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We consider various distributions of physical parameters for relativistic-pair production in yy
collisions (ee —+eex+x ), expected in no-tag or antitag experiments, taking into account experimen-

tal constraints. Invariant-mass, visible-energy, and transverse-momentum distributions are derived

analytically, with use of the double equivalent-photon approximation, in an easily computable in-

tegral form, at least whenever the Q dependence of the yy cross section can be neglected.

I. INTRODUCTION

In a previous paper, ' we determined the transverse-
momentum behavior of fermions produced in yy reac-
tions (e+e ~e+e f+f ) for the case of nontagging
measurements. By means of the double equivalent-photon
approximation (DEPA), we have obtained for do. /dp, a
simple and transparent expression which takes account of
the limited acceptance of the central detector. When ap-
plied to the production of muon pairs detected at large an-
gles, that expression fits the experimental data of Mark J
(Ref. 3) in a way at least as satisfactory as the predictions
obtained from a long and hardly transparent Monte Carlo
computation performed by the authors of Ref. 3 on the
basis of the Vermaseren program. Generalizing our pro-
cedure, we here shall determine various differential cross
sections (i.e., one-parameter distributions) for pair produc-
tion through yy processes in e+e collisions, assuming
experimental conditions that involve a predominating con-
tribution of Q =0 photons. We thus limit ourselves to
experiments without any tagging or with antitagging (or
0' tagging ), and exclude the case of finite-angle tagging
measurements.

No-tag measurements are, generally speaking, dominat-
ed by quasireal-photon interactions. Actually, in order to
improve the signal/noise ratio, such yy measurements re-
quire a sufficiently high beam energy since the relative
contamination by other processes decreases as the beam
energy is increased, ' and possibly an upper cutoff of the
total transverse momentum of the particles produced;
both these requirements tend to make the quasireal pho-
tons predominate even more. Qbviously that is also true
when a maximum scattering angle of the electrons is ex-
perimentally imposed (antitagging or 0 tagging). We are
then fully justified in using a factorization formula based
on differential equivalent-photon spectra, as well as
kinematic relations applying to photons that are treated as
real and colliding along the same axis as the incident elec-
trons. This being so, it becomes possible to write down
Monte Carlo programs which are much simpler and
quicker to perform than the very sophisticated ones that
are often necessary in other configurations.

If (as is the general case) the cross section of yy~X

can be treated as independent of the Q values of either
photon, its determination —accounting for the acceptance
of the experimental apparatus in the laboratory on the one
hand, and of the distribution of particles produced in the
yy center-of-mass frame on the other hand —depends only
on the total invariant mass and on the velocity (or rapidi-
ty) of the yy system in the laboratory frame. Now we
have shown that, by convoluting both equivalent-
photon spectra after integrating each of them over the
corresponding Q values (i.e., over the corresponding an-
gular distribution), one can define and express a differen-
tial luminosity d W(yy) that depends itself on nothing
else than the two parameters mentioned above. However,
in general, the computation of the cross section ee —+eeX
for multiparticle production will still require the use of a
Monte Carlo program; at least it will be a very simplified
one.

In the case of pair production, the simple correlation
that exists between laboratory and c.m. emission angles al-
lows one to reexpress in the yy c.m. frame the acceptance
limits of the apparatus as they are defined in the laborato-
ry. As a result, no Monte Carlo simulation is necessary
any longer, and integral expressions may be written for
the various distributions considered, taking account of the
given acceptance limits; in many cases these expressions
can be partially or totally integrated by analytic means.
The remaining formulas are easily computable even by
means of a pocket computer. We shall establish such ex-
pressions for various distributions, as well in the general
case as in some particular types of processes where simpli-
fied forms are obtained.

Actually we shall be led to distinguish between two
types of measurements, depending on whether the Q of
either photon is not limited experimentally or is cut off in
some way. Such a cutoff may be performed by setting a
higher limit either to the electrons' scattering angles (0
tagging or antitagging) or to the total transverse momen-
tum of the particle pair produced.

II. ASSUMPTIONS AND NOTATIONS

We shall assume that the acceptance of the central
detector is given by well-defined cuts on the transverse
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momenta of the particles produced (such that one will
only measure transverse momenta much higher than the
masses of those particles) and on their emission angles.
The angular acceptance will be assumed to be the same for
both tracks and symmetric with respect to the e+e col-
lision axis as well as to the interaction point. %'e shall
also consider various additional experimental cuts among
the most usual ones.

We shall use the following notations: E =v s /2 is the
incident-beam energy; to; is the energy of either photon; p,
is the transverse momentum of either particle produced, 8
and 8 its angle of einission in the laboratory frame and
the yy c.m. frame, respectively (with respect to the col-
lision axis); W is the invariant mass of the yy systein,
while E', P, and y (=tanh 'P) are, respectively, the visi-
ble energy, the velocity, and the rapidity of that system,
all defined in the laboratory frame; pp and Op are accep-
tance limits in the laboratory, defined by p, &pp and

l
cos8

l
& cos8p. Other possible experiinental cutoff values

considered are pM', IVM, EM, pM, and Pp, defined by

l +pi I &pM & IV(IVM~ E (EMi pt(pM~
sin(8i+82)/(sin8i+sin82) &Pp (the latter inequality
represents a convenient way of defining an acollinearity
cut, as is sometimes needed in order to eliminate the
cosmic-ray background).

In addition we define the following dimensionless quan-
tities:

and

X~ co; /E, Z——= W/2E, V =E'/2E,

x, =p, /E, u =cos8",

xp =pp/E up =cos8p tp =tan(8p/2)

ZM = IVM /2E, VM EM /2E, ——

xM =pM /E xM'=pM'/E

yp ——tanh 'u
p
=cosh '( 1/sin8p)

1+up—= —,
' ln =—ln(1/tp) .

1 —up

III. KINEMATIC RELATIONS
AND EXPERIMENTAL LIMITS

In the equivalent-photon approximation, the yy col-
lision axis is identified with the incident-beam axis and
one has the relations

cos8=(P —u)/(1 —Pu) .

First one notices that one may equivalently use various

Z =XiXz, V=(Xi+X2)/2, y = i ln(Xi/Xi) .

If one limits oneself to the production of pairs of
extreme-relativistic particles one gets, in addition, the rela-
tions

xi Z(1 u2)in

and

V=Zcoshy, u =(1—x, /Z )'i

As a result, first, any expression given as a function of the
parameters belonging to one of the sets given above can be
redefined as a function of the parameters belonging to any
other of those sets. One also concludes that all limitations
due to phase space (X~ &1), to the transverse momenta
(xg & xp ) or to various other possible experimental cuts,
such as x, &x~, Z &ZM, V & VM, or

sin(8i+ 82)/(sin8i+sin82) = tanh 'y & Pp,

can be expressed analytically in the form of limits im-
posed on any set of parameters. Finally, using the relation
cos8=(P—u)/(1 —Pu), one concludes that the same is
true for the limitation of the angular acceptance of the
central detector in the laboratory (

l
cos8

l
&up); if one

uses a set of variables involving both u and y, one gets, ac-
cording to whether the first integration is performed over
u ory,

l
u

l
& Uy with ly l (yp

or

ly l
& t„with

l
u

l (up,
where one defines

F„=tanh '(up) —tanh '
l
u

l

=yp —tanh
l
u

l

1 —lu l:——, ln 1+lul
U~ =tanh(yp —y) .

2
tp

The analytic expressions of all these limits, as functions
of the set of parameters chosen and of the order of in-
tegration over those parameters, are given in Tables I—VI.
Let us notice that they are only meaningful when they are
positive definite, and that they always define symmetric
ranges in +u and +y. We also notice that one always has
u (cosOp & 1.

IV. EQUIVALENT-PHOTON SPECTRA
(INTEGRATED OVER Q }

In the Williams-Weizsacker approximation, the
equivalent-photon spectrum integrated over the azimuthal
angle (b,/=2'. ) is written

d N(E, Xg, Q )=-
7T

Xg
1 —X,-+

—(1—X~)
Q min dQ 2 dX

Q2 Q~ X;

where Q;„=m~ X; /(1 —X;) is the kinematic lower lim-

sets of parameters, since those sets ((Xi,Xz ),u ), ((Z,y), u ),
(( V,y), u ), and (x„y,u) are connected by relations such as

X, =Ze +—~= V(1+tanhy)

=x,e —+"/(1 —u )'
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TABLE I. Limits of the

H(E, Z) = f, f d2H (E,Z, u,y)
&z

variables Z, u,y involved in computing the invariant-mass distribution.

ZBliI1

Highest
value of:

Zmax
Lowest

value of:

uz ——

Highest
value of:

Uz ——

Lowest
value of:

yz=
Highest

value of:

Yz=
Lowest

value of:

Acceptance
Phase space X;&1
p, trigger x, &xp
Angular acceptance ~cos&

~
&uo

xp [(1—x /Z )]'~
up

ln(1/Z)

yp —tanh '(u)

Exptl. cuts
Z &ZM
Xg &XM

sin(8~+82)
sin8~+ sin82

ZM
xM /sin8p

1/2
1 —Po

1+Po

0
(1—x '/Z')'"

0

tanh 'Po

cosh '( VM /Z)

it on Q . When one integrates over Q from Q;„ to
Q,„or, equivalently, over the electron's scattering angle

up to a maximum value 8, , one obtains

dN (E,X; )= S(E,Xg )dXi—/Xi
7r

with

I —X.
(2sine, /2) .

m, X;

Qne may simplify the expression of S(E,X;) as follows:

S(E,X;)=2(1—Xi+Xi /2)(in', ——, ) .

S(E,X;)=(1—X;+X; /2)ln(1+6 )

—(1—X~)[1 ~1/(1+4 )),
where

(Q max Q min)/Q min

Since, experimentally, one always has Q m,„»»Q m;„
(5 » »1) one thus gets

S(E,X;)=2(1—X;+Xi /2)ink —(1—X;)

This is in general a good approximation since the logarith-
mic term dominates, and since increasingly large values of
X; contribute less and less (and eventually not at all); the
latter fact is due to both dynamic and kinematic reasons,
i.e., to the fact that small-Z values predominate (all the
more as one practically always applies an experimental
cutoff in order to eliminate the large-Z values where the
background will dominate) and that the limited angular
acceptance tends strongly to favor values of either X; close
to that of Z (i.e., stnall values of y).

TABLE II. Limits of the

H (E,Z) = d2H (E,Z, u,y).
P'z z

variables Z,y, u involved in computing the invariant-mass distribution.

Zmin

Highest
value of:

Zmax
Lowest

value of:

yz=
Highest

value of:

Yz ——

Lowest
value of:

uz ——

Highest
value of.

Uz ——

Lowest
value of:

Acceptance
Phase space X;&1
p, trigger x, ~xp
Angular acceptance ~cose

~
&uo

xp
ln(1/Z)

yp

0
0
0

(l x 2/Z2)&/2

tanh(yp —y)

Exptl. cuts
Z &ZM
X, &XM

sin(8&+ 82)

sin8q+ sin82

ZM
xM /sin8p

' 1/2
1 —P
1+ p

tanh 'Po

cosh '( VM /Z)

0
( 1 x 2/Z2)1/2

0
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Limits of the variablesTABLE III.

I(E,V)=, d I(E, V, u,y).I y

V, u,y involved in computing the visible-energy distribution.

Vmin =
Highest

value of:

Vmax =
Lowest

value of:

Qv=
Highest

value of:

Uv=
Lowest

value of:

yv=
Highest

value of:

Yv ——

Lowest
value of:

Acceptance

Phase space X &1

pr trigger x, ~xp

Angular acceptance icos8
i

& uo

Xp

0

( 1 x 2/V2)1/2

Qo

2 ln
1 1

2V —1

cosh V(1 —u )'

xp

yo —tanh 'iu
i

Exptl. cuts

Z &ZM

X«XM

sin(81+ 82)

sin81+ sinO2

ZM /sinOp

(1+ZM2) /2
xM /sinOp

1/(1+ po)

( 1 x 2/V2)1/2

cosh '( V/ZM )

tanh 'Po

Let us add a remark concerning the choice of 8, . Ac-
tually the "quasireality condition" is that Q is negligible
as compared to E Z or (roughly) to E X; . When that
condition is satisfied, one has

X;sin8r ——(1—X;)sin8, .

Since sin8& ( 1, the quasireality condition imposes

sin8, &X;/(1 —Xi) .
In no-tag measurements one will thus take b, =E/m, . In
measurements where an upper limit is experimentally im-
posed to the scattering angle of the electron (8, &8, & 1),

the b, value becomes h=(E/m, )g; with
=min(1, (1—Xi)8, /X;).

The cutoff we are imposing on this basis obviously in-
volves the neglect of the contribution of highly virtual
photons. This is justified since the virtual-photon contri-
bution is in fact depressed by a sort of form factor
[1/(1+Q /8' ) ] which comes in addition to the 1/Q
factor. ' What we are doing, roughly, is replacing that
form factor by a sharp cut at Q =W' /4. More precisely,
such a cut performed with respect to Z instead of X would
lead to g; &(1—X;)'/ (Z/Xi) which, in general, should
not be very different from l. In fact the precise value of

TABLE IV. Limits of the variables V,y, u involved

I(E,V)=, d I(E, V, u,y).
yv

in computing the visible-energy distribution.

Acceptance

Vmin =
Highest

value of:

V,„=
Lowest

value of:

yv=
Highest

value of:

Yv=
Lowest

value of:

Qv=
Highest

value of:

Uv ——

Lowest
value of:

Phase space X;&1 0 —ln1

2
1

2V —1

p, trigger x»xp

Angular acceptance
i
cos8

i
& uo

Xp cosh ( V/xo)

yo

' 2 1/2

1— xpcoshy

V

tanh(yp —y)

Exptl. cuts

Z &ZM

X~ &XM
V& VM
sin(81+ 82)

sinO&+ sinO2
1/(1+ Po) tanh 'Po

ZM /sinO
'(1 Z )/2 I cosh '(V/Z~)+ M

xM/sinOo ( 1 x 2/V2)1/2

0
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TABLE V.
U

G(E,xt) =
Z

Limits of the variables x„u,y involved in computing the transverse-momentum distribution.
Y

d G(E,x„u,y).

Xt min =
Highest

value of:

Xt max =
Lowest

value of:
Highest

value of:

Uz =
Lowest

value of:
Highest

value of:

Y„=
Lowest

value of:

Acceptance

Phase space X;&1

p, trigger x, &xp
Angular acceptance

~

cos8
~

& uo

Xp

up

2 )1/2 1 1 —u 2

2 ln
Xt

yp —tanh '~u
~

Exptl. cuts

Xt &XM

V& VM

sin(O1 +O2)
&Pa

sinO1+ sinO2

ZM sInOp

XM

{1—Xt /ZM )

(1—x, /VM )'/

tanh 'Pp

( 1 u 2)1/2
cosh

xt

this cut is not very relevant since the Elm, factor
predominates in the argument of ink anyway. In practice
our choice, which leads to the standard equivalent-photon
spectrum in the no-tag case, gives a fairly good approxi-
mation.

V. GENERAL EXPRESSION OF DISTRIBUTIONS

When the yy cross section does not depend on the Q
of either photon, it can be written in the following general

e+e ~e+e A+A by simply factorizing this yy cross
section with both equivalent-photon spectra integrated
over their acceptance in Q (or in 8, ). Then setting

P (E,X),X2 ) =S(E,X) )S(E,X2 ),
one has

~~ P (E,X),X2 )E = f (2EQXiX2, u) .
dX~ dX2du 2m. (X,Xz )

One derives the expressions
rm:

do(yy~A +A )

du
f(W, u)

f (2EQX)Xq, u) .
2E'X,X,

One thus obtains the differential cross section of

d 03

dZ du dy
3d CT

dV du dy

d 03

dx, du dy

a d H(E, Z, u,y) 4

2& du dy

a d I(E, V, u,y) 4

2m du dy

~2 d G(E,x„u,y)
2m du dy

TABLE VI. Limits of the variables x„y,u involved in computing the transverse-momentum distribution.
YZ U

G(E,X, )=, d2G(E, x„u,y).

Xt min

Highest
value of:

Xt max =
Lowest

value of:

yZ =
Highest

value of:

Y„' =
Lowest

value of:
Highest

value of:

U„=
Lowest

value of:

Acceptance
Phase space X;&1
p, trigger x, ~x
Angular acceptance

~

cos8~ &uo
Xp

ln(1/xr )

yp

[i—(e /x ) ]' '

tanh(yp —y)

Exptl. cuts

Xt &XM

ZMsinOp

XM

VM cosh '( VM/x, )

(1—x /ZM )

' 2 1/2

1— x,coshy

sin(8~ +82)
0

sing&+ sin8z
tanh 'Po
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with

d2H(E, Z, u,y) =1(E,Z,y)f (2EZ, u)du dy,
d2I(E, V, u,y) =m (E, Vy)f (2EV/coshy, u)du dy,
d2G (E,x„u,y) =n (E,x„u,y),

&&f(2Ex, /(1 —u )'~, u)du dy,

where

1 (E,Z,y) =P(E,X&,Xz) with X~ =Ze —~,
m (E, Vy) =cosh2y P(E,X~,X2) with X; = V(1+tanhy)

n(E,x„u,y)=(1—u )P(E,Xi,X2)

with X~ ——e+—"x,/(1 —u )'

One notices that both the integrands and the integration
limits defined by the experimental conditions are sym-
metric with respect to +u and +y. One may thus in-
tegrate over y and u, respectively, in either order (i.e., y
first or u first) between the positive-definite lower and
upper limits (shown in Tables I—VI) in order to obtain
H(E, Z), I(E, V), or G(E,x, ); one must then multiply by
4. Thus, one has

2 2

E (do/dZ )= H(E, Z)Z

2 2

E (der/d V ) = I(E, V) V

2 2

E (do/dx, )= G(E,x, )x,

the positive-definite lower and upper limits given in
Tables I—VI, the expressions

d'Hp(E, Z, u,y)=lp(»y)f(2EZ~u)du dy ~

d2Ip(E, Z, u,y) =mp(V y)f (2EV/coshy, u)du dy,
d Gp(Ex„u,y)=np(x„u, y)f(2Ex, /(1 —u )',u)du dy,

with

lp(Z, y) =4(1 —Z coshy) +Z (2 coshy —Z)

mp( Vy)=4(1 —V )cosh y+ V (2coshy —V/coshy)

np(x„u, y) =(1 u—)lp(x, /(1 —u )',y) .

We notice that in any case these integrations are very
simply performed numerically. In addition, as we shall
show, analytic integration can be applied in many cases at
least partially. This is always the case for Hp(E, Z) and
Gp(E, x, ), since the y dependence of the functions
d Hp(E, Z, u,y) and d Gp(E, x„u,y) is only contained in
the factor lp(Z, y) [or lp(x, /(1 —u )',y)] which is
analytically integrable over y, leading to

Y
Lp(Z I')= f lp(Z, y)dy

=(Z +2) Y—4Z(Z +2—ZcoshI')sinhF .

As a result one has

Uz
Hp(E, Z) = f [Lp(Z, rz) Lp(z, yz)—]f(2EZ, u)du,

Qz
Ut

Gp(E, x, )= f, (1—u )[Lp(Z, I'„) Lp(Zy„)]-
9

Xf(2EZ, u)du [Z=x, /(1 —u )'i ],
VI. MEASUREMENTS WITHOUT EXPERIMENTAL

Q
~ LIMITATION

Let us first consider measurements where the Q values
of either photon are not limited by experimentally im-
posed cuts on the electrons' scattering angles or on the
transverse momentum of the pair produced. In that case
b, can be taken as b, =E!m„and one thus gets

where yz, Yz, u&, U& for A =Z,x, are given, respectively,
in Tables I and V.

On the other hand the u dependence of the functions
d Hp(E, Z, u,y) and d Ip(E, V, u, y) is only contained in the
expression of the yy cross section. If, as is often the case,
f(W, u) can easily be integrated over u (at least for u
strictly less than 1), so that one gets an analytic expression
for

with

S(E,X&)=2(1—X~+X~ /2)(lnE!m, ——,),
P(E,Xi,X2)=Pp(X],X2)Rp (E)

U
F(W, U)= f f(w, u)du,

Hp(E, Z) and Ip(E, V) are then as well expressed as a sin-
gle integral, this time over y

0(XliX2) [ (X1+X2)] [(X1+ 2) XIX2]

Ap(E) =lnE/m, ——,
'

One notices that the E dependence from the photon
spectra can be factorized out from the differential cross
sections as follows:

H(E, Z) =(lnE!m, —
~ ) H'p(E, Z),

I(E,V)=(lnE/m, ——, ) Ip(E, V),

G(E,x, )=(lnE/m, ——,
'

) Gp(E,x, ),

Yz
Hp(E, Z) = f [F(2EZ, Uz) F(2EZ, uz)]lp(Z, y—)dy,

y I

Ip(E, V) = f [F(2EV/coshy, Uv)
&v

F(2EV!c—oshy, u v)]mp( Vy)dy,

where u~, Vz,y~, Y~ for A =Z, V are given, respectively, in
Tables II and IV.

Now, if f ( W, u ) actually depends only on u and not on
8' i.e.,

where Hp(E, Z), Ip(E, V), and Gp(E, x, ) are obtained by in-
tegrating successively over y and u (or u and y), between

do(yy~A+A )

dQ
f'(u),
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it results that d Ho, d Io, and d Go become independent
of E and that the y dependence of d Io is only contained
in the factor mo(V, y), which is analytically integrable,
leading to

Y
Mo(V, Y)= f mo(u, y)dy

=(1—2V+ V )( Y+sinh2Y) —4V Y+ V tanhY

so that one simply has

H(E, Z) =(lnE/m, ——, ) Ho(Z),

I(E, V) = (lnE/m, ——,
'

) Io ( V),

G(E,x, ) =(lnE/m, ——,
'

) Go(x, ),
where the various integrals over u and y remain indepen-
dent of the energy and are given by

Uz
Hp(Z)= f, [Lo(Z~ Yz) Lo(»y—z)lf'(u)du,

Qz

Uv
Io(V)= f, [Mo(V, Yv) —Mo(vyv)]f'(u)du,

"v
U„'

Go(x, ) = f, (1—u')[Lp(Z, Y„) Lp(Z—y„)]
"x

&(f'(u)du [Z =x, /(1 —u )' ] .

Since in general f'(u) is easily integrable over u (for
0 & u & U & 1) so that one is led to an analytical function
F'( U), one also has

Yz

Ho (Z) = f lo(Z y) [F'( U, ) —F'(u, )]dy,
3'z
Yt

Ip(V)= f mo(Vy)[F (Uv) F(uv)]d—y
3'v

Let us notice that, in this case, the various distributions
considered can even be expressed in a scale-invariant way
with respect to the beam energy since, setting
F(U s ) =E/(lnE/m, ——,

'
), one gets

F (v s )(do/dZ )=Ho(Z).Z

F (v s )(der/dV )=Io(V)V

F (v s )do/dx, )=Gp(x, )x,

That is, in particular, the case of the Born approximation,
which is a good approximation for the production of fer-
mions (up to higher-order corrections) and just a model
for bosons, and where one has (since u remains strictly
less than 1) f'(u)=a(1+u )/(1 —u ), leading to
F'(U)=a(2tanh 'U —U), for a pair of relativistic fer-
mions, and f(u)=2a, leading to F'(U)=2aU, for a pair
of relativistic scalar bosons.

Now, when f(W, u) actually depends on u and W, but
can be factorized into a product of separate functions of u

and 8' i.e.,

do(yy +A+A ) 2m
(

du 8'
the E dependence of d Hp can again be factorized out
from the integration over u and y and one gets

Ho(E, Z) =8 (2EZ)Ho(Z),

where Hp(Z) is defined exactly as before. It results that
the integral evaluated for the determination of do. /dZ
remains again independent of the energy.

This can be applied, in particular, to the production of a
pair of relativistic particles through an isolated resonance
of well-defined spin, parity, and helicity, so that the angu-
lar distribution is uniquely defined independently of the
mass of the pair and one has

rrr"z+g-f ( W, u) =(2J+1) 2 2
f'(u) .

(W —Wg) +I /4

It can also be shown that, as long as one has
I « W~ &2Esin8p with pp/sin&p& Wz+NI &2E
&& tan(8p/2) for N ~&1, the total cross section due to such
a narrow resonance is proportional, in first order, to a
product of separate and well-known functions of energy
and angular acceptance:

E 1 "o F'(u)
cr~ ~ ln —— 2du .

2 0 1 —ume

These results should be, for instance, valid for n.+n.
pairs created through an f and nothing else, f being
produced with helicity +2; here we have f'(u)=(1 —u )
and F'( U) = U —2U /3+ U /5.

Actually the resonance may overlap (and interfere) with
other processes. This seems to be occurring with the f,
since the experimental peak appears to be shifted, and the
form of the invariant-mass distribution appears to be
changed. Here f(W, u) must be derived from the ampli-
tudes of interfering processes. If this function can be ex-
plicitly expressed, as for instance in Mennessier's model, '

Hp(E, Z) can be immediately reduced at least to a single
integral over u, as shown in the general case.

Let us notice, by the way, that if any one of the above
functions is studied for any range of values of the parame-
ter considered (Z, V, or x, ) that are lower than the value
of a possible experimental cutoff performed on any of
these parameters [i.e., lower than min(ZM, xM VM)], these
cuts do not introduce any lower limit on u and y so that,
for instance, one has

Uz
Ho(Z)= f Lo(Z, Yz)f'(u)du

Yz= f lo(Zy)F (Uz)dy
Ul

Io( V) = f Mp(Z, Yv)f'(u)du

Yv= f mp(Vy)F'(Uv)dy,

Go(x, ) = f "
(1—u')Lo(x, /(I u')'i', Y„)f—'(u)du .

If, with the same assumptions, one introduces in addi-
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tion the acollinearity cut as described above [i.e.,

sin(8) +82)/(sin8) +sin82) & pp], one gets (setting
e=tanh 'Pp)

Uz
Hp(Z) = f [Lp(Z, &z)—Lp(Z, e)]f'(u)du,

U
r

Ip( V)= f [Mp(V, ry) —Mp(v, e)]f'(u)du
U'

Gp(x))= f (1—u )[ Lp(Z, F„) Lp(Z—,y„)]

Xf'(u)du [Z =x, /(1 —u )' ] .

Let us remark that, as far as H p (Z) and Ip ( V) are con-
cerned, this only amounts to subtracting, from their previ-
ous expressions, the functions F'(U, )Lp(Z, e) and
F'(U) )Mp(v, e).

In general the various integrals written above can again
be computed through analytic integration. However, the
occurrence of distinct ranges, where the integration limits
are different, leads to different expressions for those
ranges, some of which are rather complicated. In the Ap-
pendix we shall study the determination of those ranges
and the corresponding types of variations for Hp(Z),
Ip(V), and Gp(x, ). In some cases we shaB even give the
full analytic expressions.

In practice, the computation, point by point, of these
quantities and thus of the distributions looked for can ac-
tually be performed more easily, and almost as rapidly, on
the basis of the single integrals that we have written
above.

VII. MEASUREMENTS WITH EXPERIMENTAL
Q LIMITATION

Now we shall consider measurements where one limits
either the electrons' scattering angles, 8, & 8, (double tag-
ging around 0' or antitagging at finite angle), or the total
transverse momentum of the pair produced,

~ g p, ~

&Ex~'. These two limitations may practically
be considered as almost equivalent. One may indeed as-
sume, in first approximation, that the latter corresponds
to limiting the transverse momentum of one of the scat-
tered electrons when the other one is close to zero. " This
is expressed by setting 8, =xM /(1 —X~).

For such measurements the treatment of the photons as
being quasireal (in the kinematics, and by using the
DEPA) is justified a fortiori, since their Q values are lim-
ited experimentally.

On the other hand, the upper limit of the integration
over the angular spectrum of the photons is changed, and
one has (see Sec. IV)

S(E,X;)=2(1—X;+X( /2) In
NZ~ 2

+(E XI X2) +p(X) X2)R)(E X) X2)

with

where

1 —X;
21; =min 1, 8,

21; =min i,x~'/X;

Gne notices that here the E dependence from the pho-
ton spectra cannot be factored out anymore; indeed one
has

d H(E, Z, u,y) =l)(E,Z,y)f (2EZ, u)du dy,
d I(E, V, u, y) =m)(E, V y)f (2E, V/coshy, u)du dy,
d G(Ex„u,y)=n)(E, x„u,y)

&f(2E,x, /(1 —u )',u)du dy
with

I) (E,Z y) =lp(Zy)R )(E,X),X2) (X~ =Ze+~)

m)(E, Vy)=mp( Vy)R)(E,X),X2) [X;= V(1+tanhy)],

n)(E,x„u,y)=(1 u—)l)(E,Zy) [Z=x, /(1 —u )'~ ] .

One derives the following consequences.
First, H(E, Z), I(E, V), and G(E,x, ) will never show

the advantage that their E dependence can be factored out,
and that one only has to evaluate integrals over u and y,
which remain invariant with respect to the beam energy.
This will be true even if der(yy )/du =f (u)/W .

Second, whenever we are able, for a given process, to in-
tegrate analytically f($;u) over u, H (E,Z) and I(E, V)
will be expressed as single integrals over y in t4e same way
as Hp(E, Z) and Ip(E, V), simply substituting 1)(E,Zy)
and m)(E, Vy) for lp(Z, y) and mp(Vy), respectively.
Thus, one has

Fz
H(E,Z)= f [F(2EZ, Uz) F(2EZ, uz)]l, (E—,Z,y)dy,

3'z
yr

I(E,Z)= f [F(2EZ, U), ) F(2EZ, uv—)]m)(E, vy)dy .
3'y

On the other hand it is no longer easy to obtain, in the
whole range of Z, V, or x„expressions that are given,
after integration over y, as single integrals over u.

Nevertheless, in practice, when Z &x~' (which is gen-
erally satisfied experimentally), or when Z & 8, , one may
use the values of b, given by the experimental cuts and ap-
Proximate them by 21z ——(1—Z)8e /Z or 21z ——xM'/Z.
This is, in general, a good approximation, since g; is only
contained in the argument of 1n(21;E/m, ) and since exper-
imentally values of Z' close to X;. are strongly favored
Thus, one has

l)(E,Z,y)=lp(Zy)R) (E yz)
L ) (E~Z~y) =Lp(Z y)R ) (E yz )

Eg)
R) (E,X),X2)= ln

Eg2
ln

2 121~

EqzR)(Eyz)= ln
1

2
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so that one gets

Uz
H (E,Z) = f, [Lp(Z Yz ) L—, p(Zyz )]

uZ

XR1 (E,yz)f (2EZ, u)du

X
G(E,x, )= f (1—u )[Lp(Z, Y„')—Lp(Z, y„)]

Q

XR1 (E,yz)f (2EZ, u)du

with Z =x, /(1 —u )'
Here, it should be emphasized that, for the determina-

tion of H(E, Z), R1 (E,yz) can be factorized out from the
integral. It results that, in all experimental configurations
considered, der/dZ involves the computation of the same
integral and one has

r 2

Hp(E, Z)Zdo Iz
ln

m

where

VIII. REMARK GN THE Q DEPENDENCE
GF THE yy CRGSS SECTIGN

Let us remark that if the yy cross section depends on
the Q of either photon, one can nevertheless still treat
these photons, for the type of measurements considered, as

gZ —1

if we do not assume any experimental Q limitation,

gz ——(1 —Z)8, /Z

for Z larger than a given experimental cut on O„and

nz =xM'/Z

when an experimental cut on x~' is imposed.
Let us recall again that Hp(E, Z) involves only an in-

tegral function over u and y, which stays independent of
the beam energy when the angular distribution of the pro-
cess remains independent of the invariant mass.

Actually, since X;=Ze —~, it seems a priori that it
should be more precise to use an expression of l1(E,Z,y)
slightly different from above, given by

ll «»y) =l0(Zy)[R1'«, yz) 3']—
or even, in the antitagging case, by'

l1(E,Z,y) = lp(Z y) [ [R1(E,O, /Z) Zcoshy]—
—(y+Zsinhy) I .

Here we notice that the same type of expression would
have been obtained as well in the case without experimen-
tal Q limitation, using Q & W' /4 instead of Q &EX; .
Anyway these expressions remain easily integrable over y.
In practice, however, using them would not improve the
accuracy of the results.

quasireal in the sense that one may still apply the DEPA
as well as—in principle —the kinematic relations for real
photons. In that case, however, one must use, in the fac-
torization formula corresponding to the 13EPA, the
equivalent-photon spectra in their differential form with
respect to Q . Here again it will be possible to use a sim-
plified Monte Carlo simulation.

In addition, if the Q dependence of der(yy) is factoriz-
able,

,f ( ~ u)f1 (Q1')f2(Q'»

as for instance in the usual vector-dominance model, one
shall again obtain analytic expressions for pair production
provided one replaces the factors S (E,X;) by

Q2 dS(E,Xi)= f, '"dS(Q', X;)f;(Q')
& min

with

dS(Q, X;)=(1—X, +X; /2) —(1—X;)Q;„/Q
Q;„and Q,„being defined as previously.
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APPENDIX

The various ranges of different behavior of the func-
tions considered are studied in some detail in an internal
report. ' Let us just recall here the main consequences in-
volved in the change of the limits of integration over u

and y, given either by phase space or by the detector ac-
ceptances (u & up, x, &xp).

Looking first at the invariant-mass distribution and
assuming —as is experimentally realistic —that
xp (2 sin (Op/2), one notices that there are three ranges of
values of Z for which the expressions of the upper limits
and thus of H(E, Z) are different. Considering, for in-
stance, the general case where the E dependence can be
factorized out, one concludes the following.

For xp &Z &xp/sinOp, the behavior of Hp(Z) is essen-
tially determined by the limit u ((1—xp /Z )'~ imposed
by the transverse-momentum acceptance (x, )xp), so that
Hp(Z) increases with Z.

For xp/sinOp&Z &tan(Op/2), the upper limits over u
and y are defined, independently of Z, by the angular ac-
ceptance. Thus, the behavior of Hp(Z) is only determined
by the smooth variation of the integrands [due to lp(Z, y)],
so that Hp(Z) only slowly decreases with Z increasing
and tends to become flat as Z (more precisely Z/sin8p)
tends to small values.

For tan(Op/2) (Z & 1, the behavior of H p(Z') is essen-
tially determined by the limit

~
y

~

& ln(1/Z), imposed by
phase space, so that H p (Z) strongly decreases with Z in-
creasing.
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These considerations can be visualized in our X~X2 dia-
gram, where a logarithmic scale is used for the orthogonal
coordinates X~ and X2. Such a plot appears generally
helpful for showing the main features of a yy process.
On the one hand, since d(lnX;)=dX~/X~, any observed
area gives directly the integral, over the corresponding
XtXz ranges, of the predominant term in the yy luminosi-
ty [(dXi/Xi )(de/X2)]. On the other hand, the physical
parameters of the yy system itself, i.e., Z (=XiX2) and y
[=—,

' ln(X2/Xi)], also appear as orthogonal coordinates
(first and second bisectrix), the first one being defined
again on a logarithmic scale.

Moreover, from the relation x, =(1—u )Z, one gets
lnx, —lnZ =ln(1 —u ). It results that if we plot the
values of x, on the same logarithmic axis as those of Z,
the observed distance between Z and x, on this axis cor-
responds to a given value of u. Thus, definite values of u

and y, as well as a given (u,y) area, are obtained for dif-
ferent values of Z by simply performing a translation
along the Z axis (first bisectrix). As long as, in such a
translation, the integration area over u and y, as defined
by the angular acceptance ( ~y ~

(tanh 'up —tanh 'u),
remains inside the limits given by the phase space
( ~y ~

&lnl/Z) or b the transverse-moinentum accep-
tance (x, &xp), f f'(u)du dy stays constant. Thus,
Hp(Z) will vary only slightly as a result of the smooth
variation of the factor lp(Z, y)=Sp(Xi)Sp(Xp). Other-
wise, when Z decreases below xp/sin8p down to xp, or in-
creases from tan(8p/2) up to 1, the allowed area of in-
tegration becomes more and more limited, so that Hp(Z)

I

sp(x2}&

FIG. 1. Visualization of the variation of Ho(Z) for an
angular-acceptance range 30 &8&150 [see explanation in the
text; the shape of f'(u) is arbitrary].

strongly decreases. All these effects show up in a particu-
larly obvious way in Fig. 1.

Now we notice that Hp(Z) can be generally expressed
in a completely analytical way. Then, if one sets

hi(Z, U)= Lp(Z, YU)f'(u)du (YU ——yp —y„=—tanh 'up —tanh 'u),
0

h2(Z, Y)= f lp(Z, y)F'(Uz)dy [U~=tanh(yp —y)],
one has

Hp(Z)=hi(Z, Ui) with Ui ——1 —xp /Z for xp(Z&xp/sin8p,

Hp(Z) =h i(Z, up) =h2(Z~yp) for xp/sin8p &Z (tan(8p/2)

Hp(Z)=h2(Z, Yi) with Yi ——ln(l/Z) for tan(8p/2) &Z & 1

with

hi(Z, U) =(Z +2) Ii(U) —(4Z/sin8p)(Z +2)Iq(U)+(2Z/sin8p) Is(U),
h2(Z, Y)=(Z +4)Ji(Y) 4Z(Z —+2)J2(Y)+4Z J3(Y),

where, in general, the integrals I;(U) and J;(Y) can be evaluated analytically. Then, for instance, for the production of a
relativistic pair of fermions or quarks one gets (dropping the coefficient a)

Ii(»=yUyp+(yp —yU) U+ 2 1«1—U'»

Iz(U)=3 —(3—U )/(1 —U )' +up[2U/(1 —U )' —sin 'U],
I3(U)=up[U(3 —U )/(1 —U')' —2yU] —(1—up')[U /(1 —U )+ —, ln(1 —U )],
Ji( Y)= Y(2yp —Y)+ln[sin8pcosh(yp —Y)],
J2( Y)=3(cosh Y —1)+2(yp —Y)sinh Y+ tan '[sinh(yp —Y) —(vr/2 —8p)]/tan8p,

J3( Y) =2 sinh Y+ (yp —Y)sinh(2 Y)—Y sinh(2yp ) + (2yp —Y) Y—2 in[cosh(yp —Y)/coshyp]/tan8p .
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Let us notice that for xp/sinOp&Z &tan(Op/2), where
Hp(Z) =h I(Z, up) =h2(Z, yp), one simPly gets

II(up) =J, (yp) =yp +ln(sinOp),

I2(up) ~2(yp)sinOp

=3(1—sinOp) —(m. /2 —Op)cosOp,

I3(up) =2cosOp(yp+cosOp) —(1+cos Op)ln(sinOp) .

The same type of expression can also be derived for the
pair production of relativistic scalar bosons in the Born
approximation where, in particular, one gets, for
xp/sinOp & Z & tan(Op/2) (dropping again the coefficient
a),

1

u~~ 1

II (up) =4 ln(1/sinOp),

I2(up) =4(77/2 —Op)cosOp —(1—slIIO ), S, (XI) 1'

Xl

I3(up) =6(m/2 —Op)cosOp

+2 sinOp(2+cos Op) —4(1+cos Op) .

FIG. 2. Visualization of the variation of Go(x, ) for an
angular-acceptance range 30'&8&150' [see explanation in the
text; the shape of f'(u) is arbitrary].

Let us now consider the ranges of different behavior of
the visible energy, assuming xp &tan(Op/2), which is ex-
perimentally realistic. Thus, one gets four different
ranges of values of V for which the expression of the in-
tegration limits over u and y, and consequently the expres-
sion and behavior of I(E, V), are different.

For xp & V & xp(1+sinOp)/(2 sinOp), the two upper lim-
its over u and y are defined by the transverse-momentum
acceptance as increasing functions of V/xp. Thus, Ip( V)
strongly increases with V.

For xp(1+sinOp)/(2 sinOp) & V &xp/sinOp, the upper
limit Yv ——cosh ( V/xp) remains an increasing function
of V, but the upper limit on u becomes independent of V
in a y range increasing with V. Thus, Ip(V) remains an
increasing function of V, but increases less and less as V
becomes larger.

For xp/sinOp& V& 1/(1+cosOp), the upper limits are
now defined by the angular acceptance independently of
V, so that Ip(V) decreases, but only slowly, due to the
smooth variation of mp( V,y) with V increasing.

For 1/(1+cosOp) & V& 1, one has Yv ———, in[1/(2V
—1)] and Uv ——tanh(yp —y). The behavior of Ip(V) is
then essentially determined by the limitation on y due to
the space phase, so that it strongly decreases with Z in-
creasing.

In general I(E, V) should have the same type of
behavior as that described for Ip(V). This is obviously
not true if there is a resonance within the range con-
sidered.

Finally, considering the transverse-momentum distribu-
tion, one notices that there are three ranges of values of x,
for which the expression of the upper limits on u and y,
and consequently the behavior of G (E,x, ), are different:

For xp &x~ & taII(Op/2), the upper limits are only deter-
mined by the angular acceptance, independently of x, . It

results that 6 p (x, ) decreases with x, increasing, but only
slowly, due to the smooth variation of the integrand inside
the corresponding integration range. Let us notice that
Gp(x, ) tends to become flat as x, (or more precisely
x, /sinOp) tends to zero, leading for instance to
d o./dx, «x, in the Born approximation.
(do/dx, «(ga /3m)[41n(1/sin Op) —cos Op]x, for the
production of a pair of relativistic fermions. )

For tanOp/2&x, &sinOp, the upper limit on u remains
defined independently by x, by the angular acceptance,
but the upper limit on y becomes limited by the phase
space, all the more as x, increases. It results that Gp(x, )
decreases with x, increasing.

For sinOp&xt &1, the upper limit on u becomes also
limited by the phase space, so that Gp(x, ) definitely tends
to strongly decrease with x, increasing.

All these considerations can again be visualized in the
same way as has been shown for Hp(Z), using the same
XIX2 diagram and just exchanging the roles of Z and x, .
Qne then has lnx, —lnZ = —ln(1 —u ) for a given value
of x„ instead of lnZ —lnx, =ln(1 —u ) for given values
of Z [let us note that ln( 1 —u ) is negative since
1 —u =sin 8* & 1] (see Fig. 2).

The influence of additional experimental cuts is studied
in Ref. 15. Let us only notice that H(E, Z) I(E, V), and
6 (E,x, ) remain unmodified by cuts like Z & ZM, V
& VM, and x, &x~, as long as one, respectively,
has Z &(ZM, VM/sinOp, xM), V&(ZM, VM, xM), and x,
& (ZM S1118p VM XM ) ~

Let us also remark that as far as H(E, Z) and 6(E,x, )
are concerned, the effects of the various experimental cuts
can again be easily visualized by plotting them on the
XiX2 diagram and looking at the limitation they involve.
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