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Hamiltonian variational study of SU(2) lattice gauge theory
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The Hamiltonian variational method is applied to the SU(2) lattice gauge theory in d+1 dimen-
sions using a plaquette-independent ansatz. The calculations in the equivalent model have been per-
formed using a mean-field approach in plaquette variables. We obtain only one confining phase.
Possible generalizations are also discussed.

I. INTRODUCTION

Gauge theories on the lattice are a powerful tool for
dealing with nonperturbative aspects in QCD. Recently,
Monte Carlo simulations have led to numerical estima-
tions of the hadronic spectrum,

' glueball masses, string
tension, deconfinement temperature, and other physical
magnitudes. It is, however, convenient to develop analyti-
cal methods which allow us to obtain a qualitative picture
of the main features of the theory, i.e., confinement and
asymptotic freedom. Among the analytic and semianalyt-
ic techniques that have been particularly used are series
expansions, renormalization group, mean field with radi-
ative corrections, finite-lattice approach, and variational
approximations in the Lagrangian or Hamiltonian' for-
mulation.

In this paper we have applied the variational technique
to the Hamiltonian SU(2) gauge theory on the lattice in
d + 1 dimensions by means of a plaquette-independent An-
satz and its generalizations. The calculations in the
equivalent model [Lagrangian SU(2) gauge theory in d di-
mensions] have been performed using a mean-field ap-
proach in plaquette variables which give very good results
at low dimensionality (d =3). We obtain a confining
phase for every value of the coupling constant. We do not
take this result as strong evidence for confinement because
the used trial state strongly favors this property. In fact,
the main objective of our work is to exhibit the possibility
of analytical calculations for realistic theories and dimen-
sions using nontrivial trial states without relying on
Monte Carlo simulations in the equivalent model. We
consider this approach as the first step towards a generali-
zation of the state with several plaquettes in interaction.
This might allow us to obtain information of the continu-
um through a "scaling window" for the crossover region.

The organization of the paper is as follows.
In Sec. II we describe the variational method and the

trial states used in the work. Section III deals with the
application of the method to the SU(2) model in 2 + 1 and
3+ 1 dimensions explaining the "mean-plaquette" tech-
nique. In Sec. IV we discuss the results and analyze possi-
ble generalizations.

II. INDEPENDENT-PLAQUETTE METHOD

The Harniltonian variational method is based on the in-
equality

where ep is the ground-state energy and
~
P) is a trial

function depending on parameters determined by minimi-
zation. The Hamiltonian for a gauge theory in d+1 di-
mensions, invariant under transformations belonging to a
compact group 6, is"

H= g Ei —g trz(—U~+H. c.), (2)
links plaq

where A. =4/g and trF(U&) is the trace of the product of
the link variables U~ in the fundamental representation of
G along a plaquette of the d-dimensional lattice. The elec-
tric field operator is defined on each link by means of

[E &iJ l TikU—kJ. . (3)

where a is the color index and T the corresponding
generator of infinitesimal transformations [a= 1,2,3;
T =o /2 for G=SU(2)].

Owing to the absence of nodes in the gauge-invariant
ground state' we propose

I 0& =exp[S(I UiI I& I )/2]
I
o&E (4)

where S depends on closed-loop combinations of link vari-
ables UI and on the set of variational parameters IP&I.
The state

~
0)z satisfies Ei

~

0)E ——0.
The norm of

~ g),
(ale&= I IIdU", (5)

I

is equivalent to the partition function of a Lagrangian
model in d dimensions with action S which we shall call
the "equivalent model. " The calculation of (H)& is
therefore based on the evaluation of statistical averages in
this equivalent model.

The choice of the function S is the fundamental step of
the method. It must be flexible enough to reproduce the
features of the ground state in the whole range 0 & A, & oo.
The analytic complication of S is limited by the corre-
sponding difficulty in the evaluation of the statistical
averages, which is particularly crucial in 3+ 1 dimen-
sions.

For the SU(2) gauge theory the most frequently used
variational state' ' is the so-called independent-
plaquette one:
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I
0& =exp g «i/z(U, )

plaq

(6)

plaq 2'

' tr, (U, )
I
0), ,

Ig) ~ exp ——f d xB (x) I0)~ .
continuum, 2

(7)

which, since the plaquettes involved in Eq. (6) are only
spatial, corresponds to magnetic fluctuations for each
point in the continuum limit:

where p~ are the variational parameters.
The generalization of Eq. (12) is now

(H)~ g J (g+1)p, («, (U, ) )(p)
j

The trial state of Eq. (6) corresponds to the first-order
perturbative expansion of the ground state in the
strong-coupling limit which ensures its correct behavior in
this region.

For 2+ 1 dimensions qualitative arguments ' indicate
that Eq. (7) is a good approximation for any coupling. It
is easy to show that this state confines for all values of
g and, moreover, the equivalent model for this case is a
gauge theory in two dimensions which may be exactly
solved.

For spin or chiral models (variables U„HG on the lat-
tice sites) the state analogous to Eq. (6) is an independent-
link state,

If&=exp g[(UU'4+H c] I0&z
link

which has been used for Abelian' ' and non-Abelian
groups where it is known as a Jastrow state because of
its original application to many-body problems.

III. SU(2) GAUGE THEORY

We must calculate the expectation value of the Hamil-
tonian Eq. (2) using the state of Eq. (6). The mean value
of the operator E~ is proportional to that of the magnetic
part of Eq. (2) by means of the identity'

f ~dU, f(IU, j)E,'f(IU, j)
I

f +d Uif ( [ Ui j )Ei lnf ( I U, j ) .

—A (tr$/p( Up) )(P)

where the statistical averages must be evaluated with the
action

S= g QP, tr, (U, ) .
Plaq j

Recalling that

trz( U) = Upj [tr)/p( U)],

(15)

(16)

where Uqj(x) is the Chebychev polynomial of second kind
and order 2j, the only magnitudes which must be calculat-
ed are (tr~/z"(Uz)), n =1,2, . . . , with the Boltzmann
factor given by Eq. (15).

We consider the following particular cases.

A. 2+ 1 dimensions

The averages in the equivalent model may be exactly
calculated' ' and, keeping in Eq. (15) only the funda-
mental representation, one obtains

Ip(2P)
( tl &/p( U& ) ) =2 I, 2

(17)

where I (x) is the modified Bessel function of order v.
The variational energy as a function of A, is shown in

Fig. 1, and one observes no discontinuities either in the
function or in the derivative indicating absence of phase
transitions as expected. The string-tension calcula-
tions' ' are trivial and show a confining phase for any A,.

Choosing

f ( t UI j ) =exp —2 tr I/2( Up )
plaq

and since E Ul &z
——

4 Ul&q, one obtains

(10)
2.0

EI = tl

lyly

U&

(12)

The expression which must be minimized is therefore

(H)g g& 3p
2 4

(tr]/p(U ))(P) yP

0.5

where 1V& is the number of plaquettes. This result is valid
for any dimensionality.

The most general independent-plaquette state may be
written summing in the action of the equivalent model
over all the irreducible representations of the group, i.e.,

1.0 2.0 4 Q

FIG. 1. Variational energy in 2+ 1 dimensions using state
Eq. (6). Dashed line represents the first order in a perturbative
e»an»on « = —~'"~3)~
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1

2

—3.3194
—8.8248

—3.3329
—8.8408

3
2

—3.3334
—8.8412

—3.3335
—8.8412

P 1 /2

2.421
3.238

—0.232
—0.285

0.040
0.029

—0.005
0.008

Keeping in Eq. (14) up to four variational parameters,
the results for A, =4 and 8, as examples, may be seen in
Table I. The improvement of the variational energy due
to the inclusion of the adjoint term is -0.4%%uo whereas the

TABLE I. (a) Variational energy in 2+ 1 dimensions using
state Eq. (13) with different numbers of variational parameters
(A, =4 and 8 as examples). (b) Values of the parameters PJ corre-
sponding to the last column in (a).

Maximum representation considered in Eq. (13)
(a)

influence of higher representations is negligible (-0.01%)
because the corresponding parameters remain very small.

B. 3 + 1 dimensions

The equivalent model is a gauge theory in three dimen-
sions and the evaluation of the statistical average must
rely on approx'. mate methods. The Monte Carlo simula-
tions would give the most precise results but at the ex-
pense of losing the analytical control and simplicity of
calculations. In this work we shall use the mean-plaquette
method ' based on a change of variables
link~plaquette. With this procedure a Bianchi identity
appears for each lattice cube:

5(B,—1)=5(Ui2(r ) U23(r ) Uis( r+y ) U|2(r+z)

X U23 ( r +x ) Uts ( r ) —1 ) (18)

where each plaquette variable has been denoted by two
directions and one site index. Performing this change of
variables one obtains

(tr&/2U&) =— +dU~tr&/2(U~)exp Petr~/2(U~) + 5(B,—1) .1
(19)

P P cubes

We remark that in two dimensions no constraint appears in the corresponding change of variables.
The numerical treatment of Eq. (19) consists of fixing all the plaquette variables, except for a finite number of them,

to their mean value ( U) which is evaluated by self-consistency. The use of plaquette variables automatically ensures the
gauge invariance.

Considering only one plaquette exactly in Eq. (19) the self-consistency equation is

12=0 2

XfdUe'" U.
2J1

trU
2J

trU
2

tr] /t2 U ~ (20)

where j& and j2 are variables associated with the cubes to
which the exactly treated plaquette belongs, and Z differs
from the numerator only in the absence of the factor
tr&/2U. The proof of Eq. (20) is completely analogous to
that given in Ref. 27 for the four-dimensional case. Even
though Eq. (20) presents several roots, we must keep only
the one which satisfies the limits

(U) =0, (U) ~ 1.

2.0

(t rv2 U)

1.6—

1.2

0.8

TABLE II. (tr&&2U) from Eq. (20} for different values ofj,„andP=8 and 15 as examples. The last column is a fit of
the Monte Carlo (MC} data (Ref. 26) given by ( tr, ~, U )
=2—1/P —0.35/2P .

Jmax

0.4

0.5 1.0 1.5 2.0 2.5

8
15

1

2

0.847
0.911

0.872
0.920

3
2

0.872
0.927

0.871
0.931

MC
data

0.870
0.932

FIG. 2. (tr&qqU) given by the mean-plaquette method in a
Lagrangian SU(2) gauge theory (continuous line) in three dimen-
sions [with j,„=2 in Eq. (20)) in comparison with Monte Car-
lo results () taken from Ref. 26 and series expansions (dot-
dashed line) from Ref. 29.
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1.5

1.0

0.5

1.0 2.0 3.0 $0
"A

FIG. 3. Variational energy in 3+ 1 dimensions using state
Eq. (6) and jm» ——

2 in Eq. (20). Dashed line represents the first

order in a perturbative expansion (E=—X /3) while dot-
dashed line is the variational energy using the link non —gauge-
invariant state Eq. (22).

2.0

1.5

1.0

0.5

The numerical solution of Eq. (20) with maximum j&
and j2 equal to —, is compared in Fig. 2 with Monte Carlo
data and series expansions. The agreement is excellent
with a maximal discrepancy of 0.5% for P=4. Table II
indicates that the inclusion of higher representations im-
proves the results (differences of 0.1% for p=15 with j&,
j2 up to 2). The Bethe-Peierls' approximation allows a
better precision but, because of its slow convergence, it has
not been used in the present work.

We may examine the possible analytical alternatives to
the mean-plaquette method. Among them the Lagrangian
variational method has been applied to SU(2) in three di-
mensions with results comparable to ours. The renor-
malization group in the manner of Migdal and Kadanoff
was used ' in four dimensions with differences up to 10%

10& =exp —g «in(IJi)
l
o&E

link

(22)

which turns out to be

(y~a ~((& g' 3p I2( P) I. »
Np(P

~
Q& 2 8 I)(2P) I)(2P)

(23)

This state exhibits a phase transition for A,,=1.30
which is incorrect. Figure 3 shows that the independent-
plaquette state is better than the independent-link one over
all the range of X. One notes that the state of Eq. (22) is
not gauge invariant but its symmetrization leads to
mathematical expressions of difficult treatment. If the
trend of the Abelian theories (where the gauge symmetri-
zation gives way to the equivalent XF spin model) is
maintained, the equivalent model for the SU(2) gauge
theory would be the chiral SU(2)XSU(2) which perhaps
may be studied by means of Monte Carlo simulation.

The comparison of the energy for the states of Eqs. (6)
and (22) is not useless since for the U(1) case they cross
each other. ' This fact, though not interpretable as a
phase transition, indicates that the true state for k »1 is
more similar to a MF than to an iridependent-plaquette
one.

To end this section we mention that the inclusion of the
variational parameter corresponding to the adjoint repre-
sentation in Eq. (13) involves a self-consistent equation
similar to Eq. (20) for (tr&&2 (Uz) & with an improvement
in the variational energy relatively similar to the (2+ 1)-
dimensional case (Table I).

with respect to the Monte Carlo method. The mean-field
(MF) approach with radiative corrections [the non-
gauge-invariant MF (Ref. 33) gives a spurious phase tran-
sition] being equivalent to a 1/d expansion gives results
not too accurate for low dimension (3). All these tech-
niques are more cumbersome than the mean-plaquette
method. Moreover, the latter can be easily generalized for
states which involve more than one plaquette.

We go now to the results obtained with the state of Eq.
(6). Figure 3 shows that the variational energy as a func-
tion of A, is qualitatively similar to the (2 + 1)-dimensional
case.

Looking at the value P~ of the variational parameter
(Fig. 4) which minimizes (I&& one sees that, for small A, ,
P~=2A, /3 as for d =2. The variational energy is also
equal to that of the model for d =2, i.e., E=—1, ~ /3
with A, «1. The fact that the first term of the perturba-
tive expansion of the ground-state energy is correctly
reproduced by Eq. (6) is valid for any group and dimen-
sion.

For completeness, Fig. 3 also shows the energy corre-
sponding to a mean-field, ' or independent-link, state

0.5 1.0 l.5 2.0 2.5 3.0
IV. CONCLUSIONS

'X

FICy. 4. Evolution of the variational parameter (P ) which
minimizes the energy in 3+ j. dimensions using state Eq. (6).
Dashed line represents the first order in a perturbative expan-
sion (P =2A. /3).

The goal of this work has been the description of the
Hamiltonian variational method in 3+ 1 dimensions for
the SU(2) gauge theory using independent-plaquette states.
It is remarkable that the calculations in the equivalent
model may be performed analytically with enough pre-
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cision by means of the mean-plaquette technique. We
must, however, note that the state used in Eq. (6) or Eq.
(13) tends to enhance the "disorder" or confinement. For
example, it has been shown' that the critical parameter
for the Z(2) gauge theory in 2+ 1 dimensions is higher
than what is obtained with other methods. Moreover in
the Z(S) gauge theory' only the Coulomb-Higgs transi-
tion, where the critical coupling increases with X, is repro-
duced. Therefore, the U(1) gauge theory in 3+. 1 dimen-
sions would present no phase transitions, which is wrong.
However, the inclusion of several plaquettes' in the states
for 2+ 1 dimensions improves the result. States with in-
teractions among several plaquettes are unavoidable for
the study of spatial Wilson loops. With the inclusion of
the next perturbative order of Ref. 20 the strong-coupling
phase would be satisfactorily treated. Calculations of this
type for 3 + 1 dimensions seem possible, the only difficul-
ty being represented by the evaluation of multiple in-
tegrals when the mean-plaquette method is used. It would
be interesting to see whether the renormalization group or
the Lagrangian variational method can be adapted to these
calculations.

Gther Ansatze used in the literature containing in-
teractions of pairs of long-distance plaquettes, though
convenient for QED in 2 + 1 dimensions, seem inap-

propriate for the SU(2) theory as was noticed in Ref. 34.
The only possibility of obtaining continuum results

seems to take large but finite clusters of interacting vari-
ables and look for a scaling window to the continuum in
the beginning of the weak-coupling region. This means
that one should reproduce correctly the crossover region.
If this program may be fulfilled we would obtain for the
first time, analytical results for the continuum without us-
ing Monte Carlo simulations or series expansions extrapo-
lated by Fade approximants.

After completion of this work we received a preprint
where results similar to ours are obtained by means of the
state of Eq. (6) calculating the equivalent-model averages
with Monte Carlo simulations. In particular their Fig. 1

practically coincides with our Fig. 3. Moreover, in this
paper a detailed study of the symmetrized independent-
link state is performed, with the chiral theory as
equivalent model, giving variational energies similar to
those of the independent-plaquette state.
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