 —4)+v p(4 —2) —v q (3)

Here g is a gauge parameter, with g = 0 corresponding to the
Feynman gauge. The logarithmic infinity in Eq. (3) can be
absorbed in a wave-function renormalization

Z z= l —ie'(g —2) I q. . . (4)
(27r ) 4 q'(q' —2q p ) j,2- -~ 2

and a mass rescaling

l

results of Ferrara and Piguet, once one understands proper-
ly the meaning of the nonrenormalization theorem.

We shall be working only at one-loop order and in super-
symmetric QED, there being in this case no practical dis-
tinctions between Abelian and non-Abelian contributions to
the chiral superfield self-energy. The relevant pieces of the
Lagrangian for the theory to consider are

(27r)' q'(q' —2q p) j'--m, ' '
I = (y &2evy +y &

—2evy ) l
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However, the mass rescaling appears to have nothing to do
with the gauge-dependent, wave-function renormalization
constant.

The purpose of this note is to resolve this conundrum.
Our results will be essentially pedagogic, and are probably
already well understood by the experts. Nevertheless, we
feel that they cast some more light on the nonrenormaliza-
tion theorem and as such they may be of some use. We
shall see that Eq. (5), in fact, is in perfect accord with the

By scaling the superfields @+,$ via

$+ = ~Z@+

and defining a renormalized mass

m = Z~mo

we can rewrite Eq. (6) in terms of renormalized quantities,
plus a counterterm Lagrangian. One finds for this latter

2412 1984 The American Physical Society



29 COMMENTS 2413

where

(@ren@ren~ + yren@ren~ )

gm =m(ZZ ' —1) (10)

Clearly, there will be no mass counterterm only if Z =Z.
The nonrenormalization theorem of Ferrara and Piguet3 is
the statement that, with Z and Z appropriately defined, hm
indeed vanishes. The puzzle to solve is why the explicit cal-
culation of Wess and Zumino [cf. Eqs. (4) and (5)] gives Z
different from Z and therefore hm infinite and gauge
dependent.

The resolution of this apparent discrepancy is perhaps
most easily arrived at by focusing on the mass rescaling
parameter Z . If m is taken to be the physical mass associ-
ated with the superfields rt T and mo is the mass parameter
in the bare Lagrangian, it is clear that Z must be indepen-
dent of the gauge of quantization. That is, Z should be in-
dependent of the gauge parameter g associated with the
gauge chosen to quantize the vector propagator and, fur-
thermore, it should also be independent of whether one
quantizes the theory in an explicit supersymmetric way or
whether one chooses to quantize the theory in the Wess-
Zumino gauge, in which supersymmetry is not manifestly
preserved.

This assertion can, in fact, be readily checked. From Eq.
(5) one has

Z = I —2ie' J . . . , (11)d4q

(27')4 q'(q' —2q p) ~2

which is independent of the gauge parameter g, when the
Wess-Zumino gauge is used. This same result is also ob-
tained by examining the results of the explicit calculation of
de Wit, in which the theory is quantized in an explicit
supersymmetry-preserving way. If one writes for the fer-
mion self-energy the decomposition

X(p) =y.pXi(p')+»(p')
and one renormalizes on-shell, then it follows that

Z = I —X)( —m')

Sm = —X2( —m')

(13)

(14)
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with X2(p ) being given by some convergent integral. Thus
the mass counterterm

Sm = m'X2( —m') (17)

is a/ways finite, but it does not necessarily vanish. In fact,
by explicit calculation, one finds that hm is gauge depen-
dent, vanishing in the Feynman gauge:

Sm = —4im3e2(
d4

(27r)4 q4(q' 2q p) u'-—-mo'

Note that although (18) is ultraviolet finite, it is infrared
divergent.

A final comment is in order. If one returns to Eq. (10),
and uses the fact that quantizing in a supersymmetric way
hm is finite, it is clear that the infinite pieces in Z and Z
always match, and that the only gauge dependence in Z re-
sides in its finite contributions. By choosing an appropriate
gauge (Feynman gauge) one may totally match Z with Z
and then no mass counterterms are needed. Alternatively,
one may define the renormalized mass parameter not to be
the physical mass, but the value of the inverse fermion pro-
pagator at p =0, y p =0. In this case

of any gauge parameters and agrees with the result (11), ob-
tained in the Wess-Zumino gauge. A similar result follows
if one calculates X~ and X2 in terms of supergraph tech-
niques.

Having demonstrated that Z is a gauge-independent
quantity —as it must be for physical cogency —it becomes
clear why there can be mass counterterms in one calcula-
tion and not in another. Since Z is clearly gauge depen-
dent, the counterterm hm Of'Eq. (10) is itself gauge depen
dent 7Qu. antizing the theory in the Wess-Zumino gauge the
supersymmetry is not preserved for the wave-function re-
normalization constants. Indeed the Z factors are, in fact,
different for the scalar and fermionic components of the
superfields rt +.4 It is therefore not terribly surprising that
the infinite pieces in Z and Z do not match, so that hm,
except for / =4, is infinite.

If one quantizes the theory in an explicitly supersym-
metric way the situation is slightly different. In this case,
the content of the nonrenormalization theorem is that the
function X2(p ) associated with corrections to the rtr+rt su-
perpropagators is always convergent. In effect this implies

Whence, to the order we are working

X2( —m')
Zm= &+ —Xt( —m')

m
(15)

on account of Eq. (16). Finite renormalizations can always
be disposed of by redefining the normalization point.

A direct examination of the results of Sec. VI of Ref. 6,
where X~ and X2 are computed, demonstrates that Z is free
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