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The Aharonov-Bohm effect is reconsidered as a scattering event of an electron by a magnetic field con-
fined in an infinite solenoid of finite radius both in the situation where the solenoid is penetrable as well as
impenetrable. %e next discuss the validity of the Born approximation for the partial-wave scattering ampli-

tudes and explain why for the cylindrically symmetric (m =0} partial wave the first Born approximation
fails in the long-wavelength limit or as the radius of the solenoid shrinks to zero.

In this note we reconsider the Ahronov-Bohm (AB) ef-
fect as a scattering event and attempt to clear up some
points of interest not explicitly addressed in the original dis-
cussion. Specifically, we examine the scattering of an elec-
tron of wave number k by a magnetic field in an infinite
solenoid of finite radius R, looking both at the case where
the solenoid is penetrable to the electron and the case where
it is impenetrable. First, we show that in the limit R 0
the exact solutions lead to the original AB scattering cross
section in both cases. Next we discuss the validity of the
Born approximation for the partial-wave amplitudes. We
show that for any nonzero magnetic flux 4=o.4() in the
solenoid, where 40 ——ch/e is the quantized unit of magnetic
flux, the number of terms that must be retained in the Born
series for the cylindrically symmetric (m =0) partial-wave
scattering amplitude is of order )nln(kR)

~
when kR && 1.

In the line-flux limit, of course,
~
ln(kR)

~
~ so that all

terms must be retained. Resummation then shows that the
m =0 partial-wave scattering amplitude is proportional to o.

although the potential that gives rise to this scattering is of
order o. . This explains the apparent discrepancy between
the first-Born-approximation result and the exact AB result
to first order in o. for the m =0 partial-wave scattering am-
plitude.

For the case of electron scattering by an impenetrable
solenoid of radius R confining a magnetic flux 4 = o.C)0, the
electron wave function can be expanded as (we limit ~n ~

& I
for convenience)

tb k(r)e' ',

totic region, the partial wave behaves like

ikr
lim @ k(r) —( —i) J (kr) +f
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(k R) e Iw/4 e m( —I ) ~ 2is (a)
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where the mth partial-wave phase shift is given by

(5)

S.( ) = —((m (

—(m+ () =
2

,urn/2 for m & 0

The total scattering amplitude is5

f(kaRH)= $ f (kuR)e' (7)

On substituting Eq. (5) into Eq. (7), we obtain

In Eqs. (2) and (3), J and N are the usual Bessel and
Neumann functions. On comparing Eqs. (2) and (3), we
have

) Im+a~ —1

A (k R )=ct)H('ip
i

kR

where H " is the Hankel function of the first kind. Also,

tb~k(r) =A~(k R, )[Jo~~+~~(kr)N]~+~~(kR)

—N~~+ ~(kr) J~~+ ~(kR)], (2)

where A (k,R, n) is a normalization factor. In the asymp-
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where f"a is the Aharonov-Bohm amplitude for a line flux.
The second term in Eq. (8) goes to zero as R goes to zero,
giving the AB result. This is in harmony with the recent
result of Ruijsenaars from the S-matrix viewpoint.

In the case of a penetrable solenoid, the effective poten-
tial inside the solenoid is finite, and for the mth partial
wave is given by

In the asymptotic limit,
r

lim @ «
— exp i kr-( —i) . mar

42rrkr 2

+ exp —i kr — —— +f e'""/ Jr .m 7T

2 4

2Am A f=R +R
The corresponding m th partial-wave function inside and
outside the solenoid is

On comparing Eq. (17) with Eqs. (11)—(16), we find

f (k,R, n) =f +f'(k, n, R)

(17)

(18)

$'"«(r) = a g (k, r, R, n) (10) where
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is the AB scattering amplitude and
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which goes to 0 as R 0, showing that the AB result is
valid whether the solenoid is penetrable or not.

Having established that the penetrability of the solenoid
does not affect the AB result in the R 0 limit, we next
examine the partial-wave scattering amplitude of the elec-
tron due to the magnetic field confined in an impenetrable
solenoid of radius R. The mth partial wave satisfies the in-
tegral equation

@ «(r) = a [J (kr)N (kR) —N (kr) J (kR) ]

b0= 1 (15a)
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where

g (r, r') = N(kr) J (kr') —J—(kr)N (kr')

is the Green's function for the mth partial wave, and
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is the corresponding effective scattering potential. In the
limit kR 0, the terms proportional to J (kR) are negligi-
ble compared with those proportional to N (kR). On com-
paring Eq. (21) with Eq. (3), we have

lim f (k, u, R) =
kR ~ 0

1/2

( —i)~+'e '" ' ~t J (kr) U (r)( —i) + J) + ((kr)dr (24)
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For m & 0, we find

jim f (k, u R)=f [1+Q((kR) ~~~+~ ~n'™))]
kR~0
where sgn(m) stands for the sign of m. Since u is restricted
to be between 0 and 1, we see from Eq. (25) that in the
long-wavelength limit the finite radius of the solenoid has
little effect on the AB scattering amplitude for the m ~ 0
partial waves. The story is, however, very different for the

l

cylindrically symmetric (m = 0) partial wave. For m = 0,
from Eq. (23), it appears that the scattering potential is of
order o. , and so the m = 0 partial-wave scattering amplitude
should vanish to first ord{:r 1n ~. *3 On the oth{:r hand, the
exact AB result in the line-flux limit for the m =0 partial
wave does not vanish to first order in 0, . As we shall show,
there is a subtle reason behind this apparent discrepancy.
According to Eq. (24), the m = 0 partial-wave scattering am-
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plitude is given by wavelength limit is

]/2
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We replace the integral in Eq. (26) by

(26) where
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The first integral on the right-hand side (RHS) of Eq. (27)
can be evaluated exactly, 7 and is

dr 2 sinn. a/2u i J
r m.

The second integral can be evaluated by making a power-
series expansion on the Bessel functions:

a Jf Jo(kr)J (kr) = — [1+O((kr) )] . (29)
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It is obvious that

Too= 1,
so that

(35)
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In the line-flux limit (R 0), the second integral on the
RHS of Eq. (27) goes to zero. However, for any finite R,
this integral goes like o, to lowest order in n, as is evident
by writing the RHS of Eq. (29) in the forms

If one retains just the first integral on the RHS of Eq. (27)
in Eq. (26), one recovers the AB result in the line-flux lim-
it, which does not vanish to first order in u, as is obvious
from the small-a limit for Eq. (28), namely,

g(a, kR) = u g u" X T(g ~&,~(kR)
)i, -1 j-0

(38)

showing that indeed for finite R the leading term in a in the
m =0 partial-wave amplitude goes like n . However, as
R 0 ~ln(kR/2) ~ ~, so more and more terms must be
retained in the Born series (the series expansion in a) In.
fact, it is not difficult to see from the structure of Eq. (34)
that the number of terms that must be retained is of order
a~in(kR) ~. As R 0, we need to retain every term in the
Born series because each term in the Born series, though of
different order in o. , is comparable in magnitude. On
resummation, the correction to the AB scattering amplitude
due to the finite size of the solenoid can be written as

a(kR/2) a exp[u ln(kR/2) ]
I (I + a) r (I + u) (31) f" ( k R) =f ( k) —u(kR/2)

I' 1+a (39)
u

X
[aln(kR/2)]"

I'(1+a) „0 n! (32) where the f~";„a(a, k) is the original AB scattering amplitude
due to a line flux.

For any finite R, the expressions on both sides of Eq. (31)
are analytic in a. Thus in the small-o. limit, for any finite
R, the m =0 partial-wave scattering amplitude in the long-
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