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We consider theories in which the Schrodinger equation is modified so that the reduction of the
state vector becomes a dynamical process characterized by a mean reduction time 7z. It is generally
believed that such a theory and quantum theory differently predict the outcome of any two experi-
ments performed in rapid enough succession (separated by a time interval <7g), such as
Papaliolios’s successive measurements of a photon’s polarization. It is shown that the predictions of
a plausible class of dynamical reduction theories (for which the ensemble average of | (¢, |¥) |?
remains constant during the reduction process, where |¥) is the state vector, and | ¢, ) is any one
of the basis states to which it may reduce) and quantum theory do not differ for any Papaliolios-
type experiment. However, there are deviations from the predictions of quantum theory if the
second experiment measures interference between the superposed states created by the first measure-
ment. As an example, the result of a recent two-slit neutron interference experiment by Zeilinger
et al. is applied to the theory of Pearle, placing an upper limit 7z >5 sec on the neutron self-
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reduction time.

I. INTRODUCTION

According to quantum theory, after a measurement
which is completed at time ¢ =0, the state vector (which
describes the measured system and the apparatus which
measures it) can be written as

[,t) = a, ()| $,(1)) , t>0. (1)

Each state | ¢, (¢)) describes one of the possible outcomes
of the measurement. These states depend upon ¢, since the
system and the apparatus continue to evolve after the
measurement. However, each squared amplitude
| a,(t) |2, which represents the probability of the nth out-
come, does not change with time for ¢ > 0.

In a dynamical reduction theory, the Schrédinger equa-
tion is modified so that the amplitudes a,(z) continue to
evolve after the measurement. Indeed, all of the ampli-
tudes eventually vanish except a single amplitude whose
magnitude reaches the value one. In this way the theory
purports to describe a single system in nature (not an en-
semble of systems) and to solve the so-called “problem of
the theory of measurement”: why we observe a system in
the state |#,(z)), and not in a superposition of such
states.

Because the outcomes of a repeated experiment vary un-
controllably among the permitted values, a dynamical
reduction theory must have a mechanism whereby the re-
duced state vectors that are calculated likewise vary
among the permitted |¢,(¢)). In the theory of Bohm and
Bub!—* the reduced state vector is determined by certain
hidden variables (first introduced by Wiener and Siegal®)
which remain fixed during the reduction process, as well
as by the initial state vector (1). Each physical system is
supposed to possess definite values of these hidden vari-
ables, and the distribution of these hidden variables among
otherwise identical systems gives rise to the different ex-
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perimental outcomes. In the theory of Pearle,’~° the re-
duced state vector is determined by certain randomly fluc-
tuating matrix elements, as well as by the initial state vec-
tor (1). The different random fluctuations that a physical
system may undergo give rise to the different experimen-
tal outcomes.

In order that the predictions of a dynamical reduction
theory agree with the predictions of quantum theory for
the measurement described by (1), the state vector must
reduce to | ¢,(¢)) for a fraction |a,(0)|? of the identical
physical systems upon which the experiment is performed.
In the following, we shall refer to this as “the fundamen-
tal property of dynamical reduction theories.” It is in-
teresting that the necessary and sufficient condition for
this to be achieved is simply

(|an(T)|?)=a,0)|?, )

where the average is over the ensemble of identical physi-
cal systems, and where T is the time at which the reduc-
tion is completed for all physical systems.

To prove this assertion we note that, for each system,
| @,(T) | ? either equals 1 or O since that is the final result
of the reduction process. Therefore, { |a,(T)|?) equals
the number of systems for which |a,(T)|?=1 divided by
the total number of systems, i.e., { | a,(T)|?2) is precisely
the fraction of systems for which the state vector reduces
to | ¢, (2)).

Now, Eq. (2) can also be written more symmetrically as
(lan(D)|?)=(|an(0)|?), 29

because all systems start with the same initial values
| @,(0) |2 immediately following the measurement, before
the reduction process has begun. Since Eq.(2’) states that
the expectation values of the squared amplitudes are ini-
tially and finally the same, it is natural to ask whether
there is any experimental difference between theories for
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which these expectation values are also constant during
the reduction process,

4 2y _
dt(la,,(t)l )=0, 0<t<T, (3)

and theories which do not satisfy (3). In the former class
is the theory of Pearle; in the latter class is the theory of
Bohm and Bub.

We will now show that satisfaction of (3) is the condi-
tion that there be no deviation from the predictions of
quantum theory for two successive experiments separated
by a time interval less than T, provided the second experi-
ment does not measure interference between the states
produced by the first experiment.

II. ANALYSIS OF TWO SUCCESSIVE EXPERIMENTS

Let us suppose that the first experiment is completed at
time O, and the second experiment takes place at time ¢,
(we are assuming that the duration of this experiment is
negligible!®). Immediately after the first experiment, at
time O, the state vector is, according to Eq. (1),

|4,0) =3 a,(0)]¢,(0)) . @)

Thereafter, until the second experiment at time ¢, quan-
tum theory predicts the state vector will be of the form
(1), and that

la,(0)|*=|a,(0)|*, O<t<t, . (5)

On the other hand, while a dynamical reduction theory
also predicts the state vector is of the form (1) during the
time interval (0,¢;), the squared amplitudes |a,(z)|? do
not remain constant during this time interval. Nonethe-
less, if the theory obeys (3), we can assert

(|a,()|?)=]a,(0)]|%, O<t<t, ©6)

where the average is taken over the ensemble of state vec-
tors describing the ensemble of such experiments.

When the second experiment is performed at time ¢,
the state | ¢,(¢)) undergoes an evolution:

I¢n(tl)>—’zanm|¢nm> (7)

(the index m labels the outcome of the second experiment).
Therefore, according to quantum theory or according to a
dynamical reduction theory, the state vector immediately
after the second experiment is

|¢’t1>=20n(t1)anm|¢nm> . (8)

Let us first assume that the set of states { | ¢,,, )} are
all orthogonal. This is overwhelmingly the common situ-
ation. For example, this is true for all situations in which
the first experimental results are ineradicably recorded.

According to quantum theory, the squared amplitude
multiplying each state |¢,,,) in Eq. (8) does not change
for t>t,. Thus, the predicted probability that the mea-
sured sequence is n,m is

P2, = |a,(t))apm, | 2=1a,(0)|2|apy, |2, )

where the final result follows from Eq. (5).

According to a dynamical reduction theory, the squared
amplitude multiplying each state |¢,,, ) in Eq. (8) evolves
to O or 1 for ¢ > ¢, as the reduction proceeds unimpeded to
completion. The fraction of systems which start at time
t; with a particular amplitude a,(¢;)a,, and which end
up reduced to the state |@,,) is |a,(t;)a,n, |2 by the
fundamental property of dynamical reduction theories.
The total fraction of systems which end up reduced to the
state |@,,) is therefore obtained by multiplying
| @p(t1)anm |2 by the fraction of systems which possess
this particular squared amplitude, and summing over all
such squared amplitudes, so it is

me=(Ian(tl)anm,2>=<lan(t1)|2>lanm|2' (10)

By comparing Eq. (9) and Eq. (10) [using Eq. (6)] we see
that if and only if condition (3) is satisfied, the probabili-

ties P'?'K predicted by quantum theory and the probabili-
ties P,, predicted by a dynamical reduction theory

will be identical, for a sequence of two experiments
separated by an arbitrary interval ¢;. This is the most im-
portant point in this paper.!! [A subsidiary result that
will later be of interest is that the conditional probabilities
are equal:

PrIQm/EPrIQm:‘me/szm:lanm‘z (11
m m
whether or not condition (3) is satisfied.]

III. DISTINGUISHING QUANTUM THEORY
FROM A DYNAMICAL REDUCTION THEORY

How, then, might one experimentally distinguish a
dynamical reduction theory satisfying condition (3) from
quantum theory? One obvious way is to perform two suc-
cessive experiments such that the final states |¢,,, ) are
not orthogonal.

For example, the first experiment might separate a
wave packet describing a particle into spatially separated
packets (e.g., by means of a scattering, a Stern-Gerlach, or
a diffraction apparatus), but might not actually measure
where the particle is. Now, it is a tenet of dynamical
reduction theories that the reduction proceeds when the
states in the superposition (1) become “macroscopically
distinguishable.” This may be taken to mean that the
states | ¢,(¢)) describe a reasonably massive object (e.g., a
“pointer”) that can occupy macroscopically distinct posi-
tions (labeled by n). So, if the first experiment separates
the wave packets by a “macroscopic” distance, and the
particle is massive enough, one might suppose that the
reduction process might proceed, although perhaps at a
slow rate. One might say that the wave packet in such
circumstances begins to ‘“‘spontaneously reduce.” If we
define any processing of a system that brings on a reduc-
tion as an “experiment,” then such a splitting of a wave
packet may be called an experiment, even though a
measuring apparatus is not involved. The second experi-
ment, which should take place after as long a time as pos-
sible in order to let the effects of the slow reduction reach
a measurable magnitude, would involve recombining the
wave packets and measuring their interference.
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With this motivation, we will consider two successive
experiments with the maximum possible interference, i.e.,
| pm ? = | @nm? for all n,n’. The quantum-theory pre-
diction of the mth outcome is

P’gz Ean(tl)anm l2
n

=3 18,(0)|*|apm |’+ Z 24(0)25(0)anmanim -
n n#£n'

(12)

[In writing (12) we have used the condition a,(t)=a,(0)
which is stronger than |a,(t)|*= |a,(0)]|? but permissi-
]

Ax, Ax,

ble since any time-varying phases can be absorbed in the
| #,(2)), and will ultimately alter the phases of the a,,,].

The dynamical-reduction-theory prediction, by reason-
ing parallel to that preceding Eq. (10), is

P,ﬁ:(

S a(t))amm |2> . (13)

Because the reduction rate is presumed slow following the
first “experiment,” it is wuseful to write a,(2)
=v'x,(t)exp[if,(t)], and expand a,(?) about a,(0), ob-
taining

(Ax,)?

a,(t)=a,(0) [14+iA6, —+(AB,)*+iA0,

(14)

2,0 T 26,000 " wxp02 T

up to second order in Af,=6,(t)—0,(0), Ax, =x,(t)—x,(0). Equation (14) may be substituted into Eq. (13). The re-
sult is simplified if we assume the following properties of the dynamical reduction theory (all satisfied by the theory of
Pearle’). First, (Ax, ) =0 [this follows from condition (3)]. Second, the phase angles also have no drift, so (A6, ) =0.
Third, the squared amplitudes and the phase angles are uncorrelated, so (Ax,A8, ) ={Ax, ){(A8,)=0. Then Eq. (13)

becomes

Prﬁ= 2 |a,,(0) I 2lanm |2+ 2 an(o)a:'(O)anma:’m ]—%((AGH—A9"1)2>—%<
n

n##n'

Comparison of Eq. (15) with Eq. (12) shows that the in-
terference terms are slightly “washed out” in the dynami-
cal reduction theory compared to quantum theory. In the
theory of Pearle,”® the phase angles and squared ampli-
tudes obey a diffusion equation which for short times is
ordinary Gaussian diffusion with zero drift and ~1/714
variance (g characterizes the reduction time), so Eq. (15)
may be written

PR= 18,000 %] apn |2

3]
1—C—
TR

+ 3 a,(0)a,(0)apmanm , (16

n#n’

where C is a positive constant of order of magnitude 1.

IV. EXPERIMENTAL TESTS

Have there been any experiments performed that can be
used to distinguish between quantum theory and dynami-
cal reduction theories? Shortly after the Bohm-Bub
theory appeared, Papaliolios'®? performed an experiment
in which linearly polarized light (polarized at 80° to the
vertical) successively passed through two closely spaced
polaroids (the first polarized vertically, the second polar-
ized at a variable angle 8 to the vertical) 7.5 X 10~ !* sec of
photon travel time apart and into a counter. He varied
the angle 6 of the second polaroid, obtaining the cos20
dependence of the transmitted photon intensity (Malus’s
law) to =~ 1% accuracy.

This experiment was performed to test a different vari-
ant of the Bohm-Bub theory than the one we are consider-
ing here. Bohm, Bub, and Papaliolios hypothesized that
the first reduction occurred essentially instantaneously

Ax, Ax, |’

x,(0)  x,(0)

. (15)

)

within the first polaroid, but that the hidden variables (for
which they did not give a dynamical evolution equation),
which were appropriately distributed for the first experi-
ment, did not relax to their correct distribution for the
second experiment, even after the photon hit the second
polaroid. As a consequence, the reduction following the
second measurement was guided by a “biased” (incorrectly
distributed) set of hidden variables and did not obey the
fundamental property of dynamical reduction theories,
thereby producing deviations from the predictions of
quantum theory. Thus, this experiment was regarded as
placing an upper limit of order 10~ * sec on the relaxation
time of the hidden variables,!®> and was not regarded as a
test of the reduction time of the dynamical reduction
theory.

What we have in mind when we consider the Bohm-
Bub theory is a different dynamics of the hidden vari-
ables, namely, that they instantaneously relax to their uni-
form distribution immediately following each experiment,
before the reduction commences. In this case, the correct
hidden-variable distribution always guides each interval of
reduction, and the deviation from quantum theory is sole-
ly due to nonsatisfaction of condition (3) by the Bohm-
Bub dynamical equations. To summarize, following each
experiment, instead of an instantaneous reduction fol-
lowed by a slow relaxation, we hypothesize an instantane-
ous relaxation followed by a slow reduction. This latter
hypothesis may be regarded as more natural than the
former because the dynamics of reduction was described
by Bohm and Bub, but the dynamics of relaxation was
not.

To analyze Papaliolios’s experiment, we suppose that
the first experiment is performed at the first polaroid,

[l



238 PHILIP PEARLE 29

after which the reduction commences between two states
(labeled ‘“‘absorbed at first polaroid” and ‘“transmitted by
first polaroid”). We further suppose that the second ex-
periment takes place at the second polaroid, where the
transmitted photon state splits into two further states (la-
beled “absorbed at second polaroid” and “transmitted by
both polaroids”), so that finally three states compete in
the reduction “game.”® All three states are orthogonal,
so by our previous discussion, the intensities measured
with any orientations of the polaroids are predicted identi-
cally by quantum theory and by a dynamical reduction
theory satisfying (3) (such as Pearle’s theory). However,
there will be some disagreement with the predictions of a
dynamical reduction theory not satisfying (3) (such as the
Bohm-Bub theory).

Papaliolios did not vary the orientation of the first po-
laroid,'* but only the orientation of the second polaroid.
As can be seen from Eq. (11), the detected intensity is pro-
portional to the conditional probability | @, |?
= | a9 | ?=cos?0 whether or not condition (3) is obeyed.
Thus, from this point of view, Papaliolios’s experiment, as
performed, did not provide any limit for the reduction
time of any dynamical reduction theory. But a rotation of
the first polaroid provides a test of the Bohm-Bub theory.

To see this, let x (£)= | a,(¢) | * be the squared amplitude
for the photon state transmitted by the first polaroid. For
t>0, x evolves with time according to the Bohm-Bub
dynamical equation

dx 1

—;;:;{—x(l—x)

x (—x)
(1-2)

) (17)

where z, the hidden variable, can take on any value be-
tween zero and one with equal likelihood. The solution of
this equation at time ¢, is

xl—Z(l__x)z
X —Z

(sin€)! ~%(cos2€)? —1,/r
- sin’e—z e {18)

where x (0)=sin’¢ (e is the angle the incident photon po-

larization makes with the horizontal, and had the fixed
value 10° in Papaliolios’s experiment). From Eq. (18) one
can see that x (¢;,z) moves from sin’e at ;=0 toward 1
(toward 0) as t—» oo, for z < sin’e (for z > sinZ¢).

We note, according to Eq. (10), that the detected inten-
sity is proportional to P ={x(t;))cos’6. A computer can
be used to solve Eq. (18) for x(;,z), and to calculate
(x(t1)>5f0 dzx(t,z). A graph of (x(t,))/sin% vs
t1 /T for selected angles € appears in Fig. 1. For angles €
between 0° and 45° (between 45° and 90°) the theory
predicts an anomalously low (high) photon flux at the
detector: For example, at e=10°, the flux is more than
4% below the quantum theory prediction for
2.7Tg >t1>0.01 7, and is as much as 24% below for
t1=~0.47g. Moreover, if the angle € is varied (keeping 0
fixed), the theory predicts a deviation in intensity from the
expected sin’e dependence (Malus’s law).

Since agreement with quantum theory is obtained for
long reduction times (quantum theory is the limit 74 — oo,
or no reduction) or for short reduction times compared to
t;, any such experiment can be used to place a lower and

ity 7 siN? e
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FIG. 1. A graph of {x(t,)) /sin%€ vs t, /7, for angles e=10",
20°, 30°, 45°. For angles 90°> € > 45°, the curves can be found
from {(x(z;))(€)=1—(x(¢;))((7w/2)—€), and so lie above the
horizontal line at 1.

an upper limit on 75. If one expects the reduction time to
be short, then it would be appropriate to use Papaliolios’s
apparatus to place an upper limit of order 10~!* sec on
the reduction time 7. However, the two states immedi-
ately following the first experiment (“photon absorbed”
and “photon transmitted”’) can hardly be thought of as be-
ing macroscopically distinguishable, differing as they do
only in the state of a single photon and an atom that did
(or did not) absorb the photon. Accordingly, we might ex-
pect the reduction time to be long. This suggests that the
polaroids be placed as far apart as possible instead of as
close together as possible as they were in Papaliolios’s ex-
periment. Moreover, suppose the atom which absorbs the
photon initiates a sufficiently large disturbance which
spreads through the polaroid with the speed of sound.
Then the two states, “absorbed” and “transmitted,” might
soon be regarded as “macroscopically distinguishable,”
with a consequent lowering of 7x. From this point of
view, the numerous experimental evidence supporting
Malus’s law at moderate distances could be regarded as re-
futing dynamical reduction theories such as that of Bohm
and Bub which do not satisfy condition (3).

V. TWO-SLIT NEUTRON INTERFERENCE
EXPERIMENT

For an experiment that does test dynamical reduction
theories satisfying condition (3), consider a recent two-slit
neutron interference pattern obtained by Zeilinger et al.'?
The slit separation was a ~126 um, the slit width was
b =22 um, the slit-detector separation was L ~5 m, and
the neutron wavelength was 27/k ~20 A. The data was
fit to =~1% accuracy by adjusting three parameters: the
overall intensity, the center position of the pattern, and
the slit-width parameter. The latter was necessary because
the two slits were formed by inserting a 104-um-thick Bo-
ron wire into the gap of a 148-um single slit, and the in-
terference pattern constituted the best measurement of the
degree of centering the wire: one slit was ~5% wider
than the other.!® The solution of the Schrédinger equa-
tion with which the data was compared was obtained by
solving a Fresnel-Kirchhoff—type integral by computer,
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assuming a plane wave coherent over the plane of the slits.

A lower limit can be placed on the spontaneous reduc-
tion time for the neutron in this experiment, according to
the discussion in Sec. IIL.'7 For illustrative purposes, we
will assume that the slits were exactly of equal width, and
that the distance L was large enough for the Fraunhofer
diffraction approximation of the Fresnel-Kirchhoff in-
tegral to be valid (both assumptions were not quite correct
for the actual experiment). Then a(0)=a,(0)=1/v2 are
the amplitudes of each wave packet as they leave their
respective slits, and

Ay m ~Xm L exp[(—1)" *Yikx,,a /2L)] sin(kx,,b /2L) ,

(19)
where x,, is the position of a detector in the plane a dis-
tance L from the slit screen (x,,=0 being equidistant
from both slits). According to Eq. (16), if a slight reduc-
tion of the wave packets takes place on their way from the
slit screen to the detector, but the reduction dynamics
obeys condition (3), then

PR~ 1x,, ~%sin*(kx,,b/2L)
X [1+ cos(kx,,a /2L)Y1—Ct;/7x)] . (20)

A 1% agreement of experiment with the quantum
theory prediction [the standard two-slit interference ex-

pression, Eq. (20) with 7 = o0 ] leads to the inequality

t)/7g <0.01 . 1)

Since the neutron velocity in this experiment was
v =#ik /M ~10* cm/sec, the neutron traveled the distance
L ~5 m between the diffraction slits and the detector in
t;~0.05 sec. (It is the possibility of making this time
long by making v small and L large which makes this ex-
periment an effective test of the dynamical reduction
theory.) Thus, we obtain from (21) an approximate lower
bound on the reduction time:

TR > 35 sec . (22)

This rather crude analysis nonetheless illustrates the
utility of interference experiments involving macroscopic
distances and/or macroscopic masses'® in investigating
dynamical reduction theories satisfying condition (3).
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