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Color screening of static, spherically symmetric sources by classical SU(2) Yang-Mills fields is
studied. Owing to the presence of a source, the global color symmetry SO(3) is broken to U(1), and
the function space of gauge potentials is partitioned into topologically inequivalent sectors. The ex-
tent and nature of screening of the external source is shown to be dependent upon the associated to-
pological charge M of the source-field system. This is illustrated in the case of a 5-shell distribution
of external color. For systems of unit topological charge, static, spherically symmetric, total screen-

ing solutions of the field equations are constructed, extending the work of Jackiw, Jacobs, and Reb-
bi. However, in the M=O sector, self-consistent arguments are presented which suggest that the
external charge is never totally screened and, when the external charge exceeds a certain critical
value, the minimum of the energy functional breaks the rotational symmetry of the Lagrangian.

I. INTRODUCTION AND SUMMARY

An outstanding problem in the study of the classica1
gauge potentials generated by external sources is the ques-
tion of color screening. Namely, how well does the classi-
cal Yang-Mills theory mimic the expected behavior of the
quantum theory, wherein the energetically favored (if not
the only) states have zero total color? An understanding
of color screening in the simpler context of the classical
theory may supplement prevalent notions based on 1attice
studies that color confinement is a property of the quan-
turn theory.

Previous demonstrations of charge screening in classical
chromodynamics have been based on stability analyses of
the Abelian Coulomb solution. ' The Coulomb solution
consists of choosing all color components of the gauge po-
tential parallel to that of the external source which, in
some gauge frame, may be chosen to lie along a particular
direction in color space. It is trivial to show that such a
solution exists for any distribution of external color. The
gauge field in this case carries no charge, so that the total
color Q«, of the system is simply equal to that of the
source Q,

gQ«~ gQtot- :—a
4m 4m

totally screens the external color (as is the case, for in-
stance, in massless scalar electrodynamics ) or whether the
total charge will merely be lowered to some subcritical but
nonzero value.

Recently two studies have appeared which attempt to
address this issue. ' Both exploit the fact that the insta-
bility modes causing the decay of the Coulomb solution in
the supercritical region are axisymmetric (symmetric
about a single axis) even when, in the same gauge frame,
the source is spherically symmetric. Incorporating axial
symmetry in an Ansatz of gauge potentials, a new
minimum of the (restricted) energy functional is found for
each value of supercritical a. Results for the total color
a„, are shown in Fig. I for the gauge group SU(2). These
studies thus indicate that screening saturates once the to-
tal color becomes subcritical.

These results, however, are inconclusive. Clearly, out of
sheer practical necessity, they are based on Ansatze which
restrict the space of gauge potentials probed for a
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(here g is the gauge coupling).
It is known that for sufficiently weak a, the Coulomb

solution is a minimum of the Yang-Mills energy function-
al. However, once the characteristic strength a, defined
by Eq. (I) exceeds a certain critical value a, [—, in SU(2)
for a spherically symmetric source'], the solution becomes
energetically unstable. Color components of the gauge
field perpendicular to that of the source become excited,
resulting in the production of color which tends to screen
the source and lower the energy. Unfortunately, stability
analysis does not indicate what the final configuration of
gauge fields at the new minimum will be. Furthermore
we are left with the question whether this configuration
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FICx. 1. Total color a„, versus a for the partial-screening

solutions of Ref. 4 [with source (2)].
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minimum. A more complete exploration of potential
space could reveal solutions which are total screening.
Also, the Ansatze used are inherently nonspherical in the
sense that local gauge-invariant quantities constructed
from the potentials are rotationally noninvariant. The
classical "ground-state" so constructed thus breaks the ro-
tational symmetry of the Lagrangian, a peculiar and seem-

ingly artificial situation.
A more likely possibility is that, while the instability

modes are asymmetric, the Coulomb solution will eventu-
ally decay to a minimum which is symmetric and total
screening. In this regard, we are assisted by the fact that
in SU(2) there exist only two classes of gauge fields which
are spherically symmetric, namely, the Coulomb potential
and the four-function Ansatz of gauge potentials given by
Witten some years ago. It has been determined that, for
a spherical shell of external charge, the latter Ansatz solves
the field equations and gives energy lower than that of the
Coulomb solution. The solutions are also found to totally
screen the external charge. One is then led to ask wheth-
er or not the Coulomb solution wiB, in the supercritical
region, eventually decay to these total screening solutions.

The key to this puzzle lies in the existence of topologi-
cal charge in Yang-Mills systems coupled to external
charges. As first noted by Jacobs and Wudka, the exter-
nal charge plays the role of an adjoint Higgs field with a
vacuum expectation value. The global color symmetry 6
is thus spontaneously broken to H, the residual set of
gauge transformations which leave the source invariant.
In the usual way, a conserved topological charge M em-
erges which may assume any value in n. i(H) which is
mapped to the identity in n i(G). ' In our investigations
below, the global SO(3) symmetry of SU(2) chromo-
dynamics is broken by a color-vector external source to
U(1), so that M may be any integer.

The crucial observation here is that while the Abelian
Coulomb potential is topologically trivial (M =0),
Witten's Ansatz carries unit topological charge (M =. 1).
Therefore, the decay of the Coulomb solution, which
represents a continuous deformation of the Coulomb po-
tential, will never reach the M =1 total-screening solu-
tions due to the conservation law. Since these two poten-
tials exhaust all possible spherically symmetric SU(2)
gauge potentials, this implies that, when the external
charge goes supercritical, the minima of the energy func-
tional in the M =0 sector must break the rotational in-
variance of the Lagrangian.

The absence of topological charge also has implications
for the total charge of the system. It is possible to self-
consistently argue that, for large enough values of the
external charge, the spatial components of the gauge po-
tential fall faster than r ', where r is the distance from
the center of the source. Asymptotically, Gauss's law
then reduces to its electromagnetic analog, with solutions
of unscreened total charge, 0&a«, &a,. Indeed, if the
external charge is screened at all, that is if a„, is strictly
less than a, then an explicit demonstration of broken rota-
tional symmetry is possible for large r, thus supporting
our theoretical expectations above.

Therefore our work suggests an intimate relation be-
tween a„„the total charge, and M, the topological charge,

of a classical Yang-Mills source-field system. It appears
that total screening (a«, ——0) is possible only when M&0,
i.e., the source-field configuration is topologically non-
trivial.

This paper is concerned with substantiating these
claims, and with constructing total-screening solutions of
the field equations utilizing Witten s Ansatz with a 5-shell
source of external color. As a subset of our results, we
shall reproduce the solutions of Ref. 8. These solutions
may be categorized by the number of zeros, or nodes, in a
certain function a (z) parametrizing the spatial com-
ponents of the gauge potential A'. We extend the work of
Ref. 8 by showing that solutions may contain any number
of nodes, and illustrate this by constructing configurations
with up to three nodes in a (z). All these solutions totally
screen the external source and are manifestly time in-
dependent. In addition, as mentioned above, they contain
a unit of topological charge.

We also find that solutions with a nonzero number n of
nodes display bifurcating properties similar to those first
discovered in Ref. 8 for one-node solutions. These solu-
tions exist only when the external charge exceeds a certain
critical value a„depending on n, and bifurcate there into
two different solutions with equal numbers of nodes.
Gauge-invariant quantities, such as the total energy, are
seen to bifurcate as well, indicating that bifurcation is a
real physical effect in our theory, and is not associated
with indeterminancies in the classical gauge field propaga-
tor."

At this juncture, mention should be made of other
total-screening solutions in the M =0 sector which have
appeared in the literature. ' All these studies couple clas-
sical Yang-Mills fields to extended sources, that is,
sources distributed over finite spatial volumes, and there-
by suffer from a problem of interpretation first pointed
out by Hughes. ' The difficulty stems from the fact that
the integrand for the conserved total color [see, for exam-
ple, Eq. (10)] does not transform covariantly, but picks up
an inhomogeneous term which may be reinterpreted as an
extended external source; it is impossible to separate the
source and field contributions to Q„,. Thus it is often the
case that these so-called total-screening solutions may be
gauge transformed to configurations where the gauge field
color is locally zero everywhere and each color component
of the source distribution is characterized by regions of
color which alternate in sign and sum to zero. Such solu-
tions are clearly uninteresting since they represent finite-
energy configurations generated by sources of zero total
strength. Hughes has indicated that this gauge ambiguity
associated with extended sources is not present in the clas-
sical Yang-Mills theory when charge distributions of mea-
sure zero are considered. '

Point charge distributions have their own particular dif-
ficulties, one being the familiar linear divergence of the
classical self-energy of the source. Ordinarily, as in classi-
cal electrodynamics, a well-defined theory results if the
self-energy is simply subtracted. Unfortunately, as we
shall see, the self-energies of sources coupled to Coulomb
or Witten potentials differ by a factor of 3. Thus if we
desire a meaningful comparison of energies with the
Coulomb value, subtraction schemes are unacceptable.
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This leaves us with the option of regulating the source
by distributing it over a thin shell of radius ro. In the ra-
dial gauge, the source we shall use is

g r rSJo=, q
ro ro

where

q (z) =a5(z —1)

(2)

and a is given by Eq. (1). In view of the Hughes ambigui-

ty, and our restriction to spherical symmetry, this choice
of source is unique.

An outline of the paper follows. In Sec. II, we present
Witten's Ansatz and review some of its properties. The
potentials are coupled to source (2), revealing the residual
U(1) local symmetry leaving the source invariant. A con-
served topological current is thereby suggested and de-
fined in Sec. III. Witten's Ansatz is shown to have unit to-
pological charge, the Abelian Coulomb solution zero. The
relation between M and a„, is drawn out, and self-
consistent arguments give that all M =0 solutions are (at
best) only partial screening. In Sec. IV, we specialize to
time-independent potentials and determine the equations
of motion for Witten's Ansatz Exp.ressions for the energy
e and the total charge a„,are obtained by which we shall,
in addition to the external charge a be able to uniquely

!

characterize all solutions. This is followed by a discussion
of the boundary conditions leading automatically to the
fact that all solutions are total screening. Next, in Sec. V,
numerical solutions of the equations of motion are
presented along with their values of e as a function of a.
Bifurcation is observed in solutions with nodes, and the
critical values a*„at which bifurcation takes place are
determined. Section VI gives our conclusions, while an
appendix elaborates the connection betwen M =0 partial-
screening solutions and rotational noninvariance.

II. The Ansatz

In the radial gauge, Witten's Ansatz of SU(2) gauge po-
tentials is given by

gap ——r"'a, ,
k (3)

gal= e (1++2) rr a, +—(p~ rra )—r r

where the quantities &pi, y2, a„and a„are functions of t
and r. A nice feature of this Ansatz is that the action
functional S may be written in a two-dimensional nota-
tion. With metric

this is

t2S= t x 2 E,'E,' —28,'8,' —J'
()

oo 2

z f, dt J dr (~„p) (~"y) G„„G""— (1 y'—y)2 J,a—, — (4)

B„(r G )+2 Im(p &'p) =J',
d, (r iG'")+2 Im(qr'W "y)=0,
rz&„&"y (1 y'y)p =0, ——

(Sa)

(5b)

(5c)

where the Cireek indices run over t and r and we have em-
ployed the definitions

p= p)+l p2,

B&i+La&ip»= t& r&

6„„=B„a„—B~&, p, v = t, r,

and
1 rJ,= q

rp ro

As is easi1y seen, ' our system describes an Abelian-

Higgs model coupled to an external source J, in a two-
dimensional curved space of constant curvature with
metric

gPv r 2~Pv
~

Our ability to rewrite the action functional (4) in terms of
variables on a two-dimensional mamfold originates, of
course, in the spherical symmetry of the Ansatz (3), pro-
viding perhaps the generic example of dimensional reduc-
tion.

The equations of motion corresponding to (4) are

and the expression for the total energy of the source-field
system is

, J, « l~~ml'+i~. ml'

r 2 1+ (G")'+ (1—y'y)'
2r

As is evident from (4), the choice of radial gauge is not
a complete specification of gauge. We have, as a residual
U(1) gauge symmetry, invariance of the equations of
motion (5) under the transformations

J,~J, ,

a&~a& —B&A, p =t, r,

where A is an arbitrary function of r and t In terms of.
the original SU(2) fields, this corresponds to the set of
transformations U which leave the source term (2) invari-
ant:

U(r, t) =exp[ ig A(r, t)r 'T'], —
J'T'= U(J'T') U

where T denote the basis vectors of the SU(2) Lie alge-
bra. With this additional gauge degree of freedom, we
shall choose to set y2 zero, i.e., y real. The gauge is there-
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by completely specified save for the sign of y. Also,
without loss of generality, we may describe static systems
by working with potentials which are manifestly time in-
dependent. '

The residual U(1) gauge symmetry illustrates another
important facet of Ansatz (3), and is, in fact, a general
feature of classical chromodynamics with external
sources. By specifying a nonzero external color density,
we have broken the global color symmetry of the theory to
that subgroup of transformations that leave the source in-
variant; in our case, this is SO(3) broken to U(1). This has
its obvious analog in Higgs-Yang-Mills theories when
nonzero vacuum expectation values develop for scalar
fields transforming nontrivially under the gauge group.
As first shown by 't Hooft' and Polyakov, ' such systems
often admit the definition of a topologically conserved
charge. The definition easily generalizes for chromo-
dynamic systems coupled to colored external sources, as
we review in the next section.

III. TOPOLOGICAL CHARGE
AND COLOR SCREENING

whereas for the Abelian Coulomb solution, we have say,
p'=53 and

M =0, Abelian Coulomb solution . (9b)

g 4~ fd xJp

f dS E'P'
4w Jr[=oo

Homotopy theory for SO(3) broken to U(1) tells us that M
may be any integer. However, it has been shown' that
other values of M, besides those displayed in Eqs. (9), cor-
respond to field configurations that are not spherically
symmetric, and thus are excluded from consideration here.

In addition to a conserved topological charge, there is
also an electric current given by

Jv Q ~pv

which is conserved by virtue of the antisymmetry of W&"
in its Lorentz indices. Thus the conserved total charge of
the source-field system is

Let p' denote the unit vector defining the direction in
color space of the color density. Like the field-strength
tensor F& P' transforms covariantly, permitting the in-
troduction of the gauge-invariant "electromagnetic" ten-
sor

fd x [Jop'+E'(Dp)'] .
4m.

(10)

When applied, for static sources (Dpp)'=0, to (3) this
yields

P gyro ~~~ g(D P)b(D P.P

Here

(D„P)'=—B~'+gd' 'A„p'
is the covariant derivative of p '. Alternatively, defining

we can express W&„as

=8 a —8 ap — E p Bpp 8 p

From P&, we may construct the conserved topological
current

x—:——'&»"a-~
2 p pv~

B~E =0,
which in turn gives the conserved topological charge of
our system,

( —V'+ V)ap ——p'Jo,
V (ao A&)= —gao A2 a

V.(ao A2)=gap A( a,
where the "screening potential" V is

V =(Dp)'(Dp)'=g'(
~
A~

~

'+
~
A2

~

)

(12a)

(12b)

(12c)

and ap and a are given by (7). These components play a
special role since, by (8) and (10) and by virtue of the
Abelian gauge, they are directly related to the total elec-
tric and topological charges:

&~o~= r~ ao

It is now simple to present a self-consistent argument
why M =0 static solutions must be partial screening. For
this, it is convenient to work in the "Abelian" gauge,
p —63 Then the three color components of Gauss's law
read

M 1 fd xECo
g 4m.

2 dQa, ,= lim r
r ~ 4~ (gao),

Br

f dS V&&a+ e' p'VP &(Vp'
( rj=~ 2g

M= limr f r (V&(ga) .dQ
r—+ ao 4~

This means that, to leading order in r ', a0 behaves like

M = 1, Mitten's Ansatz, (9a)

(We have scaled out a factor of 1/g so that M is a pure
number. ) Applied to Ansatz (3), we have p =r and

gao= + g ™
Ytm(Q)+O(r ), r~go, (13)r l r

l)0
where ci are constants, and a possesses, for M&0, a
Dirac string of the canonical form
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M (1—cos8)ga=+ . + ' ', r~(x)
r sinO

Here the ellipses denote all other (nonsingular) terms of
order r ' and higher in the asymptotic expansion of a.

We may now implement the self-consistent argument.
The crucial observation is that for M&0 a must possess a
Dirac string which falls like r . From Eqs. (12b) and
(12c), we see that to be consistent with this leading
behavior of a, Ai and Az must also be of the same order
(r '). It is then possible that the asymptotic expansion of
the screening potential will possess a positive, spherically
symmetric term of order r

With a screening potential V falling faster than r, we
also see that the spherically asymmetric terms in the
asymptotic expansion of a0, described as coefficients in an
expansion in spherical harmogics with angular momen-
tum I &0, must fall like r '. This is due, of course, to
the fact that the angular momentum barrier, for l&0,
overwhelms V in Eq. (12a) asymptotically [the ct in Eq.
(13) are zero]. This fact, coupled with condition (16), im-
plies that Aj is spherically asymmetric. An explicit con-
struction is given in the Appendix. In particular, the
gauge-invariant screening potential V is shown to be rota-
tionally noninvariant, demonstrating that any static M =0
solution generated by supercritical charge breaks the rota-
tional syminetry of the Lagrangian.

A, -O(r ' s), (14)

5 & 0, is consistent, we must also verify that Ampere's law
is asymptotically satisfied. In view of (13) with a„,
nonzero and (14), it is sufficient to retain only terms linear
in A~, obtaining

V X ( V' XAi) (ga0)—Ai 0+0——(r ),
V X(V X a) =0+0(r -'-2s),

(15a)

(15b)

where Aj denotes either A& or A2. Clearly we may take a
zero to this order and so, from (12b) and (12c), Eq. (15a) is
supplemented by the condition

V [(ga0) Ai]=0+0(r ) . (16)

The consequence of Eqs. (15a) and (16) are considered in
more detail in the Appendix. As a result of our analysis
there, we find that

A — I

r @+1/2 (17)

with v=[( —, ) —a„, ]' . Consistency with our initial as-
sumption (14) implies we must have v & —,', or

rm
1&p

where u and ut are constants. For u &0 [as it is, for ex-
ample, for Witten's Ansatz (3), where u =1], then a0 must
fall like r " ', i.e., a„,=0.

On the other hand, when M =0, A, could fall faster
than r ' as r approaches infinity. If we assume this, then
V decreases faster than r, so that by (12a), a„,would be
nonzero.

To check whether the behavior

2—z +2a f=zq,2d 2

dz2
(19a)

2

z —a +1+f a =0,d
dz

(19b)

where, following the notation of Ref. 8, we express a, (r)
and y(r) in terms of the dimensionless functions f(z) and
a (z) of the rescaled radial coordinate z =r Ir0.

a, (r)=r 'f
ro

IV. THE EQUATIONS OF MOTION

Returning to Ansatz (3},we now seek static solutions of
the equations of motion (5), where we work in a gauge
where qr is real. The assumption of time independence
simplifies the problem considerably, since Eq. (5b) reduces
to the condition

P Qp=0 .2

For y=0, we see that Eqs. (Sa) and (5c) reduce to those of
the Abelian Coulomb Ansatz, but with an important
difference: Owing to the inhomogeneous term

J'ak r
gr

in A~ (3), there is an additional contribution to the energy
(6) which is infinite. The corresponding solution describes
an unscreened external charge with a (singular) unit mag-
netic monopole at the origin. However, because of its in-
finite energy, this solution will not be considered further
here.

For a„=0, Eqs. (Sa) and (Sc) become, respectively,

a«. &VZ.
a„(r)=0, (20)

Thus a, , may be nonzero in the M =0 sector provided it
lies below v 2.

For most values of supercritical external charge
a &a, =—', , we do indeed find a«, satisfying (18) (cf. Fig.
1), thus verifying our general line of argument. However,
from Refs. 4 and 5, we find that v 2&a«, &a, =1.5 in
the range 1.5 (a & 1.67, so that the analysis given here is
invalid in this region. Nevertheless, we conjecture that a
more thorough study would confirm that all M =0 static
solutions in the supercritical region are partial screenin.

q(r)=a
rp

'f (1-)-"f(1+)=a.
dz dZ

(21)

For the 5-shell source (2}, the right-hand side of Eq. '(19a)
will be zero except at the shell z =1, where the external
charge determines the discontinuity in the derivative of
f(z):
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The two gauge-invariant quantities by which we shall
characterize solutions are the total energy (6) and the total
color (11). Values of the energy 8' shall be expressed in
units e of the Coulomb energy

2

+Coulomb
8mro

for the 5-shell source (2). From Eqs. (6), and (20), we have
2 28' 2 ~

~ d f da
dz 2 z +

dz z dz@Coulomb

g2f2 (1 g2)2
+ 2 +

Using gauss's law (19a), or alternatively Eqs. (11) and
(20), tile total cllal'ge ls given by

a,~,= lim —z 2d
z~ao dz z

(23)

+O(z '),
z

(24b)

a~+1+ +O(z ),
a

where f2, a2, f l, and a l are constants to be self-
consistently determined by a solution of the equations of
motion. By setting a (0)=1, we eliminate the remaining
gauge degree of freedom associated with the sign of y.
Thus, provided solutions of (19) with boundary conditions
(24) do exist, the asymptotic behavior of a(z) as z ap-
proaches infinity determines two types of solutions. De-
fining the quantity,

ba—:—,[a (0)—a( oo )]= —,[1—a( oo )], (25)

we shall, following Ref. 8, call these two types of solutions
type I and type II, depending on whether ha is zero or
one, respectively.

As an immediate consequence of boundary condition
(24b), the total charge of the source-field system (23) is
zero. Therefore we infer that all spherically symmetric
static solutions with unit color magnetic charge (M =1)
are total screening, since all other candidates have infinite

Iff (z) approaches or falls faster than a constant as z ap-
proaches infinity, then a„, is simply given by the asymp-
totic value of f. Thus total screening is signaled by func-
tions fwhich decrease monotonically to zero.

Solutions of the equations of motion require a specifica-
tion of the boundary conditions. This is simple to do
since Eqs. (19) possess regular singular points at the origin
and at infinity. Regularity of the functions f and a at the
end points plus the requirement that the total energy be
finite delimits the possible asymptotic behaviors. At the
origin we have

f f,z'+O(z ),
(24a)

a~l+a2z +O(z"),
while at infinity, a (z) may have either one of two asymp-
totic forms:

energy and are divorced from the spectrum of the theory.
The two types of solutions are characteristic of one

(space)-dimensional field theories with soliton solutions
(kinks and antikinks) stabilized by topological charge con-
servation. In our case the quantity ha is the relevant to-
pological charge (not to be confused with the color mag-
netic charge M discussed above). If we confine ourselves
to spherically symmetric, static potentials, it is absolutely
conserved, since any continuous deformation of a(z),
from one value of ha to another must pass through a con-
figuration of infinite energy. Unfortunately, it has not
proven possible to generalize, in a U(1) gauge-invariant
fashion, the topological charge b,a in terms of the original
variables y and az.

An explicit example of a soliton solution of Eqs. (19)
may be obtained when the source is tuned to zero (Q =0).
This is given by the type-0 solution

f=Fll(z) =0
1 —( )

solif oil
a =Ail(z) =

1+r(z) '

where

(26)

r(z) =

The emergence of an arbitrary scale A, as a parameter in
this solution is of course a consequence of the scale invari-
ance of classical Yang-Mills theory without external
sources. Thus, we have a whole one-parameter family of
solitons with energies equal to I, ' times a fixed constant.
There is also the trivial, zero energy, type-I solution,

f=~1(z)=0,
( ) 1

vacullni (27)

which, for obvious reasons, we shall call the vacuum solu-
tion. This exhausts all gauge-inequivalent sourceless solu-
tions of Eq. (19).

The existence of the sourceless solutions (26) and (27)
permit an analysis of the behavior of solutions as the
external charge is increased from zero. Denoting the
sourceless solutions by capital letters (I',A), the problem is
to expand f(z), a (z), and q (z) in small fluctuations,

f=I'+5f
a =A+5a,
q =0+6q,

(28)

linearize the equations of motion, and solve for 5f and 5a
for a given increase 6q of the source strength. Boundary
conditions for 5f and 5a must be such that the asymptotic
behaviors off and a in (28) are consistent with (24):

5f2z2+O(z4), z —W,5f- '

5f lZ +O(Z ), Z~ oo
(29)

5a2z +O(z ), z~0,
5a —.

5a lZ '+O(Z ), Z~ oo,

where 5f2, 5f l, 5a2, and 5a l are constants. The
linearized field equations can be succinctly stated in ma-
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trix form as

5f
K(F,A)

where

1 0 d& 5f
~+X (FA)

dz2

5q/z
0 (30)

q(z) =a5(z),
we must have f(0)=a. To ensure that the contribution of
the chromomagnetic field to the energy near the origin is
still finite, we must retain the condition a (0)= l. As a re-
sult, the coefficient of the short-distance linear divergence

-+1
4m

2AF

2AF F'+1 3A—'
and 5q=a5(z —1) (a small). However, because the vari-
ous soliton solutions (26) can be related by continuous
scale transformations, K(Fii,Aii) possesses a nontrivial
normalizable zero mode given by

0

z Ai, (z)

K(Fn,Au)/=0,

K-'(F„A, ) = 0
G (z,z'),

where

I

G(z,z') =—
3

2
Z Z(Z

Z'
Z)z

Z

Thus, calculating to first order in small a, the fluctuation
solution is

5a =0

Z, Z&1,2

z-', z&1,

with energy approaching the limit

lime(type I)= —,
'

~—+0
(31)

as Q goes to zero, as we shall subsequently verify.
It would be most interesting if we could generalize solu-

tions of Eqs. (19) to the case of a point-source distribu-
tion. Unfortunately, we cannot if we wish to maintain a
clear relation between the energies of the solutions ob-
tained here with that of the Abelian Coulomb solution.
This is due to the presence of the term (fa/z) in the en-
ergy (22). For the point source

and thus is noninvertible. Therefore, we see that, except
precisely at Q =0, there are no type-II solutions for an
external charge arbitrarily close to zero. If type-II solu-
tions exist at all, they must arise at some finite critical
value a of the external source strength.

The same conclusion does not apply to type-I solutions
since, in the "vacuum" background field (27), K(F,A) is
invertible, with explicit form

1 0

2 f(1) 1 df(1+) 1 df(1 )a 2 dz 2 dz
(32)

IV. NUMERICAL SOLUTIONS

Solutions of the coupled, nonlinear equations of motion
(19) with boundary conditions (24) is a complex problem
for which current analytical methods are inadequate.
Thus we must resort to numerical evaluation of f(z) and
a(z) for various values of a. The results of this analysis,
as well as the determination of e, are the subject of this
section.

Our technique for integrating Eqs. (19) is a simple func-
tional generalization of Newton's method for determining
the zeros of a function: ' The equations of motion are
linearized about an initial guess f' ' and a' ', which in-
corporate the boundary conditions (24) (with initial values
for fz, az, f „a i) and the discontinuity (21) of df/dz
at z =1. The linearized equations are then solved for 5f
and 5a utilizing standard techniques. In this regard, it is
important that only the relevant difference boundary con-
ditions (29), and not the full ones (24), are applied to 5f
and 5a. New approximate solutions are constructed,

f(1) f(0)+5f

a'"=a'"+ha,
and the procedure is repeated once again, replacing (f ' ',
a' ') by (f"', a'") as the new starting point. An iterative
algorithm is thus defined, yielding a sequence of approxi-
mate solutions, (f",a"), ideally converging to a limit.
Convergence may be conveniently monitored using some
functional of f(z) and a(z). In our numerical work, we
have used the total energy, Eqs. (22) or (32), as a conver-
gence criterion, requiring an absolute accuracy of six de-
cimal places.

Sample plots of the functions f (z) and a (z) for a =30

is larger by a factor of 3 than that of the Coulomb energy,
and no subtraction scheme can be consistently applied to
both.

Before concluding this section, we posit an alternative
expression for the energy

8'=fd xJor E',
which holds whenever the chromoelectric and chro-
momagnetic fields fall faster than r ~ as r approaches
infinity. Using (24b), one may verify this is the case. Us-
ing (2) and taking due care for Eq. (21), we obtain

—2 ~ d f(z)
dz q(z)

~2 p dZ Z
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are presented in Figs. 2(a) and 2(b). In all cases f(z) is a
positive function with a peak at z =1 and a discontinuity
in its derivative there, as given by (21). The behavior of
a (z) as z approaches infinity determines the type of solu-
tion. We have verified that all solutions respect the boun-
dary conditions (24) we have determined on the basis of
series analysis.

The most striking qualitative feature of the solutions is
the nodal structure of a(z). In addition to the n =0, 1

solutions of Ref. 8, we have also been able to contain solu-
tions with two and three nodes. %'e have searched, but
have been unable to detect, solutions with higher numbers
of nodes.

The n =1,2, 3 node solutions share the property that
they exist only when the external charge is sufficiently
strong, i.e., a ~ n*„. The critical values are found to be

ai ——5.835,

a2 ——13.119,

a3 ——15.763 .

This behavior was predicted for the type-II (n = 1,3) solu-
tions in our analysis of the last section. Moreover, solu-

tions with nodes always come in pairs in their supercriti-
cal regions. This is the phenomenon of bifurcation that
was first discovered in Ref. 8 for the case n =1. As dis-
cussed in Ref. 14, bifurcation is related to the existence of
zero modes in the operator K, Eq. (30), at the point of bi-
furcation.

The plot of e versus a (Fig. 3) portrays the bifurcation
of solutions in more graphic form. According to the
analysis of Ref. 14, the energy separation Ae between the
two solutions near the critical point scales like

a b,e —(a —a*) ~, a)a',
which we have verified. Figure 3 also shows that the
type-I n =0 solution is the only one that exists for all
values of the charge a, with e approaching the limit (31)
as u goes to zero.

All calculations have been performed up to a =50 with
no qualitative changes in the results.

VI CONCLUSION

The existence of a topologically conserved charge in
classical Yang-Mills systems coupled to external color

IO—

5—
2

0—

0

FIG. 2. (a) The n =0 and n =1 solutions for f (z) and a(z) at o', =30. Bifurcating solutions are superimposed, with solutions of
lower energy indicated by solid lines. (b} The n =2 and n =3 solutions for a= 30.
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charges offers special understanding of the nature of the
classical ground state. The function space of gauge poten-
tials is seen to partition into topologically inequivalent
sectors, each labeled by the charge M and energetically
inaccessible to one another. Characteristics of configura-
tions in each sector, such as color screening of the external
charge, may be quite different.

We have seen this explicitly in the case of SU(2) gauge
potentials coupled to a well-defined 5-shell external
source. The spherically symmetric subspace is seen to
partition into two sectors, one topologically trivial
(Abelian-Coulomb) and the other with unit topological
charge [Witten's Ansatz (3)]. Color screening is complete
in the M =1 case, while for M =0, there is no screening
whatsoever.

We have also seen that topological charge has conse-
quences for solutions of the static Yang-Mills equations
even outside the spherically symmetric subspace. For ex-
ample, in conjunction with information derived from per-
turbative studies' about the Coulomb potential, we can
self-consistently argue that the classical minimum in the
M=0 sector must, for sufficiently large coupling, be
spherically asymmetric, thus breaking the rotational sym-
metry of the Lagrangian. More importantly, it appears
that a spherically symmetric source is never totally
screened in the absence of topological charge.

Total screening solutions in the M =1 sector were con-
sidered in detail, reproducing and extending the work of

Jackiw, Jacobs, and Rebbi. In particular, we find that bi-
furcation of solutions is associated with a finite number of
nodes in the function a (z) and exist only when the exter-
nal color exceeds certain critical values. The existence of
critical couplings for type-II solutions can be explained by
the existence of soliton solutions at all scales when the
external source is zero, but as bifurcation appears for
type-I solutions as well, the latter is a more general
phenomenon still in want of a more explicit dynamical ex-
planation.

A number of questions are left unanswered by our in-
vestigations. To us, the more important issue is whether
or not static, stable solutions with topological charge are
always total screening. If true, then some of the elements
necessary to invoke a dual-Meissner-type effect to explain
color confinement may already be present in the classical
theory.

Another question is one of stability. General considera-
tions'" show that the higher-energy branches of bifurcat-
ing solutions are unstable. However, the stability of the
lower branches and of the n =0 solutions is unknown.
Nevertheless, if we restrict destabilizing fluctuations to be
purely radial, then the n =0 and n =1 solutions are stable
due to the existence of the topological charge ha (25).

It would be interesting to investigate time-dependent
solutions of the equations of motion (5). We may specu-
late that, with the introduction of an additional scale, the
frequency of time oscillations, partially screened (dyon)

0

0

0

(b)
FIG. 2. (C'ontinued. )
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As a byproduct of the analysis of these equations, we shall
also see, by explicit calculation, that the gauge-invariant
screening potential

V =(Dp)'(DP)'=g A t A t

has angular dependence at large distances from the source,
proving that M =0 partial-screening solutions are in-
herently spherically asymmetric.

Equation (16) suggests that we define the vector field

.2

Q
I

IO

Qp Qp

20 30

C=(gao) Ai,
which is purely transverse. We can then rewrite Eq. (15a)
in terms of C, exploiting the fact that, to leading order,
gao is simply a„,jr. We obtain

4 8- 2 4-—V C —— C+ —V(r C) —
2

C
r Br r r

CX

(C—r r.C) — C =0+0(r ) .

FICi. 3. Total energy e [Eq. (22)] versus a.

solutions could be constructed in analogy to the nontopo-
logical, time-dependent solitons of Friedberg, Lee, and Sir-
lin."

Witten's Ansatz represents the unique, nontrivial embed-
ding of the rotation group SO(3) in color SU(2). At least
two, and possibly more, inequivalent embeddings axe
possible in color SU(3), one of which is a simple generali-
zation of Witten s Ansatz. The equations of motion in the
latter case are identical to (5), and thus a 5-shell source in
the appropriate SU(2) subgroup is also totally screened. It
is an open question whether or not the alternative embed-
dings and/or fully SU(3) sources also admit total-
screening solutions.
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APPENDIX: THE CONNECTION
BETWEEN PARTIAL SCREENING

AND ROTATIONAL NONINVARIANCE

Ai~+ IH&(r)TJ. +r V X[EJ(r)TJ]I, (A 1)

where

EJ(r)— kj

r

[(~.+ & )2 2]1/2

and hj and kj are constants. Hence we see that the
leading-order asymptotic behavior of Az is given by the
j = 1 terms in the expansion, i.e.,

Ai-
v, +]/2r

Using the full angular dependence of the j=1 modes, we
may also construct the screening potential at large r:

The procedure then is to expand C in a complete set of
transverse vector spherical harmonics, determine the
large-r behavior of the corresponding coefficients, and

thereby deduce the asymptotic form of Az. The results of
this straightforward analysis is that, as r approaches infin-

ity,

In this appendix, we expand on comments made at the
end of Sec. III regarding the asymptotic behavior of the
gauge field components Az color perpendicular to the
source. This is determined by Eq. (15a) with the transver-
sality condition (16), which we reproduce here for con-
venience:

V—+ 2, I i hi i' —,
' sin'8

+
i
ki

i
[2cos 8+ —, sin 8(v&+ —,

'
) ] I

+O(r '
) .

V X ( V X Ai) —(gao) At ——0+0(r ),
V.[(gao) Az]=0+0(r ), r~oo .

(15a)

(16)

The summation over color perpendicular to the source
(a = 1,2) is suppressed. Note that for no choice of

~

k
& i

and
i
h i i

can Vbe rendered spherically symmetric.
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